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3.1 INTRODUCTION

3.2 TRANSPORT-LAYER PROTOCOLS

» Simplex Protocol

» Stop-and-Wait Protocol

» Go-Back-N Protocol (GBN)

» Seclective-Repeat Protocol

» Bidirectional Protocols: Piggybacking

3.3 INTERNET TRANSPORT-LAYER PROTOCOLS

» User Datagram Protocol (UDP)
» Transmission Control Protocol (TCP)
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Simplex Protocol

Used in Noiseless channels

Simple connectionless protocol with neither flow nor error control

The transport layer at the sender gets a message from its application layer,
makes a packet out of it, and sends the packet.

The transport layer at the receiver receives a packet from its network layer,
extracts the message from the packet, and delivers the message to its
application layer.

No acknowledgement and no sequence number.

Each FSM has only one state, the ready state.
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Stop and Wait protocol

It is a connection-oriented protocol

Uses both flow and error control

Both the sender and the receiver use a sliding window of size 1.

The sender sends one packet at a time and waits for an acknowledgment
before sending the next one.

To detect corrupted packets, we need to add a checksum to each data
packet, if checksum not correct the packet is discarded.

Every time the sender sends a packet, it starts a timer. If an
acknowledgment arrives before the timer expires, the timer is stopped
and the sender sends the next packet (if it has one to send).

If the timer expires, the sender resends the previous packet, assuming
that the packet was either lost or corrupted. This means that the sender
needs to keep a copy of the packet until its acknowledgment arrives.



To prevent duplicate packets, the protocol uses sequence numbers and
acknowledgment Numbers

The sender is initially in the ready state, but it can move between the
ready and blocking state.

The receiver is always in the ready state

Sender Packel ACK Receiver
Application | | | | Application
F — seqNo checksum ack No check sum E—p— H
| ransport Iransport
. . f——
. |
Logical channels
S R Next packel

Lo receive
re=== I | . re== -==1
- - :.___ ___JI - - @I]]]'lr:] - :-___ ___Jll-l'l-

Send window Receive window



Flow diagram of stop and wait
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FSM for the Stop-and-Wait protocol
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Shortfalls of Stop and Wait Protocol:

* The Stop-and-Wait protocol is very inefficient if our channel is thick
and long.

« By thick, we mean that our channel has a large bandwidth (high data
rate); by long, we mean the round-trip delay is long.

* The product of these two is called the bandwidth-delay product.

Pipelining:

* In networking and in other areas, a task is often begun before the
previous task has ended. This is known as pipelining.

* There is no pipelining in the Stop-and-Wait protocol because a sender
must wait for a packet to reach the destination and be acknowledged
before the next packet can be sent.



Go-Back-N protocol

To improve the efficiency of transmission, multiple packets must be in
transition while the sender is waiting for acknowledgment. i.e. using
the concept of pipelining.

A simple protocol that can achieve this goal is called Go-Back-N (GBN)
The key to Go-back-N is that we can send several packets before
receiving acknowledgments, but the receiver can only buffer one
packet.

We keep a copy of the sent packets until the acknowledgments arrive.
The sequence numbers are modulo 2™, where ‘m’ is the size of the
sequence number field in bits.

An acknowledgment number in this protocol is cumulative and defines
the sequence number of the next packet expected



Go-Back-N protocol
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Send window for Go-Back-N

 The maximum size of the senders window is 2™ - 1.
* The sender needs to wait to find out if the packets sent have been
received or were lost. We call these outstanding packets.
 Three variables are defined:
* 5S¢ (send window, the first outstanding packet),
« S, (send window, the next packet to be sent), and

* S.,. (send window, size)=2™M - 1.
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Sliding the send window
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Receive window for Go-Back-N

The receive window makes sure that the correct data packets are received
and that the correct acknowledgments are sent. In Go-back-N, the size of the
receive window is always 1.

Only one variable: R, (receive window, next packet expected).

Only a packet with a sequence number matching the value of R is accepted
and acknowledged

When a correct packet is received, the window slides, R, = (R, + 1) modulo 2™
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Flow diagram for
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Flow diagram for unreliability in senders site
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FSMs for the Go-Back-

N protocol

All arithmetic equations
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Send window size for Go-Back-N
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Shortfalls of Go-Back-N Protocol:

* There is no need to buffer out-of-order packets; they are simply
discarded. However, this protocol is inefficient if the underlying network
protocol loses a lot of packets.

« Each time a single packet is lost or corrupted, the sender resends all
outstanding packets, even though some of these packets may have been
received safe and sound but out of order.

 If the network layer is losing many packets because of congestion in the
network, the resending of all of these outstanding packets makes the
congestion worse, and eventually more packets are lost. This has an
avalanche effect that may result in the total collapse of the network.



Selective Repeat protocol

The Go-Back-N protocol simplifies the process at the receiver. The
recelver keeps track of only one variable, and there Is no need to
buffer out-of-order packets; they are simply discarded.

Another protocol, called the Selective-Repeat (SR) protocol, has
been devised, which, as the name implies, resends only selective
packets, those that are actually lost.



Outline of Selective-Repeat
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Send window for Selective-Repeat protocol

e The maximum size of the send & receive window is 2m-1,
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Receive window for Selective-Repeat protocol

* The Selective-Repeat protocol allows as many packets as the size of
the receive window to arrive out of order and be kept until there is a
set of consecutive packets to be delivered to the application layer.
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R, Receive window,
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« Selective-Repeat uses one timer for each outstanding packet.
* GBN treats outstanding packets as a group; SR treats them individually.
* In the Selective-Repeat protocol, an acknowledgment number defines

the sequence number of the error-free packet received.



Flow diagram for selective repeat

Events:

Req: Request from process
pArr: Packet arrival
aArr: ACK arrival Sender Receiver

T-Out: time-out Transport Transport
layer layer

R Initial

of1]2]3]4i51617.
R

1
1
1
1
. S¢ S, i
Start Y BOEEA5670: e Packeio pArT e
T > ---> o[ J2]5]a]s6i7:
St on aATT | ZaSSLSS I _I _I_)_at_z: c_lelivered
— —————— - | I
Stop O _5_:_6_:_7_:9J<' - _l : >  to application
Req ?f_ on —— : :
Start () ---> 10[1]2]3]4]5/6,7 0. b _Packet 1 :
Sf S : Lost? :
Req _ - - S I Pack 1 R,
--->10[1]2[3]4]|5/617,0, — - | PATT —
| R 10} Y I E EN EAT A
St S, ! ACK 2 ! - -
- — - —— —_ _ aArIT
0]1[2[3][4]5/61710 <~ - :
- - TT Tt - I I
Sf Sn 1 1
Re - = —— e — 1 1 R
--> O[RT]sie7i0r e—tackers | pAIT ke S
| —1--->10 516171
10 4]sioi7 0w -~ - e l
1 I
T-Out - — S I P .
Restart (B) ----> |0 si6i7i0! et 2Cket 1 (resent) | PAIT ke
- SATAAT > > T2 a5 0] 7]
S¢ S, 1 ACK L 1 | =
- —— —, aArr ! ! » Data delivered
Stop @ 011,23 4]5]6]7 O --- :k : > to application
A 4 A4

Time Time



FSMs for SR protocol
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Selective-Repeat, window size
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The four protocols we discussed earlier In this section are all
unidirectional: data packets flow In only one direction and
acknowledgments travel In the other direction. In real life, data
packets are normally flowing in both directions: from client to server
and from server to client. This means that acknowledgments also need
to flow in both directions. A technique called piggybacking is used to
Improve the efficiency of the bidirectional protocols.



Design of piggybacking in Go-Back-N
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