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1.INTRODUCTION 

1.1 Blockchain Technology 

1.1.1  What is Blockchain  

Technically, Blockchain is defined as a distributed, replicated peer-to-peer network of 

databases that allows multiple non-trusting parties to transact without a trusted 

intermediary and maintains an ever-growing, append-only, tamper-resistant list of 

time-sequenced records. 

In short, Blockchain is a type of distributed ledger that sits on the internet for 

recording transactions and maintaining a permanent and verifiable record-set of 

information. 

This innovative technology was first published in 2008 by Satoshi Nakamoto 

(pseudonym of a person/persons as-of-yet unknown) in a white paper titled “A Peer-

to-Peer Electronic Cash System.” The thought behind the design was to create a 

decentralized digital currency that is free from government regulation whereby two 

people can confidently trade directly with one another without the need for mediators 

or intermediaries. 

In 2009, the concept became a reality when Satoshi Nakamoto implemented the first 

application of the Blockchain we all know as Bitcoin. 

Though Bitcoin and Blockchain are often referred to interchangeably, they are not the 

same. Blockchain is the underpinning technology that the Bitcoin was built on. Now 

aside from Bitcoin blockchain, we have the Ethereum blockchain and other private 

blockchains that are adapted to cater to various industry applications such as supply 

chain, cross-border payments, and many others. 

 

1.2 Purpose 

The case study provides a systematic study to understand whether permissioned 

blockchain implementations could be of any benefit to managing health records in 

emergency situations caused by natural disasters. First, the case study presents a 

summary of consensus protocols in distributed systems and comprehensive 

investigation of the current applications of blockchain to manage EHRs. Then, it will 

be shown how the blockchain applied to EHRs fails to provide detailed analyses and 

tests. 

After the design and implementation of a basic EHRs management system and the 

execution of a set of test cases, it will be possible to discuss the benefits and trade-offs 

that the system entails. The discussion will examine the performance of a 

permissioned blockchain for managing Electronic Health Records (EHRs). It will 
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compare normal and disaster scenarios using key performance indicators to gain 

valuable insights into how a crisis situation impacts blockchain network operations. 

 

• Success rate: the number of successes and failures of a batch of requests. It is 

important to limit the number of failures caused by a surge of requests during an 

emergency 

 • Transaction commit and read latency: this refers to the time it takes to the 

blockchain-based system to process an access request to an EHR in a disaster 

situation. It is important as timeliness in getting health data, especially in emergencies, 

is critical [19]. 

 • Transaction commit and state read throughput (TPS): this refers to the number of 

requests that can be managed by the system at the same time. Being able to access and 

modify a growing number or request is essential to enable everybody to interact with 

the system;  

• Resource consumption (CPU, Memory and network IO): it is necessary to take these 

parameters into account as they affect all the other indicators. 

  

1.3 Boundaries and Constraints: 

The topic of blockchain in healthcare is broad and can range from health record 

privacy and management to data analytics for the research. The scope of this case 

study work is to undertake a feasibility study and address the performance of an EHR 

system during the response to a mass crises generated by a natural disaster. The case 

study presents a simple access control and storage solution on top of the Hyperledger 

Fabric permissioned blockchain with the main objective to execute tests and 

experiments. 
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2.BACKGROUND 

Background and Problem 

Before the introduction of smart contacts on the blockchain, the main discussions on 

Electronic Health Record (EHR) Management focused on whether to use cloud 

infrastructures  or local centralized systems for storing and sharing EHRs. These 

centralized systems implied that each hospital and healthcare company would have to 

keep data on premise in locally managed structures and databases. However, 

centralized EHRs management systems present some issues as described below:  

• No patient control: The patients do not own the data and have no control over it. The 

patients should own and control their data.  

• Scattered records: As patients seek treatments in different structures, the records are 

replicated. The information becomes scattered.  

• Limited system interoperability: Different hospitals and health facilities have 

different systems. Integration and interoperability issues are the consequences.  

• Inconvenient secure sharing: Often times, the process of sharing health records is 

complex and time-consuming. In the U.S. a secure email standard called Direct is used 

to provide encrypted transmission between the sender (for example, an E.R. 

physician) and receiver. 

 These frameworks brought solutions to many of the challenges listed above, they still 

suffered from limitations especially as related to transparency, data ownership, and 

privacy. Moreover, the centralized model for EHRs management struggles in crisis 

and disaster scenarios because the response to the emergency is often unorganized and 

decentralized.  

Although natural disasters are rare events, they introduce new challenges as the 

healthcare sector should be prepared and able to respond to the crisis promptly. In fact, 

flooding, tsunamis, and earthquakes could potentially disrupt facilities and 

infrastructures, thereby limiting the access to records and patient information. This is 

one of the arguments that demonstrate how decentralizing the management of EHRs 

and replicating and distributing the information can assure better performance and 

availability in disaster situations, compared to centralized models. 

 A decentralized system is a distributed network where no party has the full control 

over the data and the operations, but the decisions are made collectively through a 

consensus process. The parties forming the network are called nodes and 

communicate through message passing [3]. Generally speaking, by sharing and 

replicating the information, the network provides availability and robustness 

especially in case of extensive failures. Moreover, Peer-to-peer systems (P2P) can 

even provide data ownership as the private information can be stored and requested 

only to the proprietary node. However, reaching consensus while preserving 
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confidentiality, security, and correctness despite failures has been a challenging 

problem [3]. The introduction of blockchain made possible to achieve it while 

preserving confidentiality and providing security. 

 A blockchain is a data structure where the records are stored in a linked sequence of 

blocks. This sequence forms a distributed ledger, which means it is replicated in 

multiple machines, called nodes, that communicate with one another. The nodes form 

a peer to peer network where every update to the ledger must be accepted by the 

network using a consensus protocol. The consensus protocol assures that everybody 

has the same view on the status of the system .  

However, it is important to analyze if and how a blockchain system designed for 

health records would behave in such scenarios. This implies that an accurate 

assessment of security and resiliency, as well as transaction throughput, must be done 

to be sure that the system would meet the security and performance requirements. 

Among the requirements, it is possible to list: the ability to coordinate and cooperate 

through a secure mean of communication; the ability to continuously reach life-saving 

information; and the ability to let NGOs and rescuers join and access medical records 

without compromising privacy and confidentiality. In this context, blockchain is 

potentially the best solution because the operations during a disaster are inherently 

decentralized and the help must be coordinated and on time: this is essential when the 

life or well-being of someone is at stake. 
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3. BLOCKCHAIN BASICS 

3.1 Blockchain 

A blockchain is a data structure where the records are stored in a linked sequence of 

blocks. This sequence forms a distributed ledger, which means it is replicated in 

multiple machines, called nodes, that communicate to one another. The nodes form a 

peer to peer network where every update to the ledger must be accepted by the 

network using a consensus protocol. The consensus protocol assures that everybody 

has the same view on the status of the system. 

The technology was introduced in 2008 as the foundation of a cryptocurrency called 

Bitcoin, with the aim to solve the double spending problem[6]  and allow value 

exchange between peers without the mediation of a third-party central authority. 

Besides being distributed, blockchain is secure by design and resilient to node failures, 

misbehaviors or malicious acts[6][7]. This and other characteristics made it appealing 

for many applications, such as medical records and identity management; supply chain 

management; assets insurances; luxury product anti-counterfeiting and provenance. 

3.1.1  Active and passive replication in distributed systems 

In distributed systems, replication is mainly used to provide fault tolerance. In 

particular, there are two types of replication: active and passive. Active, or state 

machine replication, requires the processes to be deterministic so that every node that 

runs the application gets the same final output. This is necessary to keep the state 

consistent. Determinism also requires the updates to be sent to everybody in the same 

order. This is possible thanks to an atomic broadcast protocol with delivery 

guarantees. Active replication allows the system to work well even in the presence of 

Byzantine faults [5]. 

In passive replication, only one node, or a subset of nodes, processes a request and 

sends the new state to all the others. Passive replication could also be used for non-

deterministic processes but tends to be less resilient in case of faults [5]. 

3.2 Blockchain models 

As mentioned above, a blockchain is a distributed network open to anyone. This 

definition usually relates to a particular model known as permission-less or public. In 

the public model, any participant can join and leave at will because no rule restricts 

access and interaction. Therefore, the data stored in a public blockchain (i.e., Bitcoin 

[6] or Ethereum [7]) is accessible by anyone unless encryption and smart contract 

logic are employed. Besides the public model, blockchain can also be employed in a 

restricted network where the participants’ identities are known. This restricted model 

is usually referred to as permissioned or consortium. The model of participation has a 

significant influence on how the consensus is reached by the network. 
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3.2.1 Permissionless model 

In the permissionless model, identities are either anonymous or pseudonymous, and 

everybody is allowed to participate. Any user can generate a set of keys and an 

address that enables her to interact with other entities in the blockchain network. 

Therefore, everybody has the right to read data, create transactions and append 

information to the ledger. This model also allows to install a blockchain node and 

participate in the transaction validation process known as consensus. Examples of 

such networks are Bitcoin and Ethereum. In the latter, the user can create and install 

code, known as smart contract, that is public and invokable by anyone. The smart 

contract is identified by an address and runs in an environment called Ethereum 

Virtual Machine (EVM). 

The early permissionless blockchains entail a consensus protocol known as Proof of 

Work (PoW) where entities called miners compete in order to find the solution to a 

computational intensive mathematical problem. The novelty of this mechanism lies on 

the ability to reach agreement in a network with no formal barrier by substituting them 

with economic ones. It means that the effect of a single node in the consensus process 

is directly proportional to the computing power that it can produce. 

3.2.2 Permissioned and consortium model 

A permissioned blockchain is a closed system where the participants have identities 

and know one other. It is built to allow a consortium or a single organization to 

securely and efficiently exchange information. As proof of the fact that anonymity of 

participants is not always a desirable property, the permissioned model is gaining 

interest among enterprises because it allows secure interactions in a network of 

businesses with common goals but which do not fully trust each other [1]. One of the 

most prominent work is Hyperledger Fabric, an open source project hosted by the 

Linux Foundation. Fabric’s modular and extensible architecture is designed to fit 

different enterprise use cases. 

In the implementations mentioned above, privacy and confidentiality are managed by 

trusted parties, called membership services. In Fabric, this service is known as 

Membership Service Provider and has the role maintain all the identities in the system. 

It is responsible for issuing credentials used for authentication and authorization. In 

general, each organization has a local implementation of the service that is used to 

generate certificates and public keys for its members [1]. The credentials are 

necessary to participate in the network activities as every message and transaction 

must be signed. This, in turn, increases the privacy and security of the network as well 

as its participants. 
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3.3 Consensus mechanisms 

Blockchain presents all the characteristics of a distributed system because the 

computation is done concurrently by different entities, without the assistance of a 

global clock. In addition, any process can fail at any point during the execution. 

According to the theory of distributed systems [3] there are two types of failures: 

crash (or stop) failure and Byzantine failure. The former is the simplest to assess and 

consists of a node crashing without resuming, thus leaving the network. The rest of the 

processes can spot a faulty node because it suddenly stops replying to messages.  

The latter, on the other hand, is more complicated to model and address because a 

component is not able to definitely infer if another has failed. In fact, a Byzantine 

failure has no restriction: a component can crash, be delayed, or produce both correct 

and wrong messages; it can also act maliciously against the network and appear both 

functioning and failed to different observers. The term originates from the Byzantine 

generals problem described in [8]. 

In blockchain, the consensus is needed to agree on the total order of transactions and 

the block that must be added to the chain. The equivalence between the Proof of Work 

protocol proposed in Bitcoin and the consensus in distributed systems was formalized 

in the work of Garay [8]. The consensus is the mechanism by which the state 

machines agree on the order of messages sent. This mechanism is usually referred to 

as atomic broadcast and is needed by the state machines to be able to produce the 

same output, given the same input. The output can be the same only if the logic is 

deterministic and identical for each machine. The determinism is also necessary to 

detect faults: in fact, a replica that produces a different output can be considered as 

misbehaving. 

In literature, it is possible to find consensus implementations that fall either below the 

crash-tolerant family or the Byzantine fault tolerant (BFT) family . In general, an 

algorithm must satisfy the following requirements to be considered correct [4]: 

• validity: if all the processes propose v, then all processes decide v 

• termination: every correct process eventually decides a value 

• agreement: all the correct processes agree on a common value  

• integrity: "Every correct process decides at most one value, and if it decides some 

value v, then v must have been proposed by some process" [4]. 
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3.3.1 Proof of Work 

The full description of a proof of work consensus was first introduced as the 

fundamental way to agree on the order of transactions in the Bitcoin network. It needs 

a distributed timestamp server to demonstrate that a transaction has come before 

another and that an entity has not spent the same amount of money in other 

transactions [6]. 

The approach to solve this problem consists of finding a value that, when hashed with 

an algorithm like SHA-256, presents an output with a number of leading zero bits. In 

the context of a block, the goal is to increment a nonce so that the block’s hash has a 

number of leading zeros greater than the one required by the system. It has been 

proved that there is no efficient algorithm to solve this mathematical puzzle. 

Therefore, the only approach is to increment the nonce until the output satisfies the 

requirements. Finding the solution proves that some work has been done by a CPU 

and guarantees that a block cannot be modified without repeating the process [6][7]. 

The time required to solve the puzzle grows exponentially with the number of 

required zeros. In addition, the longer the chain, the more difficult becomes to change 

a block because it requires to prove the work for that block and all the subsequent 

ones. It would be possible only if a set of malicious attackers has a computing power 

greater than the rest of the network. 

The difficulty of PoW is continuously adjusted to control the block formation 

frequency and reduce the number of forks. When a fork happens, all the blocks 

forming the shortest chain are pruned and their transactions are considered invalid. 

This heavily impacts the overall consensus latency as transactions are required to have 

a minimum amount of subsequent blocks (known as block confirmations) to reduce 

the probability to be pruned or removed. 

3.3.2 Proof of Stake 

Another set of consensus algorithms is the one represented by Proof of Stake (PoS). It 

was initially proposed as an energy-efficient alternative to Bitcoin’s PoW to reach 

consensus in public blockchains. In fact, PoW has proven to be incredibly inefficient 

in terms of energy used  as all the nodes in the network must prove the work, but only 

one is eventually able to add a new block. 

To solve the problem while ensuring security and decentralization, PoS takes 

advantage of a group of validators (a subset of the blockchain network) taking turns to 

propose, vote, and add new blocks to the chain. To become a validator, one has to send 

a specific transaction that locks its coins into a vault. The vault opens only once the 

validator has managed to add a block. Therefore the algorithm requires the 

participants to hold coins (value in the form of a cryptocurrency) to put at stake to 

join, as well as to track them [1]. 
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At periodic intervals, all the validators participate in a consensus process to determine 

the following blocks to add. Although there is no single rule to decide how to reach an 

agreement, two approaches are, in general, the most common: the random approach 

and the Byzantine Fault Tolerant approach [1]. In the former, a validator is randomly 

selected and is given the right to create a new block linked to the end block of the 

longest chain. The latter is achieved through a multi-round process where each 

member votes for one of the proposed blocks and the group eventually converge to a 

collective decision. This is possible since the number of participants is known, and the 

votes can be linked to specific identities (in the form of addresses) that remain the 

same throughout the whole voting process [1]. 

3.3.3 PBFT Consensus 

In the context of permissioned blockchain networks, Byzantine fault-tolerant protocols 

are the most promising to ensure the security in the presence of faulty components. 

However, these protocols were originally based on synchronous models that made 

them unsuitable for network applications. In addition, the scalability of nodes was 

hindered by the communication overhead growing exponentially with the number of 

participants to the consensus [7]. These characteristics made BFT algorithms less 

employed than the crash-tolerant counterparts (i.e., Paxos) until a practical BFT 

(PBFT) algorithm was introduced in 1999 . The algorithm reduces the overall 

response time by decreasing the communication overhead from exponential to 

polynomial. Moreover, it is designed to work in eventually synchronous environments 

that make it a good fit for systems that communicate over Internet protocols [2][7]. 

The algorithm consists of five steps as illustrated in figure 3.1:  

• Request: the client sends a request to the master node.  

• Pre-prepare: the master node forwards the request to the other nodes which decide 

whether to accept the request or not.  

• Prepare: in case the nodes accept the execution, they send a preparation message to 

all the other nodes. Upon receiving at least 2f + 1 messages, the nodes start the 

commit phase if the majority has accepted the request.  

• Commit: each node sends a commit message to all the other nodes in the system. 

When a node receives 2f + 1 commit messages, it executes the logic to fulfill the 

request because it infers that the majority of the nodes has accepted the request.  

• Reply: finally, the server node replies to the client that waits until the reception. If 

any message is delayed, the client triggers a timeout and resends the request to the 

master node [4]. 
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Figure 3.1: PBFT communication 

Five steps of the communication. Image adapted from [9]. 

This algorithm needs a leader to be elected at each round and can be seen as an 

extension of the Paxos and VSR family [2] designed to tolerate Byzantine failures. A 

system employing this implementation is proved to tolerate up to n/3 failures, given n 

the total number of nodes. PBFT algorithms are also proved to handle up to 80000 

messages per seconds. After this implementation researchers have designed new 

algorithms to implement the performance and scalability. Examples of such 

improvements are the Randomized BFT like Hybrid BFT solutions  or XFT. 

3.4 Hyperledger Fabric 

As introduced in section 3.2.2, Hyperledger1 a project founded in 2015 by the Linux 

Foundation to grow and improve blockchain-based technologies through cross-

industry interaction. It is a fully open source initiative to promote the adoption and 

advancement of blockchain thought a community process with the final objective to 

generate common technological standards. One of the outcomes of this initiative is 

Hyperledger Fabric (HL Fabric), a modular permissioned blockchain.  

The following three sections give a basic overview of the most important notions that 

one should have in order to understand design, qualities, and drawbacks of the thesis 

project. 
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3.4.1 Privacy and identification 

Identification is not only essential to control who can access the network, but also the 

fine-grained permissions that an entity has over the resources. HL Fabric adopts a 

Public Key Infrastructure (PKI) model where every active entity must hold a public-

private key pair to sign and verify messages, and an identity in the form of a digital 

certificate to access and interact with the system. A digital certificate is a document 

binding a user public key to its actual identity. It contains user’s information like 

name, employer organization or company division, as well as technical details such as 

public key, signature algorithms, and validity. The X.509 standard2 is the most 

common type of certificate and is the default one adopted in HL Fabric as it can 

encode more structured information. A digital certificate is issued and signed by a 

Certificate Authority (CA). By signing the certificate, everyone that trust the CA also 

trusts the bind between someone else’s public key and identity. 

An HL Fabric network usually has multiple CAs for fault tolerance, control and 

performance purposes. A CA instance can be either a Root CAs or Intermediate CAs. 

This duality allows creating flexible and complex certification infrastructures where 

each organization holds its own CA (or chain of CAs) that issues certificates for its 

members. Intermediate CAs certificates are valid across multiple organizations since 

they are issued by other Intermediate or Root CAs thereby allowing a distributed 

chain of trust security against faults.  

Once certificates, keys, and CAs are set up, the mechanism that enforces the rules and 

checks the identities is the Membership Service Provider (MSP). It identifies which 

CAs are trusted to define the members of a domain [1]. Every to sign messages and 

transactions, authenticate users, define roles, and verify permissions and privileges 

within the context of a channel. node in the network maintains a local MSP, a software 

component that enables the node 

3.4.2 State and roles 

As mentioned above, a network is formed by different organizations that have control 

over a set of nodes. In HL Fabric there are three types of nodes: peer, client, and 

ordering-service-node. Each node has a specific set of functions that were designed to 

achieve modularity, flexibility and better performance and scalability.  

Peer nodes are the most fundamental element of a Fabric system because they hold 

instances of one or more ledgers, and copies of smart contract source codes. The 

number of ledgers held by a peer depends on the number of channels joined by the 

organization that controls it. Each HL Fabric ledger consists of two data structures: the 

world state and the transaction log. Each peer holds a full copy (instance) of these two 

structures. The former is the current ledger state; it contains the latest variables values 

in a key-value database. The database is pluggable and can be either Apache 

CouchDB3 or LevelDB4. It is designed for fast access to the data without the need to 

traverse the entire linked list of blocks to compute the current value. The latter has the 
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role to preserve the blockchain history by recording all the values updates to the keys 

used in the network. Applications must connect to a peer to access the ledger state and 

invoke smart contracts.  

The peers cooperate with the ordering-service-nodes, or just "orderers". These are the 

elements forming the ordering service, which has the goal to establish a total order of 

transactions: the transactions endorsed by a peer are sent to the ordering service, 

which collects them, puts them into a block and broadcasts it to all the peers in the 

channel. The peers then verify and commit the updates. 

3.4.3 Consensus in Hyperledger Fabric 

Unlike the permissionless implementations, the consensus in fabric does not 

correspond to a well-defined algorithm like PoW but is an overreaching process that 

goes beyond the simple agreement on the order of transactions.  

As mentioned above, the core of the consensus process consists in the atomic 

broadcast offered by the ordering service. In the past years, the HL Fabric research 

team proposed different implementations for the service: the version v0.6 employed a 

Byzantine Fault Tolerant consensus in the form of PBFT, whereas the versions after 

v1.0 present an ordering service based on Apache Kafka6 and Zookeeper, which uses 

replication to provide strong consistency and high availability. However, this 

implementation supports crash faults but not Byzantine faults. To overcome these 

problems, researchers have proposed a mechanisms based on the BFT-SMART state 

machine replication7 and consensus library.  

Regardless the implementation of the ordering service in HL Fabric, the consensus is a 

process that follows an execute-order-validate pattern which requires the transaction 

flow to be divided into three respective main steps: proposal, packaging, and 

validation. Therefore, to really understand the consensus in fabric, it is necessary to 

describe the entire transaction flow. 

Transaction flow 

The system needs to run at least a peer node and an ordering service (that would form 

the minimum viable fabric blockchain distributed network). The transaction creation 

and the steps are orchestrated by the fabric client, an SDK to interact with the network 

currently available for Java and NodeJs runtime environments. Before interacting with 

the fabric, the user/application must have created and stored the certificates; joined a 

channel and connected with a peer. The certificates will be necessary for 

authenticating the entity and signing the transactions.  

As illustrated in figure 3.2 and described in [1], the client, using the SKD, initiates the 

process by (1) sending a transaction proposal to the network. The proposal in nothing 

more than a smart contact function invocation. The SDK signs the proposal with the 

user’s cryptographic material and forwards it to the peers via gRPC.  
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The contacted peers receive the proposal and check it (2). The checking includes 

signature and ledger state verification. After the checking, each peer executes the 

chaincode function and saves two states: one is the READ set which holds the key-

values accessed by the function call while the second is the WRITE set which holds 

the key-values that have been added or modified. This two sets as well as the peers 

signatures are sent back to the client as proposal response.  

Upon reception of a proposal response, the client checks both the signature and that 

the responses are the same (3). If the endorsement policies have been fulfilled, the 

client broadcasts the transaction and the endorsements to the ordering service (4). The 

ordering service has the sole scope of atomically broadcast the transaction to the entire 

network. To do so. It takes the transactions in chronological order, puts them into a 

block and forwards it.  

The block is sent to the entire network using a gossip protocol. Each receiving node 

validates each transaction by enforcing the policies and checking the read and write 

sets (5). Then each peer appends the block to the ledger and updates the state database 

with the new key values (6). Finally, an event is emitted to inform the client that the 

transaction has been committed/not committed to the ledger 

 

 

Figure 3.2: Hyperledger Fabric transaction flow. 

Image adapted from[10]. 
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4. USECASE OVERVIEW 

Electronic Health Records (EHRs) play a critical role in modern healthcare by storing 

patient information, including medical history, diagnoses, prescriptions, and treatment 

plans. However, accessibility, security, and reliability of EHRs become major 

concerns, especially in emergency situations like natural disasters (earthquakes, 

hurricanes, and floods). 

Traditional EHR systems are often centralized, relying on local servers or cloud-based 

infrastructures. In large-scale crises, these centralized systems can fail due to network 

disruptions, power outages, or cyberattacks, leading to delayed medical response, 

misinformation, or complete loss of data access. 

To address these issues, permissioned blockchain technology, particularly Hyperledger 

Fabric, offers a decentralized, tamper-resistant, and failure-resistant approach to 

managing EHRs. This case study explores the feasibility, benefits, and limitations of 

blockchain-based EHR systems in handling health records during emergency 

situations. 

 

4.1 Goal 

The case study aims at designing a prototype for a simple blockchain based 

application for EHRs that satisfies some requirements like information privacy, 

traceability, secure information access and sharing in a decentralized fashion. The 

prototype will be implemented with Hyperledger Fabric1 (HL Fabric) and will serve 

also as an access control system to manage identities, provide traceability and 

preserve the privacy of users and patients. The system could potentially be used as a 

backup for health companies and be used in extreme situation to ensure the continuity 

of treatment while preserving privacy and confidentiality.  

The system will be tested in a simulation of a real disaster: the Haiti earthquake of 

2010. The goal of the tests is to demonstrate how the blockchain network can tolerate 

disruption and partitions. Analyze how this system performs and reacts to an extreme 

situation where a part of the nodes in the network crashed or start presenting a 

Byzantine behaviour caused by server failures. The system must allow the patients 

and practitioners to share and access EHRs and be able to detect and react to the crisis 

situations by changing the network policies and allowing new nodes representing the 

rescuers and humanitarian help. Moreover, it will need to behave correctly in the 

presence of malicious nodes 
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4.2 Scope 

The scope of this case study focuses on the feasibility, advantages, and challenges of 

using permissioned blockchain (Hyperledger Fabric) for managing Electronic Health 

Records (EHRs) during emergency situations caused by natural disasters. It 

encompasses the following key areas: 

4.2.1 Technological Scope 

• Blockchain Integration: Exploring how permissioned blockchain can enhance 

security, privacy, and accessibility of EHRs.  

• Hyperledger Fabric Implementation: Using this framework to develop a 

prototype for decentralized EHR management.  

• System Performance Analysis: Evaluating throughput, latency, memory, and 

CPU usage under real-world stress conditions.  

• Security & Fault Tolerance: Assessing the system’s resilience to malicious 

nodes and unauthorized access attempts. 

4.2.2 Healthcare Application Scope 

• EHR Accessibility in Emergencies: Ensuring uninterrupted access to critical 

patient data during crises like earthquakes, hurricanes, and floods.  

• Data Integrity & Privacy: Maintaining confidentiality while allowing 

authorized access to multiple healthcare providers (hospitals, pharmacies, 

clinics).  

• Decentralized Decision-Making: Enabling real-time collaboration among 

doctors, paramedics, and hospitals for better crisis response. 

 

4.3  Architecture options and design decisions 

This section discusses the decisions that should be made when it comes to design a 

blockchain system for the healthcare. The primary design decision is where to store 

the data, which, in this case, corresponds to how and where to store health records. 

The solutions are storing the record entirely on the blockchain (on-chain) or outside 

the blockchain (off-chain). 

The decision to store records off-chain depends on different reasons. First of all, the 

data can grow indefinitely thus making the replication across all the nodes expensive 

and memory intensive; therefore, it is simpler to propose a solution that integrates and 

interface with current EHR management systems rather than change to an entirely new 

method to store data. These solutions employ blockchain to control the accesses and 

keep track of modifications and interactions: the ledger stores hash pointers that are 

signed with the owner’s private key. The pointers point to the location where the 

file/record is actually stored. The main drawback of this type of solutions is that they 
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cannot guarantee the accessibility of the records: in fact, if the server that stores a 

record is under maintenance or has crashed, the information cannot be accessed. 

The other extreme is the on-chain storage: this allows to have full control over the 

records; achieve higher resilience and availability as a result of full replication; lower 

request latency; and higher security because the application does not rely on external 

and potentially not secure, storage systems.  

Assuming that redundancy is critical in disasters scenarios where the source of the 

data might be destroyed or off-line, the proposed prototype stores the metadata and 

textual information of an EHR on the blockchain. Media files including images, 

videos, x-rays are saved in external storage (handled by one or more hospitals or 

health organizations) and referenced to by using URI or links. By keeping files with 

large extensions off-chain it is possible to reduce the network traffic and the overall 

blockchain disk space usage. Moreover, defining the resource location(s) in a unique 

place will prevent unnecessary replication and increase the data management 

capabilities. Although the media files could become unreachable, yet this solution 

allows accessing critical textual information that could be life-saving in case of 

emergencies. This decision can be considered hybrid since it combines the desirable 

characteristics from the off-chain and on-chain solutions. 

4.3.1 How to detect disasters 

As introduced above, an EHRs management system based on blockchain needs to 

work both during the day to day operations and the emergency situations. Each of 

these cases has a different set of security and performance requirements. Therefore, 

there should be a mechanism to change policies and functionalities of a blockchain 

network depending on the state of the system. Before that, it is necessary to define the 

possible states that a system can present as well as the criteria and rules to change 

from one state to another.  

Although different states can come in succession during the life of a system, the 

simple prototype implemented in this case study presents two primary states: normal 

and emergency. In the former, each user needs to be authenticated and needs to have 

the authorization to access an EHR associated with a patient. The authorization must 

be asked directly to the patient through the application. Thanks to the system, the 

patient has the full ownership of her record and can decide who can access it. When 

someone changes the information contained in a record, the transaction needs to be 

approved by at least two organizations in the blockchain network.  

In the latter state, new organizations need to be able to join the network despite the 

failure of other nodes; the requests need to be processed promptly and securely. In 

such scenario, each authorized party has the right to access the EHRs and the 

modifications need to be approved by at least the 50% of the network or by at least 

one hospital. This set of policies allows protecting the data from free modifications by 
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the new organization (aid, volunteers, non-governmental or humanitarian 

organizations) with the necessary approval of at least a hospital or the government. 

4.3.2 Data Model 

Electronic medical record systems have been object of legal and regulatory initiatives 

carried by different nations and institutions. This regulatory initiatives have the aim to 

achieve interoperability of electronic health record systems and cover multiple aspects 

and stakeholders. For example, the European Commission is carrying a so-called 

eHealth Action Plan since 2008 that established many initiatives including the eHealth 

European Interoperability Framework (eEIF). 

 Many reports provide rules and guidelines on architectures, technical and semantical 

standards as well as interoperability requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

5. IMPLEMENTATION 

In order to model and test an health network during disasters, it is first necessary to 

model the day to day operations of a normal system. In fact, the prototype is built 

keeping in consideration the number of active hospitals in Haiti before the earthquake  

and creating a scaled network of 5 organizations. Each of these five is represented by 

an HL Fabric organization holding two peer nodes, one orderer node and a custom CA 

to issue certificated to its members. The different components are processes running in 

each hospital’s infrastructure. Furthermore, there is a 6th entity representing the 

Haitian Ministry of Health (figure 5.1). The hospitals can use the prototype both as a 

backup mechanism, to be integrated with their legacy systems, and as a full operating 

system, meant to substitute the current solutions. For the sake of the thesis, the former 

way will be considered. 

As mentioned above, the disruption of the earthquake destroyed 8 hospitals and 

severely damaged 22: respectively the 16% and the 44% of the total (49). These 

percentages are reflected in the simulated failures of the prototype: 1 node out of 5 

(16%) crashes and two nodes out of 5 present a Byzantine behavior (44%). The 

simulated disaster, as well as the real disaster, affected the 60% of the total number of 

organizations (figure 5.2). 

Figure 5.1: HL Fabric normal network 

Image adapted from [4]. 
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Figure 5.2: Network crash and faults  

Image adapted from[4]. 

 

5.1  Users and roles 

The prototype allows different entities to access and operate with the system and the 

records. Each entity can be either an organization (hospital, health ministry or 

volunteer organization), someone belonging to one of the institutions (doctor, nurse, 

physician or volunteer) or even the patients themselves. The prototype supports the 

following roles:  

• Hospital;  

• Doctor;  

• Government;  

• NGOs (WHO, PAHO, field hospital);  

• Patient (client) 

Each entity has different importance and freedom within the system. This freedom 

reflects in the operations that an entity can perform: some have access and rights over 

the patient records, some have the faculty to modify the system policies and rules. The 
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HL Fabric network must ultimately approve the vast majority of these operations and 

rights through the consensus process. The roles can be listed as follows:  

• Government: monitors the system and can change mode;  

• Hospital: can create, retrieve, update, delete a record, ask for consent;  

• Doctor: can read and update records, ask for consent;  

• Patient: read its health record, give consent to doctor. 

5.2  Operations 

HL Fabric provides several mechanisms to ensure the security of its network: each 

organization controls the access through a CA; the policies regulate the interactions, 

and one or more pieces of code restrict the accesses and operations. The EHRs are 

expressed as JSON files, and the entities interact with them through a smart contract 

that represents and guard the data model. In fact, not only the contract represents the 

EHR but also defines the operations that can be performed over it.  

The smart contract implemented with the prototype provides a set of primary 

functions to interact with the EHR listed as follows:  

• Create a health record:  

createRecord({key: value}): patientId  

This function accepts a key-value asset that could be either a JSON file or Javascript 

object. It returns a string containing the patient identification. The identification is 

currently the Swedish personal identity number, a 12-digit number serving different 

purposes: from taxation to health.  

• Retrieve a record:  

getRecord (patientId): medicalRecord 

Given a patient identification number, this function returns a JSON file containing the 

EHR corresponding to the id.  

• Update a record:  

updateRecord (patientId, { key : value }): boolean  

This function allows a patient to modify the content of her record: it accepts the 

patient id and the field that must be modified, and returns the the boolean result of the 

operation.  

• Delete a record: deleteRecord (patientId): boolean  

This function allows to remove a record given the patient id.  

• Request for treatment:  
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requestForTreatment (patientId, doctor): Promise  

A practitioner (doctor, physician etc.) or an organization can request to access or 

create a record belonging to a patient. The patient gets notified and can either accept 

or decline the request.  

• Treat patient:  

treatPatient (patientId, diagnosis, doctor, treatment): ,! boolean  

The doctor that has the right to access a record, can update its information through this 

function.  

• Give consent:  

giveConsent (patient, doctor): boolean  

With this function, the patient can grant someone the right to access and modify her 

record. The entity can be either an organization or someone representing the 

organization such as a doctor or a nurse. 

5.3  Switching from normal mode to disaster 

As discussed in chapter 4, there are different approaches to detect and change the state 

of the system during an ongoing mass crisis. The prototype does not have a 

mechanism to identify an emergency automatically: in fact, a user under the Haitian 

Ministry of Health organization has to execute a particular system transaction that 

modifies the policies and the rules of participation. This means that the Ministry of 

Health can accept new members within the HL Fabric channel in case of an 

emergency. The channel, typically formed by all the health organizations and used for 

the day to day operations, can be then joined by members like NGOs and volunteers 

organization. 
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The state-changing transaction is illustrated below 

setMode (govt_sign, State): boolean 

 

Figure 5.3 System state change 

The systems switches from normal state to emergency state upon reception of a 

particular transaction from a user that belongs to government organization 

(Ministry of Health) 
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6. BENEFITS 

Some of the benefits that a permissioned blockchain solution can provide to the 

healthcare sector, and to EHRs in particular, can be listed as follows:  

• Security: a blockchain is secure by design. In fact, under certain conditions, the 

information stored on the ledger are tamper-proof ;  

• Resiliency: a blockchain network is able to reach consensus and operate correctly 

also in case of Byzantine failures;  

• EMR sharing: through encryption and digital signature, it is possible to securely 

share information;  

• Avoid scattered information: the data is stored or referenced on the blockchain, that 

becomes a source of truth; 

• Allow data access: the data can be accessed and modified only by trusted entities, 

and the modifications are approved through consensus;  

• Control accesses: in the same way, the accesses to a permissioned network is 

regulated by policies and rules set by the parties;  

• Enable doctors and rescuers to access life-saving information without compromising 

the privacy and security of the person and the system. 

A permissioned blockchain could be used by hospitals and government both as backup 

system and as an operating system in case of disruptions and emergencies. It could 

grant easy access to information also to NGO and humanitarian help while preserving 

the privacy and confidentiality of patients, and keeping medical records secure and 

updated. It is also important to deny access after emergency to people and associations 

that should not have access to the information. 
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7.CHALLENGES 

The results obtained from the local tests should be interpreted considering the 

technical and practical limitations. These, in fact, affected the prototype design and 

deployment, the test cases, and the subsequent discussion. The most important 

limitation derives from the difficulty to get free access to the cloud resources 

necessary to carry out additional tests. This deficiency influenced the extension and 

completeness of the testing and assessment process. Therefore the results were derived 

based on local simulation environments distributed in a local access network: the 

measured latencies do not take into consideration network delays and crashes.  

Another limitation was represented by the relative novelty of HL Fabric, its 

composition of many different complex modules, and the lack of advanced knowledge 

or specific resources. These restrictions made difficult to improve the extension of the 

blockchain prototype as deploying and debugging was extremely complex.  

Despite these limitations, it was still possible to assess how the disruption caused by a 

natural disaster could affect the latency and transaction throughput of an HL Fabric 

permissioned blockchain network. 
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8.CONCLUSION 

In the context of blockchain for healthcare, the purpose of this case study is to provide 

a study to understand whether permissioned blockchain implementations could be of 

any benefit to managing health records in emergency situations caused by natural 

disasters. In fact, the current literature on blockchain lacks performance analyses, and, 

in particular, the literature on EHRs management systems lacks investigation of 

emergencies during natural disasters. After the design and implementation of a basic 

EHRs management system and the execution of a set of test cases, it was possible to 

discuss the benefits and trade-offs that a blockchain solution entails. The discussion 

focused on performance indicators like throughput, latency, success rate, consensus 

policies and network size measured in two different scenarios: one reflecting the 

normal operations of a blockchain network and another simulating a crisis caused by 

an earthquake. 

The prototype for a simple blockchain based application for EHRs had to satisfy some 

requirements like information privacy, traceability, secure information access and 

sharing in a decentralized fashion. The prototype has been designed and implemented 

at IBM Sweden using Hyperledger Fabric to serve as an access control system to 

manage identities, provide traceability, and to be used in extreme situation to ensure 

the continuity of treatment while preserving privacy and confidentiality of users and 

patients. The system has been tested in a simulation of a real disaster, the Haiti 

earthquake of 2010, to investigate how a blockchain network (in particular, the HL 

Fabric network) can tolerate disruption and partitions; and analyze how it performs 

during an extreme situation where a part of the nodes in the network crashed or start 

presenting a Byzantine behavior. The prototype has proven to allow the patients and 

practitioners to share and access EHRs and be able to detect and react to the crisis 

situations by changing the network policies and allowing new nodes representing the 

rescuers and humanitarian help. It has also proven to behave correctly in the presence 

of malicious nodes. 

8.1 Future work 

The prototype provides a simple blockchain-based application for EHRs and satisfies 

some fundamental requirements. Nevertheless, in order to be employed by a network 

of hospitals, it needs more functionalities and roles as well as more extensive tests on 

cloud infrastructures. The tests on the cloud could extend the local results and provide 

a thorough analysis of how a more extensive network and the geographical 

distribution affect the performance of a blockchain. It will be also possible to 

investigate other states like pre-disaster or post-disaster to characterize better the 

response to a crisis. This type of analyses is meant as a natural continuation of the 

thesis work. The future work also includes the extension of the current smart contact 

and the addition of others to improve the lookup and support the additional features 

required by an EHRs management solution. 
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9.SDG’S ADDRESSED 

SDG 3: Good Health and Well-being 

How? Ensures secure, tamper-proof medical records, leading to better patient care and 

efficient healthcare management.  

Impact: Reduces medical errors, enhances data sharing, and ensures patient data 

privacy. 

 

SDG 9: Industry, Innovation, and Infrastructure 

 How? Uses blockchain technology to create a transparent, efficient, and decentralized 

healthcare system.  

 Impact: Improves healthcare infrastructure by reducing dependency on centralized 

databases and preventing data breaches. 

 

SDG 16: Peace, Justice, and Strong Institutions 

How? Enhances data security, integrity, and privacy, preventing unauthorized access 

and fraud in medical records.  

Impact: Ensures accountability and trust in the healthcare system through 

decentralized governance. 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

10. REFERENCES 

[1]  Vitalik Buterin. Proof of Stake FAQ. 2016. URL: 

https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ 

[2]  Christian Cachin and Marko Vukolic. “Blockchain Consensus Protocols in the 

Wild”. URL: http://arxiv.org/abs/1707.01873. 

[3]  George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems - 

Concepts and Design (5th Edition). Pearson Eduction, May 2011. ISBN: 978-

0132143011. 

[4]  Juan Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin Backbone 

Protocol: Analysis and Applications”. In: Advances in Cryptology - EUROCRYPT 

2015. Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2015, pp. 281–310. ISBN: 978-3-662-46802-9 978-3-

662-46803-6. URL: http://link.springer.com/10.1007/978-3-662-46803-6_10 

[5]  Rachid Guerraoui and André Schiper. “Fault-tolerance by replication in 

distributed systems”. en. In: Reliable Software Technologies — Ada-Europe ’96. 

Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, June 1996, pp. 38–

57. ISBN: 978-3-540-61317-6 978-3-540-68457-2. DOI: 10.1007/BFb0013477. URL: 

https://link.springer.com/chapter/10.1007/BFb0013477 

[6]  Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 

https://bitcoin.org/bitcoin.pdf. 2008. URL: https://bitcoin.org/bitcoin.pdf 

[7]  A Next-Generation Smart Contract and Decentralized Application Platform. 2014. 

URL: https://github.com/ethereum/wiki/wiki/White-Paper  

[8] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Generals 

Problem”. URL: http://portal.acm.org/citation.cfm?doid=357172.357176 

[9] MDPI, "Advances in Sensor Technology," Sensors, vol. 25, no. 4, p. 1030, 2025. 

URL: https://www.mdpi.com/1424-8220/25/4/1030 

[10] GeeksforGeeks, "Consensus in Hyperledger Fabric," GeeksforGeeks, Feb. 5, 

2024. URL: https://www.geeksforgeeks.org/consensus-in-hyperledger-fabric/ 

 

 

 

 

 

 

https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
http://arxiv.org/abs/1707.01873
http://link.springer.com/10.1007/978-3-662-46803-6_10
https://link.springer.com/chapter/10.1007/BFb0013477
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
http://portal.acm.org/citation.cfm?doid=357172.357176
https://www.mdpi.com/1424-8220/25/4/1030
https://www.geeksforgeeks.org/consensus-in-hyperledger-fabric/


28 
 

11. APPENDIX A 

https://drive.google.com/drive/folders/1-

8BfyoWHNpKzjtUzMtTGPEpZwNFNc1Ac?usp=sharing 
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