Disjoint sets

* A Disjoint set S is a collection of sets S,,......S, where Vv, ;S; S, =¢

e Each set has a representative which is a member of the set (Usually the
minimum if the elements are comparable) .

Operations
* Make-Set(x)

Creates a new set where x is it’s only element (and therefore it is the
representative of the set).

e Union(x, vy)
Unites the dynamic sets that contain x and y say S, and S, into a new set which is
the union of two sets.

* Find(x)
Returns the representative of the set containing x.



Example

* Maintain a set of pairwise disjoint sets.
* {3,5,7},{4,2,8}, {9}, {1,6}

e Each set has a unique name, one of its members
* {3,5,7},14,2,8}, {2}, {1,6}
e Union(x,y) — take the union of two sets named xand y
* {3,57},14,2,8}, {9}, {1,6}
* Union(5,1)
{3,5,7,1,6},{4,2,8}, {5},

* Find(x) — return the name of the set containing x.
{3,5,7,1,6}, {4,2,8}, {},
Find(1) =5
Find(4) = 8
Find(9) =9



Applications of Disjoint-set
* Number of connected components in a graph.
* Minimum spanning tree

CONNECTED-COMPONENTS(G)
1 for each vertex v ¢ G.V

2 MAKE-SET(v)

3 for each edge (u, v) e G:E

4 If FIND-SET(u) # FIND-SET (V)
5 UNION(u, v);

SAME-COMPONENT (u, v)
11f FIND-SET(u) == FIND-SET(v)
2 return TRUE
3 else
return FALSE



Application of Disjoint-set: Connected components
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Initial sets {a} {b} {c} {d} {e} {t} {g} {h} {i} {i}
(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {i}
(e, g) {a} {b, d} {c} le, g} {f} {h} {i} {i}
(a,c) {a,c} | {b,d} {e, g} {f} {h} {i} {i}
(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}
(a, b) {a, b, c, d} {e, g} {t} {h, i} {i}
(e, f) {a, b, c, d} {e, 8, f} {h, i} {i}
(b, c) {a, b, c, d} {e, g, f} {h, i} {i}




Data structure/Representation of Disjoint sets

* Linked list representation
* Rooted trees representation

Linked list representation

The representative 1s the set member 1n the first object in the list.
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Rooted tree representation

The root of each tree contains the representative and 1s i1ts own parent
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Simple Implementation of Union

 Consider Linked List representation of Disjoint sets.

* For suppose to perform a sequence of m operations on n objects as follows

Operation

Number of objects updated

MAKE-SET(x1)
MAKE-SET(x2)

MAKE-SET(x},)
UNION(x2,x71)
UNION(x3,x2)
UNION(x4, x3)

UNION(Xj, X5—1)
n—1

S -

L=

0 PD = = e os s

n*(n-1) /2 =6(n?)

X v X3
v X1 S 2 R
Y nead [3T—{/ head L1/
head | 1 S S; _
2| ail [ tail |
tail [
vy X, X3 yvy X3 X, Xy
head [ 1 >/ head [ 1 > > >/
tail [ b S| il [ 1




In the worst case, the above implementation of the Union procedure requires an average
of ©(n) time per call because we may be appending a longer list onto a shorter list.

We can improve time using weighted-union heuristic
« Maintain a number of elements in the set
* In union append the shortest list to longer list, which results in less number of

objects Is updated.

With this simple weighted-union heuristic, a single UNION operation can still Q(n)
time if both sets have Q(n) members. A sequence of m MAKE-SET, UNION, and
FIND-SET operations, n of which are MAKE-SET operations, takes O(m + n log n)

time.
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Each object pointer back is updated at most ceil(log n)
i.e., Xg pointer is updated 3 times




Example

Suppose that Connecrep-Compronents 1S Tun on the undirected graph G= (V, E) Where V
={a, b,c,d, e f g h,i,j k}and the edges are processed in the order (d,i), (f, k), (g, i),
(b, g), (3, h), (i, )), (d, k), (b, j), (d, f), (g, ]), (a, e). List the vertices in each connected
component after each iteration of lines 3-5.



Heuristics to iImprove running time

* Union by rank

* Path compression

Union by rank

For each node, we maintain a rank, which is an upper bound on the height of the node.

In union by rank, the root with smaller rank point to the root with larger rank during a
Union operation

Path compression

During Fino-Ser operations to make each node on the find path point directly to the
root. Path compression does not change any ranks.




It maintains a list of objects visited while traversing
to find the root.

 list:[a, b, c,d,e]

 Update therootof[a,b,c,d,e]tof

Path compression:

Find-Set(a)
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