
.

UNIT - 4

Transport Layer

Outline

3.1 INTRODUCTION

3.2 TRANSPORT-LAYER PROTOCOLS

 Simple Protocol

 Stop-and-Wait Protocol

 Go-Back-N Protocol (GBN)

 Selective-Repeat Protocol

 Bidirectional Protocols: Piggybacking

3.3 INTERNET TRANSPORT-LAYER PROTOCOLS

 USER DATAGRAM PROTOCOL (UDP)

 TRANSMISSION CONTROL PROTOCOL (TCP)

Position of transport-layer protocols in the TCP/IP

protocol suite

Internet Transport-Layer Protocols

Some well-known ports used with UDP and TCP

USER DATAGRAM PROTOCOL (UDP)

• The User Datagram Protocol (UDP) is a

connectionless, unreliable transport protocol.

• It does not add anything to the services of IP

except for providing process-to-process

instead of host-to-host communication.

• UDP is a very simple protocol using a

minimum of overhead.

User Datagram

UDP packets, called user datagrams, have a fixed size header of 8

bytes made of four fields, each of 2 bytes (16 bits). the format of a

user datagram. The first two fields define the source and destination

port numbers. The third field defines the total length of the user

datagram, header plus data. The 16 bits can define a total length of 0

to 65,535 bytes.

User datagram packet format

The following is the contents of a UDP header in

hexadecimal format.

Example

a. What is the source port number?

b. What is the destination port number?

 c. What is the total length of the user datagram?

 d. What is the length of the data?

e. Is the packet directed from a client to a server or vice

 versa?

f. What is the client process?

Solution

 a. The source port number is the first four hexadecimal

 digits (CB84)16 or 52100

b. The destination port number is the second four

 hexadecimal digits (000D)16 or 13.

c. The third four hexadecimal digits (001C)16 define the

 length of the whole UDP packet as 28 bytes.

d. The length of the data is the length of the whole packet

 minus the length of the header, or 28 − 8 = 20 bytes.

e. Since the destination port number is 13 (well-known

 port), the packet is from the client to the server.

 f. The client process is the Daytime (see Table 3.1).

UDP Services

Earlier we discussed the general services provided by a transport-layer

protocol. In this section, we discuss what portions of those general

services are provided by UDP.

 Process-to-Process Communication

UDP provides process-to-process communication using socket addresses, a combination of IP

addresses and port numbers.

UDP Services

 Connectionless Services

• There is no connection establishment and no connection termination

• This means that each user datagram sent by UDP is an independent datagram. There is no

relationship between the different user datagrams even if they are coming from the same

source process and going to the same destination program.

• The user datagrams are not numbered.

• This means that each user datagram can travel on a different path.

• Only those processes sending short messages, messages less than 65,507 bytes (65,535

minus 8 bytes for the UDP header and minus 20 bytes for the IP header), can use UDP.

UDP Services

 Flow Control

 Error Control

UDP is a very simple protocol. There is no flow control, and hence no window

mechanism.

• There is no error control mechanism in UDP except for the checksum. This means that

the sender does not know if a message has been lost or duplicated.

• When the receiver detects an error through the checksum, the user datagram is silently

discarded.

 Congestion Control

• Since UDP is a connectionless protocol, it does not provide congestion control.

• UDP assumes that the packets sent are small and sporadic and cannot create congestion

in the network.

 Checksum

UDP checksum calculation includes three sections: a pseudoheader, the UDP header, and the

data coming from the application layer.

The pseudoheader is the part of the header of the IP packet in which the user datagram is to

be encapsulated with some fields filled with 0s.

If the checksum does not include the pseudoheader, a user datagram may arrive safe and

sound. However, if the IP header is corrupted, it may be delivered to the wrong host.

The protocol field is added to ensure that the packet belongs to UDP, and not to TCP.

The value of the protocol field for UDP is 17.

If this value is changed during transmission, the checksum calculation at the receiver will

detect it and UDP drops the packet. It is not delivered to the wrong protocol.

Pseudoheader for checksum calculation

 Encapsulation and Decapsulation

 Queuing

 Multiplexing and Demultiplexing

 Comparison : UDP and Simple Protocol

To send a message from one process to another, the UDP protocol encapsulates and

decapsulates messages

At the client site, when a process starts, it requests a port number from the operating

system. Some implementations create both an incoming and an outgoing queue

associated with each process.

In a host running a TCP/IP protocol suite, there is only one UDP but possibly several

processes that may want to use the services of UDP. To handle this situation, UDP

multiplexes and demultiplexes

The only difference is that UDP provides an optional checksum to detect corrupted

packets at the receiver site.

What value is sent for the checksum in one of the following

hypothetical situations?

 a. The sender decides not to include the checksum.

 b. The sender decides to include the checksum, but the

 value of the sum is all 1s.

 c. The sender decides to include the checksum, but the

 value of the sum is all 0s.

Example 3.12

Solution

 a. The value sent for the checksum field is all 0s to show

 that the checksum is not calculated.

b. When the sender complements the sum, the result is all

 0s; the sender complements the result again before

 sending. The value sent for the checksum is all 1s. The

 second complement operation is needed to avoid

 confusion with the case in part a.

c. This situation never happens because it implies that the

 value of every term included in the calculation of the

 sum is all 0s, which is impossible; some fields in the

 pseudoheader have nonzero values.

Example 3.12 (continued)

UDP Applications

Although UDP meets almost none of the criteria we mentioned

earlier for a reliable transport-layer protocol, UDP is preferable

for some applications. The reason is that some services may

have some side effects that are either unacceptable or not

preferable. An application designer sometimes needs to

compromise to get the optimum.

 UDP Features

 Connectionless Service

 Lack of Error Control

 Lack of Congestion Control

A client-server application such as DNS uses the services of

UDP because a client needs to send a short request to a

server and to receive a quick response from it. The request

and response can each fit in one user datagram. Since only

one message is exchanged in each direction, the

connectionless feature is not an issue; the client or server

does not worry that messages are delivered out of order.

A client-server application such as SMTP, which is used in

electronic mail, cannot use the services of UDP because a

user can send a long e-mail message, which may include

multimedia (images, audio, or video). If the application uses

UDP and the message does not fit in one single user

datagram, the message must be split by the application into

different user datagrams. Here the connectionless service

may create problems. The user datagrams may arrive and be

delivered to the receiver application out of order. The

receiver application may not be able to reorder the pieces.

This means the connectionless service has a disadvantage

for an application program that sends long messages.

Assume we are downloading a very large text file from the

Internet. We definitely need to use a transport layer that

provides reliable service. We don’t want part of the file to be

missing or corrupted when we open the file. The delay

created between the deliveries of the parts is not an

overriding concern for us; we wait until the whole file is

composed before looking at it. In this case, UDP is not a

suitable transport layer.

Assume we are using a real-time interactive application,

such as Skype. Audio and video are divided into frames and

sent one after another. If the transport layer is supposed to

resend a corrupted or lost frame, the synchronizing of the

whole transmission may be lost. The viewer suddenly sees a

blank screen and needs to wait until the second transmission

arrives. This is not tolerable. However, if each small part of

the screen is sent using one single user datagram, the

receiving UDP can easily ignore the corrupted or lost packet

and deliver the rest to the application program. That part of

the screen is blank for a very short period of time, which

most viewers do not even notice.

Typical Applications of UDP

• UDP is suitable for a process that requires simple request-response communication with little

concern for flow and error control. It is not usually used for a process such as FTP that needs

to send bulk data

• UDP is suitable for a process with internal flow- and error-control mechanisms. For example,

the Trivial File Transfer Protocol (TFTP) process includes flow and error control. It can easily

use UDP.

• UDP is a suitable transport protocol for multicasting. Multicasting capability is embedded in

the UDP software but not in the TCP software.

• UDP is used for management processes such as SNMP

• UDP is used for some route updating protocols such as Routing Information Protocol (RIP)

• UDP is normally used for interactive real-time applications that cannot tolerate uneven delay

between sections of a received message

