UNIT - 4

Transport Layer

B Outline

3.1 INTRODUCTION

3.2 TRANSPORT-LAYER PROTOCOLS

» Simplex Protocol

» Stop-and-Wait Protocol

» Go-Back-N Protocol (GBN)

» Seclective-Repeat Protocol

» Bidirectional Protocols: Piggybacking

3.3 INTERNET TRANSPORT-LAYER PROTOCOLS

» User Datagram Protocol (UDP)
» Transmission Control Protocol (TCP)

(I

O

B 0 0O O

Sequence Numbers

Acknowledgment Numbers

Send Window

Receive Window

Timers

Resending packets

FSMs (Sender & Reciver)

Simplex Protocol

Used in Noiseless channels

Simple connectionless protocol with neither flow nor error control

The transport layer at the sender gets a message from its application layer,
makes a packet out of it, and sends the packet.

The transport layer at the receiver receives a packet from its network layer,
extracts the message from the packet, and delivers the message to its
application layer.

No acknowledgement and no sequence number.

Each FSM has only one state, the ready state.

Flow diagram

.

Chent Chent transport Server transport Server
process layer layer process

|

|
[= Packet I
: : : Arrival N
| Request | Packet

¥ \4 v ¥

Time Time Time Time

Simplex protocol

Sender Recerver
o Packet
Apphication | — T
A |
Transport | == e T e——
Logical channel —_

FSMs for the simplex protocol

-

Request came from application.

Make a packet and send 1it.

SR

Application

T]'El]lf‘é]]{]]'l

N O

Sender

Packet arrived.

Deliver 1t to process.

Ready
Smn—r
_/ &\

/

Recerver

Stop and Wait protocol

It is a connection-oriented protocol

Uses both flow and error control

Both the sender and the receiver use a sliding window of size 1.

The sender sends one packet at a time and waits for an acknowledgment
before sending the next one.

To detect corrupted packets, we need to add a checksum to each data
packet, if checksum not correct the packet is discarded.

Every time the sender sends a packet, it starts a timer. If an
acknowledgment arrives before the timer expires, the timer is stopped
and the sender sends the next packet (if it has one to send).

If the timer expires, the sender resends the previous packet, assuming
that the packet was either lost or corrupted. This means that the sender
needs to keep a copy of the packet until its acknowledgment arrives.

To prevent duplicate packets, the protocol uses sequence numbers and
acknowledgment Numbers

The sender is initially in the ready state, but it can move between the
ready and blocking state.

The receiver is always in the ready state

Sender Packel ACK Receiver
Application | | | | Application
F — seqNo checksum ack No check sum E—p— H
| ransport Iransport
. . f——
. |
Logical channels
S R Next packel

Lo receive
re=== I | . re== -==1
- - :.___ ___JI - - @I]]]'lr:] - :-___ ___Jll-l'l-

Send window Receive window

Flow diagram of stop and wait

Req: Request from process

Sender

Receiver

pArr: Packet arrival

fvents: aArr: ACK amival I-]—ﬂn?_i}“}n I-]—ﬂn?_ﬂjun
['-Out: Time out occurs layer layer
= | |
I':- =SS TS I - I
Start AR @I_:Lf_]_:_l_:_f_]:_!_: E—Fii;h—'rL—_ i pAIT .
__ S e da"trri ! E'Tl___*i — 00111001
: O[O 00T e—-— = !
stop B a
Start @ S, O[oiTo el |
: LL]-:-11"‘7 |
_ S : :
[me-out; restart (:D I_'_[EL_H_,.. fﬁE{'T]T{]’F[’. i_pj_':kﬂ (resent) i _ A
- o . — — b ur ____ e
S Ate | ACK 0 1~~~ =i0i110]1i011]
. - — e __ dl AT I
stop (5) :gr_F_l TT0T<- - :
- 1 |
1 |
: Feq g _ ' Pack et ! I
sun @ S Gl oot paw L
| ACK 1 1——->=0: 10l]oil:
[-Out q- A | Pac > Lost :
[Tme-oult: restart et T FIE] o | Tacket () (resent) ! _ _
—t =l | — __y1 PAIT Packet O
P 2 "'eri ACK 1 i " 777 discarded
Stop @ 0110 _ﬁ_l__l__'r-lr'E_——— [: (a duplicate)
v v
[Tme [Mme

FSM for the Stop-and-Wait protocol

Sender
4 ™

Request came from application.

Make a packet with seqNo = §, save a copy, and send 1t.

L I ime-out.
Start the timer.

Resend the packet in the window.
1 Restart the timer.

Ready Blocking Comupted ACK or error-free ACK
with ack »o not related to the only
outstanding packet arrived.
Discard the ACK.

Start Error-free ACK with ackNo =5 + 1 arrived.
Shde the send window forward (S = 5§ + 1).

. ~ote:
Stop the timer. All arithmetic equations
N are in modulo 2. /
Receiver
/‘{_'urrupttd packet arrived. F.ror-free packet with seqNo = R arrived. N

Discard the packet.

Deliver the message to application.
Shde the receive window forward (R = R + 1).
send ACK with ackNo = R.

Error-free packet with seqMNo # R arrived. Note:]]
Discard the packet (it is duplicate). All f.iflllll]'ll;‘ll(.‘ equations
9 Send ACK with ackNo = R. are in modulo 2.

Shortfalls of Stop and Wait Protocol:

* The Stop-and-Wait protocol is very inefficient if our channel is thick
and long.

« By thick, we mean that our channel has a large bandwidth (high data
rate); by long, we mean the round-trip delay is long.

* The product of these two is called the bandwidth-delay product.

Pipelining:

* In networking and in other areas, a task is often begun before the
previous task has ended. This is known as pipelining.

* There is no pipelining in the Stop-and-Wait protocol because a sender
must wait for a packet to reach the destination and be acknowledged
before the next packet can be sent.

Go-Back-N protocol

To improve the efficiency of transmission, multiple packets must be in
transition while the sender is waiting for acknowledgment. i.e. using
the concept of pipelining.

A simple protocol that can achieve this goal is called Go-Back-N (GBN)
The key to Go-back-N is that we can send several packets before
receiving acknowledgments, but the receiver can only buffer one
packet.

We keep a copy of the sent packets until the acknowledgments arrive.
The sequence numbers are modulo 2™, where ‘m’ is the size of the
sequence number field in bits.

An acknowledgment number in this protocol is cumulative and defines
the sequence number of the next packet expected

Go-Back-N protocol

Packet ACK
seqNo 5 E checksum ackNo n checksum
Sender Receiver
Application Application
[—
Transport Transport
.

Logical channels

: R Next packet
SFirst S, Next - P
li outstanding l to send @Tnner ! to receive

[— -=-=

eeo e | | e e e
ol

Send window Recelve window

Send window for Go-Back-N

 The maximum size of the senders window is 2™ - 1.
* The sender needs to wait to find out if the packets sent have been
received or were lost. We call these outstanding packets.
 Three variables are defined:
* 5S¢ (send window, the first outstanding packet),
« S, (send window, the next packet to be sent), and

* S.,. (send window, size)=2™M - 1.
First Next
St outstanding iﬁ to send
cee i 6 7OV]2]3[4[5[6] 730 eee
Sent, Outstanding Can be sent Cannot be
acknowledged, (sent, but not when accepted accepted
and purged acknowledged) from process | [rom process
) S.ie = Send window size

Sliding the send window

First Next
outstanding ! 1 {o send

| |
o122 3f4alsfel7lof1[2]3:4:5:6.

a. Window before sliding

The send window can slide one or more slots when an error-free ACK with

ackNo greater than or equal S; and less than S, (in modular arithmetic)
arrives.

> Sliding direction

First S. Next
outstanding f 'L“ to send
o123 4 sfelrlol1[2a]374]5 16!

b. Window after sliding (an ACK with ackNo = 6 has arrived)

Receive window for Go-Back-N

The receive window makes sure that the correct data packets are received
and that the correct acknowledgments are sent. In Go-back-N, the size of the
receive window is always 1.

Only one variable: R, (receive window, next packet expected).

Only a packet with a sequence number matching the value of R is accepted
and acknowledged

When a correct packet is received, the window slides, R, = (R, + 1) modulo 2™

R, Next

expected
i_'_'O_'_'i_'_'l_'_'i_fi_'i::3f:i:4::@:I7:5:0:5_'_'1_'_'5_'_'2_'_'5

Already received Cannot be
and acknowledged received
<

Flow diagram for

St
S¢
Start Req
timer aike
Stop
timer
Start Req
timer b)--->
Req
R
Req
--->
Restart |/)
Stop

®

timer

‘||‘Sn Initial
0[1L[[als

6_-

reliability on senders side

Recelver

S, -
o[1]2]3]14]5]6]7.001 12,

R

Trimsport
_I‘r’lyer Ry Initial

[0 i2i4isiei7io i)

k pAI‘I‘ . R T ey e e
Al o0 I~ I I Al
- : T 7o 0[121304151617101112;
—|| - S aArr |
10]1]2]3]4[5[6]7}0,1;2:€~ " |
|
51 5 | |
_ e e = I
10[1]2]3]4]5|6]710}1,2] ! :
ST 3ialsiel7ioniz:
- - - R
0[1]2(3[4]5[6]71011;2, v
S7 [S 2[alsiel7ioiz!
10[1]2]3]4[5]6]710,1;2. pAIT R,
TS R I
1011231456701 21€-~~ Events:
S¢ T Sy Req: Request from process
R aArr Arr: Packet arrival
i1l p
011,2;3]4(5]6]7]0]1 2*'"+ v aArr: ACK arrival
Time Time

Flow diagram for unreliability in senders site

Sender Receiver
Transport Transport
layer layer
Sf—ll— S Initial : : R, Initial
01 N 2 I 2 A ER A NS | e
1
S I : :
Start e T P N
St Red, BMBGEEe 750517 |_Packe: o e
i g AN ¥ = '
. A — == 0]1]213}4151617;
St Sa : e . & 2.
i] i s - 1 1
Stop ol1jzl3]4a]ls]6]7]0}1}2; SO e .
. St7 [Sa - 1 |
. —_— ol e e 1 acket 1
start (B) -=d> ofn]2]3]als]e]7]0 12} : :
1 1
Sf_l r Sa i Lost E
Req O TOoV 1V 1 1
--->.,0 I 1 |2 | 3 l4 l S5]6 l 710,1,2, : : Packet discarded
T s [=a : :
=235 olx]2l3]4als]6]7]0i1i 2 : :
= LESS ” 1 1 Packet discarded
aArr |1]
ACK discarded <«(--- -
1 1
) aArr ! :
. ACK discarded =(--- ;| :
?ij [Sn L : Packet 1 (r O : R,
Time out () ----=- > o|1]2]3]4a]|5]6]7l0i1i2; - — | pAr: - e e
) - :[1o]6]7]051:2. - m—p! - -~ 10,1[21314,5,617,
ey ! ! AR
e :—O—r1]2]3 l4 I 5]6 I ~ ;O_:_l_:_Z_: 1 Packet 2 (resent) ‘ PATI _ 5 e
a - ——— o —— b 2 ']] 1] 1] '
. Sf C Sh Packet 3 0)112]3141516,7.
: = e e R
->io[1]2]3]a]s[6]7] oMz el pArr _ =
St [Sn --=-> 1011,213[4}516,7,
Restart (b o1 Rl 1 [5|6]7:081i2: 24T
Sf‘] N S, A Events:
- - & I
Restart 011,22 |13|4a|5|6]7]0]1]_2_: S Req: Request from process
pPArr: Packet arrival
S¢ 1 S, e aArr: ACK arrival
e aArr 2 o T o
t?lt;;gl oi1i2:3(a[s|o]7[o]1]2] <«--- time-out: Timer expiration

FSMs for the Go-Back-

N protocol

All arithmetic equations

Request from process came.
are in modulo 2™,

Make a packet (seqNo = S})).
Store a copy and send the packet.

\

Time-out.

Start the timer if it 1s not running.
Sp=8,+1.

Time-out.

Window full
(Sp =St * Ssize)?

Resend all outstanding
packets.

Restart the timer.

Y

Resend all outstanding

“

Blocking

error-free ACK with ackNo or equal S¢ and less than S, arrived.

ket [true]
packets. . [false]
Restart the timer.
Start
A corrupted ACK or an i Error free ACK with ackNo greater than
)

A corrupted ACK or an
error-free ACK with ackNo

outside window arrived.

Discard it.

o

Slide window (S = ackNo).
If ackNo equals S,,, stop the timer.
If ackNo < S, restart the timer.

less than Sg or greater than or
equal S, arrived.

Discard it.

/

Receiver

/N ote:

All arithmetic equations
are in modulo 2™,

Discard packet.

o

Corrupted packet arrived. Start_} Ready

Error-free packet with
seqNo = R, arrived.

Deliver message.
Slide window (R, =R, + 1).
Send ACK (ackNo = Ry)).

Error-free packet
with seqNo # R, arrived.

Discard packet.
Send an ACK (ackNo = R,).

/

Send window size for Go-Back-N

Sender Receiver
| |
Sf S I |
Sender Receiver Start i o Packet 0 Ry
| | 1o | - —r—p =1
S¢Sy | @ (olif2[3]o! -0253;0:
Start R, | TARE “EIaERE
. |: acket 0 :'__ _ I Al |
@ _:| |:02F3: 0123-0-. : Packet | : e
| ACK1 |~ =i U, :? ;0;1 310!
et i It
IS 2y i) Gl kes |
| TACKe | e i —— Y BIY
-.: Packet 2 :.-T-T-- | ACK3
o123 i —— :_0_1_1_1.2. O[I[o[3] 0) | =kt 1\
R0 | L —
@ 0[1]2[3: :M}: Correctly | pa ACKD
- - - - acket ()
Time-out; : RC.Sent : discarded @ 0]1 29: im--* ilgé%rtlggl:f&)&
restart A4 . v Time-out: \ 4 . Y delivered as
Time Time restart Time + Time new data
a. Send window of size < 2™ b. Send window of size = 2™

Cumulative acknowledgments can help if acknowledgments are delayed
or lost

Shortfalls of Go-Back-N Protocol:

* There is no need to buffer out-of-order packets; they are simply
discarded. However, this protocol is inefficient if the underlying network
protocol loses a lot of packets.

« Each time a single packet is lost or corrupted, the sender resends all
outstanding packets, even though some of these packets may have been
received safe and sound but out of order.

 If the network layer is losing many packets because of congestion in the
network, the resending of all of these outstanding packets makes the
congestion worse, and eventually more packets are lost. This has an
avalanche effect that may result in the total collapse of the network.

Selective Repeat protocol

The Go-Back-N protocol simplifies the process at the receiver. The
recelver keeps track of only one variable, and there Is no need to
buffer out-of-order packets; they are simply discarded.

Another protocol, called the Selective-Repeat (SR) protocol, has
been devised, which, as the name implies, resends only selective
packets, those that are actually lost.

Outline of Selective-Repeat

Packet ACK
seqNo 5 E checksum ackNo n checksum
Sender Receiver
Application Application
[— e—|
Transport Transport
. .

Logical channels

|:| Sent, but not acknowledged _
@ Timer

|:| Acknowledged out of order I:l Packet received out of order

First) Next S R, Next

n

outstanding 3 to send l to receive

Send window Receive window

Send window for Selective-Repeat protocol

e The maximum size of the send & receive window is 2m-1,

First outstanding Sy S, Next to send

v v

: _1_3_ ! _1_4_ Ji_ 15_ 0 7 - 8 - ' _ ? _ ' _1_0_ ! _1_1_ _1_2_ : Outstanding packet,

not acknowledged
Packets already | Outstanding packets, | Packets that can Packets that Packet acknowledged
acknowledged | some acknowledged be sent cannot be sent out of order
< »r< > <
Syipe =271

< >

Receive window for Selective-Repeat protocol

* The Selective-Repeat protocol allows as many packets as the size of
the receive window to arrive out of order and be kept until there is a
set of consecutive packets to be delivered to the application layer.

Packet already

received

R, Receive window,
‘L next packet expected

3 4150607 18]9110

Packets that can be received
and stored for later delivery;
shaded boxes, already received

Packet that
cannot be received

>

R — 21‘[1—1

s1Ze

<

Packet received
out of order

« Selective-Repeat uses one timer for each outstanding packet.
* GBN treats outstanding packets as a group; SR treats them individually.
* In the Selective-Repeat protocol, an acknowledgment number defines

the sequence number of the error-free packet received.

Flow diagram for selective repeat

Events:

Req: Request from process
pArr: Packet arrival
aArr: ACK arrival Sender Receiver

T-Out: time-out Transport Transport
layer layer

R Initial

of1]2]3]4i51617.
R

1
1
1
1
. S¢ S, i
Start Y BOEEA5670: e Packeio pArT e
T > ---> o[J2]5]a]s6i7:
St on aATT | ZaSSLSS I _I _I_)_at_z: c_lelivered
— —————— - | I
Stop O _5_:_6_:_7_:9J<' - _l : > to application
Req ?f_ on —— : :
Start () ---> 10[1]2]3]4]5/6,7 0. b _Packet 1 :
Sf S : Lost? :
Req _ - - S I Pack 1 R,
--->10[1]2[3]4]|5/617,0, — - | PATT —
| R 10} Y I E EN EAT A
St S, ! ACK 2 ! - -
- — - —— —_ _ aArIT
0]1[2[3][4]5/61710 <~ - :
- - TT Tt - I I
Sf Sn 1 1
Re - = —— e — 1 1 R
--> O[RT]sie7i0r e—tackers | pAIT ke S
| —1--->10 516171
10 4]sioi7 0w -~ - e l
1 I
T-Out - — S I P .
Restart (B) ----> |0 si6i7i0! et 2Cket 1 (resent) | PAIT ke
- SATAAT > > T2 a5 0] 7]
S¢ S, 1 ACK L 1 | =
- —— —, aArr ! ! » Data delivered
Stop @ 011,23 4]5]6]7 O --- :k : > to application
A 4 A4

Time Time

FSMs for SR protocol

Sender
o . Request came from process.
— Make a packet (seqNo = S)).
Resend all St d send th ket
outstanding packets Ore a copy and send the packet. Window foll
in window. Start the timer for this packet. S :mS "J‘:’S .
Reset the timer. S = B e L Gn 75t " Ssize)” Time-out.
> Resend all
[true] outstanding packets
[false] in window.

Start

1

A corrupted ACK or
an ACK about a non-
outstanding packet
arrived.

Discard it.

JPTaes [false]

[true] ?
Window slides‘?ﬂ .

- 4= An error-free ACK arrived that
acknowledges one of the outstanding
packets.

Mark the corresponding packet.

If ackNo = Sy, slide the window over
all consecutive acknowledged packets.
If there are outstanding packets,
restart the timer. Otherwise, stop the
timer.

Reset the timer.

A corrupted ACK or
an ACK about a non-
outstanding packet
arrived.

Discard it.

Note:
All arithmetic equations
are in modulo 2™,

/

Receiver

/

\

Error-free packet with seqNo Note:
inside window arrived. All arithmetic equations
If duplicate, discard; otherwise, are in modulo 2™

store the packet.

Send an ACK with ackNo = seqNo.
If seqNo =Ry, deliver the packet and
all consecutive previously arrived
and stored packets to application,
and slide window.

Corrupted packet arrived.

Error-free packet with seqNo

Discard the packet.

-

outside window boundaries arrived.

Start Discard the packet.
Send an ACK with ackNo =R,.

/

Selective-Repeat, window size

Sender Receiver

W
-

Packet (E R,
oo O

Packet | L
o7l

j

ACK 1

Q7] tecteto

oy Correctly
v discarded
restart

Time-out;

<

a. Send and receive windows

: o Sender Receiver
of size =2 Start Sf S,

LRy

Packetg !

ACK O T‘: _O]:ll-zj
Packet | L L
\. :_0_:_1 1:2|

®
=

o[1]2]30;

> >
@
-~
=] —
o
=
a
N 1
=Y
ol
0]
B
=
]
Il\-)'
-2

0]1]2]3]0;

CK?2 (: - -
1 1
=700 P, ' Erroneousl
_ @ _ 0]12] 300, % accepted anscfi
Time-out; ! ' ===» stored as
restart Y Y new data

b. Send and receive windows
of size >2m-!

The four protocols we discussed earlier In this section are all
unidirectional: data packets flow In only one direction and
acknowledgments travel In the other direction. In real life, data
packets are normally flowing in both directions: from client to server
and from server to client. This means that acknowledgments also need
to flow in both directions. A technique called piggybacking is used to
Improve the efficiency of the bidirectional protocols.

Design of piggybacking in Go-Back-N

ackNo

Client Server
:_ Packet

Application

Application

seqNo 4L checksum

Eé—l—»l:—---c—

«—f— [e+« [

Logical channels

S¢ First S, Next R, Next
l outstanding l to send l to receive
Client send window Server receive window

Windows for communication from client to server

R, Next S¢ First S, Next
l to receive l outstanding l to send
[B N :__-_: :::‘: o o0 ® 00 :___-___ -—__-_-; ® @& 0
Client receive window Server send window

Windows for communication from server to client

Bl [Internet Transport-Layer Protocols

Aplf:;::lon SMTP FTP || TELNET || DNS SNMP | .. | DHCP
Transport SCTP TCP UDP
layer
Network IGMP ICMP IP
layer ARP

Data-link
layer Underlying LAN or WAN |
Physical technology
layer |

