Disjoint sets

* A Disjoint set S is a collection of sets S,,......S, where Vv, ;S; S, =¢

e Each set has a representative which is a member of the set (Usually the
minimum if the elements are comparable) .

Operations
* Make-Set(x)

Creates a new set where x is it’s only element (and therefore it is the
representative of the set).

e Union(x, vy)
Unites the dynamic sets that contain x and y say S, and S, into a new set which is
the union of two sets.

* Find(x)
Returns the representative of the set containing x.

Example

* Maintain a set of pairwise disjoint sets.
* {3,5,7},{4,2,8}, {9}, {1,6}

e Each set has a unique name, one of its members
* {3,5,7},14,2,8}, {2}, {1,6}
e Union(x,y) — take the union of two sets named xand y
* {3,57},14,2,8}, {9}, {1,6}
* Union(5,1)
{3,5,7,1,6},{4,2,8}, {5},

* Find(x) — return the name of the set containing x.
{3,5,7,1,6}, {4,2,8}, {},
Find(1) =5
Find(4) = 8
Find(9) =9

Applications of Disjoint-set
* Number of connected components in a graph.
* Minimum spanning tree

CONNECTED-COMPONENTS(G)
1 for each vertex v ¢ G.V

2 MAKE-SET(v)

3 for each edge (u, v) e G:E

4 If FIND-SET(u) # FIND-SET (V)
5 UNION(u, v);

SAME-COMPONENT (u, v)
11f FIND-SET(u) == FIND-SET(v)
2 return TRUE
3 else
return FALSE

Application of Disjoint-set: Connected components

0'0 (O— @

O @ @
Initial sets {a} {b} {c} {d} {e} {t} {g} {h} {i} {i}
(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {i}
(e, g) {a} {b, d} {c} le, g} {f} {h} {i} {i}
(a,c) {a,c} | {b,d} {e, g} {f} {h} {i} {i}
(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}
(a, b) {a, b, c, d} {e, g} {t} {h, i} {i}
(e, f) {a, b, c, d} {e, 8, f} {h, i} {i}
(b, c) {a, b, c, d} {e, g, f} {h, i} {i}

Data structure/Representation of Disjoint sets

* Linked list representation
* Rooted trees representation

Linked list representation

The representative 1s the set member 1n the first object in the list.

. N N
Representation YYY (1) g d YYYY () h e b
o N’ o - o N - - -
of setS;and S, .| head > > > .| head > > > > 7
1 51 A 52 T
tail tail

Union(g, e)

)

YYYYYYY (
head

-,

N
e
&
|
-

™

-~

(

Y
Y
Y

Y
Y
Y
Y

tail I-

Rooted tree representation

The root of each tree contains the representative and 1s i1ts own parent

0N

0
i e
\f‘[z’ &
1

)

Representation of set S;

with ¢ as representative

@

P
@)

N
&/

Representation of set S,

f as representative

M

/“x

\f'

Union(g, e)

Simple Implementation of Union

 Consider Linked List representation of Disjoint sets.

* For suppose to perform a sequence of m operations on n objects as follows

Operation

Number of objects updated

MAKE-SET(x1)
MAKE-SET(x2)

MAKE-SET(x},)
UNION(x2,x71)
UNION(x3,x2)
UNION(x4, x3)

UNION(Xj, X5—1)
n—1

S -

L=

0 PD = = e os s

n*(n-1) /2 =6(n?)

X v X3
v X1 S 2 R
Y nead [3T—{/ head L1/
head | 1 S S; _
2| ail [tail |
tail [
vy X, X3 yvy X3 X, Xy
head [1 >/ head [1 > > >/
tail [b S| il [1

In the worst case, the above implementation of the Union procedure requires an average
of ©(n) time per call because we may be appending a longer list onto a shorter list.

We can improve time using weighted-union heuristic
« Maintain a number of elements in the set
* In union append the shortest list to longer list, which results in less number of

objects Is updated.

With this simple weighted-union heuristic, a single UNION operation can still Q(n)
time if both sets have Q(n) members. A sequence of m MAKE-SET, UNION, and
FIND-SET operations, n of which are MAKE-SET operations, takes O(m + n log n)

time.

&
ONO

1
1
2
1
2
2
3

©,
(%) ﬁD -
J Y X,
Union @ @ @

Why n union operations are n*(log n) instead of O(n?)? #pointer
OO () o
v v
(%) (%) () "
v v

X4 0
Union |
V

4

Each object pointer back is updated at most ceil(log n)
i.e., Xg pointer is updated 3 times

Example

Suppose that Connecrep-Compronents 1S Tun on the undirected graph G= (V, E) Where V
={a, b,c,d, e f g h,i,j k}and the edges are processed in the order (d,i), (f, k), (g, i),
(b, g), (3, h), (i,)), (d, k), (b, j), (d, f), (g,]), (a, e). List the vertices in each connected
component after each iteration of lines 3-5.

Heuristics to iImprove running time

* Union by rank

* Path compression

Union by rank

For each node, we maintain a rank, which is an upper bound on the height of the node.

In union by rank, the root with smaller rank point to the root with larger rank during a
Union operation

Path compression

During Fino-Ser operations to make each node on the find path point directly to the
root. Path compression does not change any ranks.

It maintains a list of objects visited while traversing
to find the root.

 list:[a, b, c,d,e]

 Update therootof[a,b,c,d,e]tof

Path compression:

Find-Set(a)

	Slide 1
	Slide 2: Example
	Slide 3
	Slide 4: Application of Disjoint-set: Connected components
	Slide 5: Data structure/Representation of Disjoint sets
	Slide 6
	Slide 7: Simple Implementation of Union
	Slide 8
	Slide 9
	Slide 10: Example
	Slide 11: Heuristics to improve running time
	Slide 12

