

DATE:	 ROLLNO:

WEEK-9
Networking in Python
Description:
This unit explores the concepts of network programming using Python, focusing on how to build client-server applications using the built-in socket module. Students will gain hands-on experience in creating both TCP and UDP-based communication systems.
Key topics include:
· Basics of sockets and IP communication
· Creating TCP and UDP clients and servers
· Sending and receiving messages over the network
· Handling multiple connections using threading
· Implementing real-time chat or file transfer functionality
This unit is essential for understanding how distributed systems communicate. It enables students to build real-world networked applications and lays the foundation for advanced concepts such as REST APIs and web socket communication.

Write a Python program to demonstrate the use of threading and synchronization with a shared resource.
Description:
In this experiment:
· Two threads (Thread-1 and Thread-2) try to increment a shared global counter.
· A Lock is used to synchronize access to the shared resource so that only one thread can update the counter at a time.
· The lock.acquire() and lock.release() (or with lock:) prevent race conditions, ensuring thread-safe execution.
This demonstrates how synchronization is critical when multiple threads access or modify shared data simultaneously.

Program :
import threading
import time

Shared resource
counter = 0

Lock object for synchronization
lock = threading.Lock()

def increment_counter(thread_name):
 global counter
 for _ in range(5):
 time.sleep(1)
 lock.acquire()
 try:
 current = counter
 print(f"{thread_name} read counter: {current}")
 counter = current + 1
 print(f"{thread_name} incremented counter to: {counter}")
 finally:
 lock.release()

Create threads
thread1 = threading.Thread(target=increment_counter, args=("Thread-1",))
thread2 = threading.Thread(target=increment_counter, args=("Thread-2",))

Start threads
thread1.start()
thread2.start()

Wait for threads to complete
thread1.join()
thread2.join()

print("Final Counter Value:", counter)

Output:
[image:]

Write a Python program to create a simple multi-client chat server using sockets and threading.
 Description:
This experiment introduces how to build a multi-client chat server in Python using socket programming and the threading module. Unlike basic single-client programs, this server can handle multiple clients at once — a critical feature in modern networking applications like chat rooms, collaborative tools, or multiplayer games.
The server listens for client connections and spawns a new thread for each client to handle communication simultaneously. When one client sends a message, the server relays it to all connected clients, creating a simple group chat effect.
This helps students learn:
· Concurrent handling of clients using threading
· Broadcasting messages to multiple sockets
· Managing client connections in real time

Program: Server.py
import socket
import threading

def handle_client(conn, addr):
 print(f"New connection from {addr}")
 conn.send("Welcome to the chat! Type 'bye' to exit.".encode())

 while True:
 try:
 data = conn.recv(1024).decode()
 if not data:
 break
 print(f"{addr} says: {data}")

 if data.lower() in ['bye', 'exit']:
 conn.send("Goodbye! Connection closed.".encode())
 break
 else:
 conn.send(f"Server received: {data}".encode())
 except:
 break

 print(f"Connection closed with {addr}")
 conn.close()

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server.bind(('localhost', 12347))
server.listen()

print("Multithreaded Server is running on port 12347...")

while True:
 conn, addr = server.accept()
 thread = threading.Thread(target=handle_client, args=(conn, addr))
 thread.start()

Output:
[image:]

Program: client.py
import socket

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
client.connect(('localhost', 12345))

welcome = client.recv(1024).decode()
print("Server:", welcome)

while True:
 msg = input("You: ")
 client.send(msg.encode())

 response = client.recv(1024).decode()
 print("Server:", response)

 if msg.lower() in ['bye', 'exit']:
 break

client.close()

Output:
[image:]

Viva Questions – Unit 4: Networking in Python

1. What is a thread in Python and how is it different from a process?
A thread is a lightweight unit of execution within a process. Threads share the same memory space, while processes run in separate memory spaces. Threads are useful for I/O-bound tasks; processes are better for CPU-bound tasks.

2. What is the purpose of the Lock object in the threading module?
A Lock is used to synchronize access to shared resources in multithreaded programs. It prevents race conditions by ensuring only one thread can access a critical section at a time.

3. What is the use of the join() method in threading?
The join() method makes the main program wait until the thread has finished its execution. It ensures that threads complete before the program exits.

4. Can you explain what a race condition is in multithreading?
A race condition occurs when multiple threads access and modify shared data simultaneously, leading to unpredictable results. It happens when threads interfere with each other due to lack of synchronization.

5. How do you create a thread using the Thread class in Python?
You can create a thread using:

import threading
def task():
 print("Running...")
t = threading.Thread(target=task)
t.start()

PVPSIT, CSE	ADVANCED PYTHON PROGRAMMING LAB (23CS6451) 	Page no:

image1.png
Thread-2
Thread-2
Thread-1
Thread-1
Thread-1
Thread-1
Thread-2
Thread-2
Thread-2
Thread-2
Thread-1
Thread-1
Thread-1
Thread-1
Thread-2
Thread-2
Thread-2
Thread-2
Thread-1
Thread-1

read counter: @
incremented counter
read counter: 1
incremented counter
read counter: 2
incremented counter
read counter: 3
incremented counter
read counter: 4
incremented counter
read counter: 5
incremented counter
read counter: 6
incremented counter
read counter: 7
incremented counter
read counter: 8
incremented counter
read counter: 9
incremented counter

Final Counter value: 1@

to:

to:

to:

to:

to:

to:

to:

to:

to:

to:

10

image2.png
Multithreaded Server is running on port 12345...
New connection from ('127.0.0.1°, 54235)
('127.0.0.1", 54235) says: hi

('127.0.0.1", 54235) says: hello

('127.0.0.1", 54235) says: this is clientl
('127.0.0.1", 54235) says: bye

Connection closed with ('127.0.0.1°, 54235)

image3.png
Server: Welcome to the chat! Type 'bye’ to exit.
You: hi

Server: Server received: hi

You: hello

server: Server received: hello

You: this is clientl

Server: Server received: this is clientl

You: bye

server: Goodbye! Connection closed.

