
.

UNIT - 4

Transport Layer

 INTRODUCTION

 TRANSPORT-LAYER PROTOCOLS

 INTERNET TRANSPORT-LAYER PROTOCOLS

 USER DATAGRAM PROTOCOL (UDP)

 TRANSMISSION CONTROL PROTOCOL (TCP)

TRANSMISSION CONTROL PROTOCOL (TCP)

Transmission Control Protocol (TCP) is a

connection-oriented, reliable protocol. TCP

explicitly defines connection establishment, data

transfer, and connection teardown phases to

provide a connection-oriented service.

TCP uses a combination of GBN and SR protocols

to provide reliability.

TCP Services

 Process-to-Process Communication

 Stream Delivery Service

 Sending and Receiving Buffers

 Segments

 Full-Duplex Communication

 Multiplexing and Demultiplexing

 Connection-Oriented Service

 Reliable Service

 Process-to-Process Communication

TCP Services

• TCP provides process-to-process communication using port numbers.

• Senders port number & Destination Port number are placed in header of TCP Segment

 Stream Delivery Service

• TCP groups a number of bytes together into a packet called a segment

• TCP adds a header to each segment (for control purposes) and delivers the segment to the

network layer for transmission. The segments are encapsulated in an IP datagram and

transmitted. This entire operation is transparent to the receiving process.

• The segments are not necessarily all the same size.

Stream delivery

Sending �
process

Receiving�
process

Stream of bytes

• TCP, unlike UDP, is a stream-oriented protocol.

• TCP, allows the sending process to deliver data as a stream of bytes and allows the

receiving process to obtain data as a stream of bytes.

Sending and receiving buffers

Stream of bytes

Sending �
process

Receiving�
process

• There are two buffers, the sending buffer and the receiving buffer, one for each

direction

• The TCP sender keeps these bytes in the buffer until it receives an acknowledgment.

TCP segments

• TCP groups a number of bytes together into a packet called a segment

• TCP adds a header to each segment (for control purposes) and delivers the segment to the

network layer for transmission. The segments are encapsulated in an IP datagram and

transmitted. This entire operation is transparent to the receiving process.

• The segments are not necessarily all the same size.

 Full-Duplex Communication

TCP offers full-duplex service, where data can flow in both directions at the same time.

Each TCP endpoint then has its own sending and receiving buffer, and segments move in both

directions.

 Multiplexing and Demultiplexing

TCP performs multiplexing at the sender and demultiplexing at the receiver.

However, since TCP is a connection-oriented protocol, a connection needs to be established

for each pair of processes.

 Connection-Oriented Service

TCP is a connection-oriented protocol. With Three Phases:

1. The two TCP’s establish a logical connection between them.

2. Data are exchanged in both directions.

3. The connection is terminated.

TCP is a reliable transport protocol. It uses an acknowledgment mechanism to check the safe

and sound arrival of data.

 Reliable Service

TCP Features

To provide the services mentioned in the previous section, TCP has

several features:

 Numbering System

 Byte Number
• The bytes of data being transferred in each connection are numbered by TCP.

• The numbering starts with an arbitrarily generated number.

• Numbering is independent in each direction.

• TCP chooses an arbitrary number between 0 and 232 − 1 for the number of the first byte

 Sequence Number
• After the bytes have been numbered, TCP assigns a sequence number to each segment

that is being sent. The sequence number, in each direction, is defined as follows:

1. The sequence number of the first segment is the ISN (initial sequence number),

which is a random number.

2. The sequence number of any other segment is the sequence number of the previous

segment plus the number of bytes (real or imaginary) carried by the previous

segment.

 Acknowledgment Number
• TCP is full duplex; when a connection is established, both parties can send and receive

data at the same time

• The value of the acknowledgment field in a segment defines the number of the next

byte a party expects to receive. The acknowledgment number is cumulative.

Suppose a TCP connection is transferring a file of 5,000

bytes. The first byte is numbered 10,001. What are the

sequence numbers for each segment if data are sent in five

segments, each carrying 1,000 bytes?

Solution

The following shows the sequence number for each

segment:

Segment

A packet in TCP is called a segment.

 Format

 Encapsulation

The segment consists of a header of 20 to 60 bytes, followed by data from the application

program.

The header is 20 bytes if there are no options and up to 60 bytes if it contains options.

A TCP segment encapsulates the data received from the application layer. The TCP segment

is encapsulated in an IP datagram, which in turn is encapsulated in a frame at the data-link

layer

TCP segment format

• Source port address (16 bits): defines the port number of the application

program in the host that is sending the segment

• Destination port address (16 bits): defines the port number of the

application program in the host that is receiving the segment

• Sequence number(32 bits): defines the number assigned to the first byte

of data contained in this segment

• Acknowledgment number(32 bits): defines the byte number that the

receiver of the segment is expecting to receive from the other party

• Header length(4 bits): indicates the number of 4-byte words in the TCP

header.

Control Field(6 bits): defines 6 different control bits or flags. One or more

of these bits can be set at a time. These bits enable flow control,

connection establishment and termination, connection abortion, and the

mode of data transfer in TCP.

Window size(16 bits): defines the window size of the sending TCP in bytes.

The maximum size of the window is 65,535 bytes. This value is normally

referred to as the receiving window (rwnd) and is determined by the receiver.

Checksum(16 bits): The calculation of the checksum for TCP follows the same

procedure as the one described for UDP. However, the use of the checksum in

the UDP datagram is optional, whereas the use of the checksum for TCP is

mandatory.

Urgent pointer(16 bits): which is valid only if the urgent flag is set, is

used when the segment contains urgent data. It defines a value that must be

added to the sequence number to obtain the number of the last urgent byte in

the data section of the segment.

Options: There can be up to 40 bytes of optional information in the TCP

header.

Pseudoheader added to the TCP datagram

TCP pseudoheader, the value for the protocol field is 6.

A TCP Connection

TCP is connection-oriented. As discussed before, a

connection-oriented transport protocol establishes a

logical path between the source and destination. All of

the segments belonging to a message are then sent

over this logical path. Using a single logical pathway

for the entire message facilitates the acknowledgment

process as well as retransmission of damaged or lost

frames.

(continued)

 Connection Establishment

 Data Transfer

 Three-Way Handshaking

 SYN Flooding Attack

 Pushing Data

 Urgent Data

 Connection Termination

 Three-Way Handshaking

 Half-Close

 Connection Reset

Connection Establishment

• TCP transmits data in full-duplex mode.

• The connection establishment in TCP is called three-way

handshaking.

• The process starts with the server. The server program tells its TCP

that it is ready to accept a connection. This request is called a passive

open.

• The client program issues a request for an active open.

• The connection establishment is done by exchanging 3 messages

between the two parties:

• SYN segment

• SYN + ACK segment

• ACK segment

• A SYN segment cannot carry data, but it consumes one sequence

number.

• A SYN + ACK segment cannot carry data, but it does consume one

sequence number.

• An ACK segment, if carrying no data, consumes no sequence

number.

Connection establishment using three-way handshaking

Denial of Service attack / SYN flooding attack

• The connection establishment

procedure in TCP is susceptible to a

serious security problem called SYN

flooding attack.

• This SYN flooding attack belongs to a

group of security attacks known as a

denial of service attack

• The server, assuming that the clients

are issuing an active open, allocates

the necessary resources, such as

creating transfer control block (TCB)

tables and setting timers.

• One recent strategy is to postpone

resource allocation until the server

can verify that the connection

request is coming from a valid IP

address, by using what is called a

cookie.

Data transfer

Urgent Pointer

Connection Termination

• Most implementations today allow two options for connection termination:

three-way handshaking and four-way handshaking with a half-close option.

• Three-way handshaking for connection termination includes exchange of

three messages between the two parties:

• FIN segment

• FIN + ACK segment

• ACK segment

• The FIN segment consumes one sequence number if it does not carry

data.

• The FIN + ACK segment consumes only one sequence number if it does

not carry data.

Connection termination using three-way handshaking

Half-close

State Transmission Diagram

To keep track of all the different events happening

during connection establishment, connection

termination, and data transfer, TCP is specified as the

finite state machine (FSM).

 Scenarios

 A Half-Close Scenario

States for TCP

3.32

Time-line diagram for a common scenario

State transition diagram

Transition diagram with half-close connection termination

Windows in TCP

TCP uses two windows (send window and receive

window) for each direction of data transfer, which

means four windows for a bidirectional

communication. To make the discussion simple, we

make an unrealistic unidirectional; the bidirectional

communication can be inferred using two unidirectional

communications with piggybacking.

 Send Window

 Receive Window

Send window in TCP

• The send window size is dictated by the receiver (flow control) and the

congestion in the underlying network (congestion control).

• A send window opens, closes, or shrinks

• The send window in TCP is similar to the one used with the Selective-

Repeat protocol, but with some differences:

 The window size in SR is the number of packets, but the window size in

TCP is the number of bytes. Although actual transmission in TCP occurs

segment by segment, the variables that control the window are

expressed in bytes.

 TCP can store data received from the process and send them later

 The theoretical Selective-Repeat protocol may use several timers for

each packet sent, but as mentioned before, the TCP protocol uses only

one timer.

Send window in TCP

Receive window in TCP

• The receive window opens and closes; in practice, the window should

never shrink.

• There are two differences between the receive window in TCP and the

one we used for SR.

 The first difference is that TCP allows the receiving process to pull

data at its own pace. The receive window size is then always

smaller than or equal to the buffer size

 rwnd = buffer size - number of waiting bytes to be pulled

 Remember that an acknowledgement in SR is selective, defining

the uncorrupted packets that have been received. The major

acknowledgment mechanism in TCP is a cumulative

acknowledgment announcing the next expected byte to receive (in

this way TCP looks like GBN).

Receive window in TCP

Flow Control

As discussed before, flow control balances the rate a

producer creates data with the rate a consumer can use

the data. TCP separates flow control from error

control. In this section we discuss flow control,

ignoring error control. We assume that the logical

channel between the sending and receiving TCP is

error-free.

 (continued)

 Opening and Closing Windows

 Shrinking of Windows

 A Scenario

 Window Shutdown

 Silly Window Syndrome

 Syndrome Created by the Sender

 Syndrome Created by the Receiver

Data flow and flow control feedbacks in TCP

3.43

An example of flow control

Figure shows the reason for this mandate.

Part a of the figure shows the values of the last

acknowledgment and rwnd. Part b shows the situation in

which the sender has sent bytes 206 to 214. Bytes 206 to

209 are acknowledged and purged. The new advertisement,

however, defines the new value of rwnd as 4, in which

210 + 4 < 206 + 12. When the send window shrinks, it

creates a problem: byte 214, which has already been sent, is

outside the window. The relation discussed before forces the

receiver to maintain the right-hand wall of the window to be

as shown in part a, because the receiver does not know

which of the bytes 210 to 217 has already been sent.

described above.

Example

Example

new ackNo + new rwnd ≥ last ackNo + last rwnd

Window Shutdown - the receiver can temporarily shut down the window by sending a rwnd of 0.

Shrinking of Windows

Silly Window Syndrome

 Syndrome Created by the Sender

A serious problem can arise in the sliding window operation when either the

sending application program creates data slowly or the receiving application

program consumes data slowly, or both. Any of these situations results in the

sending of data in very small segments, which reduces the efficiency of the

operation.

• TCP may create a silly window syndrome if it is serving an application

program that creates data slowly, for example, 1 byte at a time.

• The result is a lot of 41-byte segments that are traveling through an

internet.

• The solution is to prevent the sending TCP from sending the data byte by

byte. The sending TCP must be forced to wait and collect data to send in a

larger block. Nagle found an elegant solution.

Nagle’s algorithm is simple:

1. The sending TCP sends the first piece of data it receives from the sending

application program even if it is only 1 byte.

2. After sending the first segment, the sending TCP accumulates data in the

output buffer and waits until either the receiving TCP sends an

acknowledgment or until enough data have accumulated to fill a maximum-

size segment. At this time, the sending TCP can send the segment.

3. Step 2 is repeated for the rest of the transmission. Segment 3 is sent

immediately if an acknowledgment is received for segment 2, or if enough

data have accumulated to fill a maximum-size segment.

If the application program is faster than the network, the segments are

larger (maximum-size segments). If the application program is slower than

the network, the segments are smaller (less than the maximum segment

size).

 Syndrome Created by the Receiver

Suppose that the sending application program creates data in blocks of 1

kilobyte, but the receiving application program consumes data 1 byte at a time.

Two solutions have been proposed:

 Clark’s solution is to send an acknowledgment as soon as the data arrive, but

to announce a window size of zero until either there is enough space to

accommodate a segment of maximum size or until at least half of the receive

buffer is empty.

 The second solution is to delay sending the acknowledgment. This means that

when a segment arrives, it is not acknowledged immediately. The receiver

waits until there is a decent amount of space in its incoming buffer before

acknowledging the arrived segments.

 Delayed acknowledgment also has another advantage: it reduces traffic.

The receiver does not have to acknowledge each segment.

 However, there also is a disadvantage in that the delayed acknowledgment

may result in the sender unnecessarily retransmitting the unacknowledged

segments.

Error Control

TCP is a reliable transport-layer protocol. This means

that an application program that delivers a stream of

data to TCP relies on TCP to deliver the entire stream

to the application program on the other end in order,

without error, and without any part lost or duplicated.

(continued)

 Checksum

 Acknowledgment

 Cumulative Acknowledgment (ACK)

 Selective Acknowledgment (SACK)

 Generating Acknowledgments

 Retransmission

 Retransmission after RTO

 Retransmission after Three Duplicate ACK

 Out-of-Order Segments

(continued)

 FSMs for Data Transfer in TCP

 Sender-Side FSM

 Receiver-Side FSM

 Some Scenarios

 Normal Operation

 Lost Segment

 Fast Retransmission

 Delayed Segment

 Duplicate Segment

 Automatically Corrected Lost ACK

 Correction by Resending a Segment

 Deadlock Created by Lost Acknowledgment

 Checksum

 Acknowledgment

ACK segments do not consume sequence numbers and are not acknowledged.

 Cumulative Acknowledgment (ACK): The receiver advertises the next byte it

expects to receive, ignoring all segments received and stored out of order. This

is sometimes referred to as positive cumulative acknowledgment, or ACK and is

specified as 32-bit ACK field in the TCP header

 Selective Acknowledgment (SACK): A SACK reports a block of bytes that is out of

order, and also a block of bytes that is duplicated, i.e., received more than

once. SACK is implemented as an option at the end of the TCP header.

• Each segment includes a checksum field, which is used to check for a

corrupted segment.

• If a segment is corrupted, as detected by an invalid checksum, the segment is

discarded by the destination TCP and is considered as lost.

 Retransmission

• Retransmission after RTO: The sending TCP maintains one

retransmission time-out (RTO) for each connection. When the

timer matures, i.e. times out, TCP resends the segment in the

front of the queue (the segment with the smallest sequence

number) and restarts the timer. RTO is dynamic in TCP and is

updated based on the round-trip time (RTT) of segments.

• Retransmission after Three Duplicate ACK: To expedite service

throughout the Internet by allowing senders to retransmit without

waiting for a time out, most implementations today follow the

three duplicate ACKs rule and retransmit the missing segment

immediately. This feature is called fast retransmission.

 Out-of-Order Segments

• TCP implementations today do not discard out-of-order segments.

They store them temporarily and flag them as out-of-order segments

until the missing segments arrive.

• TCP guarantees that no out-of-order data are delivered to the

process.

 Generating Acknowledgments

1. When end A sends a data segment to end B, it must

include (piggyback) an acknowledgment that gives the

next sequence number it expects to receive. This rule

decreases the number of segments needed and therefore

reduces traffic.

2. When the receiver has no data to send and it receives an

in-order segment (with expected sequence number) and

the previous segment has already been acknowledged, the

receiver delays sending an ACK segment until another

segment arrives or until a period of time (normally 500

ms) has passed. In other words, the receiver needs to

delay sending an ACK segment if there is only one

outstanding in-order segment. This rule reduces ACK

segments.

3. When a segment arrives with a sequence number that is

expected by the receiver, and the previous in-order

segment has not been acknowledged, the receiver

immediately sends an ACK segment. In other words, there

should not be more than two in-order unacknowledged

segments at any time. This prevents the unnecessary

retransmission of segments that may create congestion in

the network. Normal operation

 Generating Acknowledgments

4. When a segment arrives with an out-of-

order sequence number that is higher

than expected, the receiver immediately

sends an ACK segment announcing the

sequence number of the next expected

segment. This leads to the fast

retransmission of missing segments.

5. When a missing segment arrives, the

receiver sends an ACK segment to

announce the next sequence number

expected. This informs the receiver that

segments reported missing have been

received.

Lost segment

Fast retransmission (Rule-4)

Lost acknowledgment

Deadlock Created by Lost Acknowledgment

Lost acknowledgments may create deadlock if they are not properly handled.

Eg: ack(wsize=0)->sender shutdown Window :: ack(wsize!=0) :: Ack Lost ::

Sender still in shutdown mode

 Generating Acknowledgments

6. If a duplicate segment arrives, the receiver discards the segment, but immediately sends an

acknowledgment indicating the next in-order segment expected. This solves some problems when an ACK

segment itself is lost.

Lost acknowledgment corrected by resending a segment

Simplified FSM for the TCP sender side

Simplified FSM for the TCP receiver side

TCP Congestion Control

TCP uses different policies to handle the congestion in the network.

We describe these policies in this section.

 Congestion Window & Receiver window

 Congestion Detection

 Slow Start: Exponential Increase

 Congestion Avoidance: Additive Increase

 Fast Retransmission/Fast Recovery

 Congestion Policies

 Time out

 Three Selective Acknowledgements

(continued)

 Policy Transition

 Taho TCP

 Reno TCP

 NewReno TCP

 Additive Increase, Multiplicative Decrease

 Congestion Window & Receiver window

TCP is an end-to-end protocol that uses the service of IP. The congestion in the router is in the

IP territory and should be taken care of by IP. IP is a simple protocol with no congestion control.

TCP, itself, needs to be responsible for this problem. TCP cannot ignore the congestion in the

network; it cannot aggressively send segments to the network. The result of such

aggressiveness would hurt the TCP itself

TCP cannot be very conservative, either, sending a small number of segments in each time

interval, because this means not utilizing the available bandwidth of the network. TCP needs to

define policies that accelerate the data transmission when there is no congestion and

decelerate the transmission when congestion is detected.

To control the number of segments to transmit, TCP uses another variable called a congestion

window, cwnd, whose size is controlled by the congestion situation in the network (as we will

explain shortly). The cwnd variable and the rwnd variable together define the size of the send

window in TCP.

Actual window size = minimum (rwnd, cwnd)

 Congestion Detection

 Time out : If a TCP sender does not receive an ACK for a segment or a group

of segments before the time-out occurs, it assumes that the corresponding

segment or segments are lost and the loss is due to congestion.

 Three Selective Acknowledgements: Recall that when a TCP receiver sends a

duplicate ACK, it is the sign that a segment has been delayed, but sending

three duplicate ACKs is the sign of a missing segment, which can be due to

congestion in the network. When a receiver sends three duplicate ACKs, it

means that one segment is missing, but three segments have been received.

(slightly congested)

The TCP sender uses the occurrence of two events as signs of

congestion in the network: time-out and receiving three duplicate

ACKs.

Maximum segment size (MSS)

• The MSS is a value negotiated during the connection establishment,

using an option of the same name

• Each segment is of the same size and carries MSS bytes

 Slow Start: Exponential Increase

• The slow-start algorithm is based on the idea that the size of

the congestion window (cwnd) starts with one maximum

segment size (MSS), but it increases one MSS each time an

acknowledgment arrives. i.e. window size grows

exponentially.

• There must be a threshold to stop this phase. The sender keeps

track of a variable named ssthresh (slow-start threshold).

When the size of the window in bytes reaches this threshold,

slow start stops and the next phase starts.

 Congestion Policies

Slow start, exponential increase

 Congestion Avoidance: Additive Increase

• When the size of the congestion window reaches the slow-start

threshold, the slow-start phase stops and the additive phase

begins. In this algorithm, each time the whole “window” of

segments is acknowledged, the size of the congestion window

is increased by one.

• In the congestion-avoidance algorithm, the size of the

congestion window increases additively until congestion is

detected.

 Fast Retransmission/Fast Recovery

• The fast-recovery algorithm is optional in TCP. The old version

of TCP did not use it, but the new versions try to use it.

 Congestion Policies

Congestion avoidance, additive increase

 Taho TCP

 Reno TCP

 NewReno TCP

Three versions of TCP with different congestion policies

Taho TCP
• The early TCP, known as Taho TCP, used only two different algorithms in their

congestion policy: slow start and congestion avoidance

• Taho TCP treats the two signs used for congestion detection, time-out and

three duplicate ACKs, in the same way.

• When the connection is established, TCP starts the slow-start algorithm and

sets the ssthresh variable to a pre-agreed value (normally a multiple of MSS)

and the cwnd to 1 MSS. Then it continues to congestion avoidance phase.

• If congestion is detected (occurrence of time-out or arrival of three

duplicate ACKs), TCP immediately interrupts this aggressive growth and

restarts a new slow start algorithm by limiting the threshold to half of the

current cwnd and resetting the congestion window to 1.

Example of Taho TCP

FSM for Taho TCP

Taho TCP

Reno TCP

• A newer version of TCP, called Reno TCP, added a new state to the

congestion-control FSM, called the fast-recovery state.

• This version treated the two signals of congestion, time-out and the arrival

of three duplicate ACKs, differently.

• In this version, if a time-out occurs, TCP moves to the slow-start state (or

starts a new round if it is already in this state)

• If three duplicate ACKs arrive, TCP moves to the fast-recovery state and

remains there as long as more duplicate ACKs arrive. The fast-recovery

state is a state somewhere between the slow-start and the congestion-

avoidance states.

• In the fast-recovery state, it behaves like the slow start, in which the

cwnd grows exponentially, but the cwnd starts with the value of

ssthresh plus 3 MSS (instead of 1).

• When TCP enters the fast-recovery state, three major events may occur.

 If duplicate ACKs continue to arrive, TCP stays in this state, but the

cwnd grows exponentially.

 If a time-out occurs, TCP assumes that there is real congestion in the

network and moves to the slow-start state.

 If a new (nonduplicate) ACK arrives, TCP moves to the congestion-

avoidance state, but deflates the size of the cwnd to the ssthresh

value, as though the three duplicate ACKs have not occurred, and

transition is from the slow-start state to the congestion-avoidance

state.

Example of a Reno TCP

FSM for Reno TCP

Reno TCP

New Reno TCP

• A later version of TCP, called NewReno TCP, made an extra optimization

on the Reno TCP.

• When TCP receives three duplicate ACKs, it retransmits the lost segment

until a new ACK (not duplicate) arrives. (Fast Recovery Sate)

• If the new ACK defines the end of the window when the congestion was

detected, TCP is certain that only one segment was lost. However, if the

ACK number defines a position between the retransmitted segment and

the end of the window, it is possible that the segment defined by the ACK

is also lost.

• NewReno TCP retransmits this segment to avoid receiving more and more

duplicate ACKs for it.

New Reno TCP

Additive increase, multiplicative decrease (AIMD)

• Out of the three versions of TCP, the Reno version is most common today.

• If we ignore the slow-start states and short exponential growth during fast

recovery, the TCP congestion window is cwnd = cwnd + (1 / cwnd) when an

ACK arrives (congestion avoidance), and cwnd = cwnd / 2 when congestion is

detected. i.e. Additive increase, multiplicative decrease (AIMD)

TCP Timers

To perform their operations smoothly, most TCP

implementations use at least four timers.

 Retransmission Timer

 Persistence Timer

 Round-Trip Time (RTT)

 Karn’s Algorithm

 Exponential Backoff

 Keepalive Timer

 TIME-WAIT Timer

Retransmission Timer

Round-Trip Time (RTT)

Measured RTT (RTTM)

• How long it takes to send a segment and receive an acknowledgment for it.

This is the measured RTTM.

• In TCP the segments and their acknowledgments do not have a one-to-one

relationship, several segments may be acknowledged together.

• In TCP, there can be only one RTTM measurement in progress at any time.

Smoothed RTT (RTTS)

• Most implementations use a smoothed RTT, called RTTS, which is a

weighted average of RTTM and the previous RTTS

 Retransmission Timer

Deviated RTT

Most implementations do not just use RTTS; they also calculate the RTT

deviation, called RTTD, based on the RTTS and RTTM

Retransmission Time Out (RTO)

The value of RTO is based on the smoothed round trip time and its

deviation.

Example

 Karn’s Algorithm

• Suppose that a segment is not acknowledged during the retransmission time-

out period and is therefore retransmitted. When the sending TCP receives an

acknowledgment for this segment, it does not know if the acknowledgment is

for the original segment or for the retransmitted one.

• Karn’s algorithm is simple: TCP does not consider the RTT of a retransmitted

segment in its calculation of a new RTO.

 Exponential Backoff

• Most TCP implementations use an exponential backoff strategy. The value of

RTO is doubled for each retransmission. So if the segment is retransmitted

once, the value is two times the RTO. If it transmitted twice, the value is four

times the RTO, and so on.

Retransmission and Karn’s algorithm is applied.

 Persistence Timer

• To deal with a zero-window-size advertisement, TCP needs another timer. If the

receiving TCP announces a window size of zero, the sending TCP stops transmitting

segments until the receiving TCP sends an ACK segment announcing a nonzero window

size. This ACK segment can be lost. Both TCP’s might continue to wait for each other

forever (a deadlock).

• To correct this deadlock, TCP uses a persistence timer for each connection. When the

sending TCP receives an acknowledgment with a window size of zero, it starts a

persistence timer.

• When the persistence timer goes off, the sending TCP sends a special segment called

a probe.

• This segment contains only 1 byte of new data. It has a sequence number, but its

sequence number is never acknowledged

• The value of the persistence timer is set to the value of the retransmission time.

However, if a response is not received from the receiver, another probe segment is

sent and the value of the persistence timer is doubled and reset until the value

reaches a threshold (usually 60 s). After that the sender sends one probe segment

every 60 seconds until the window is reopened.

 TIME-WAIT Timer

• The TIME-WAIT (2MSL) timer is used during connection termination. The 2MSL

timer is used when TCP performs an active close and sends the final ACK. The

connection must stay open for 2 MSL amount of time to allow TCP to resend

the final ACK in case the ACK is lost.

• Common values are 30 seconds, 1 minute, or even 2 minutes.

 Keepalive Timer

• A keep alive timer is used in some implementations to prevent a long idle

connection between two TCP’s.

• The time-out is usually 2 hours. If the server does not hear from the client

after 2 hours, it sends a probe segment. If there is no response after 10

probes, each of which is 75 seconds apart, it assumes that the client is down

and terminates the connection.

