
• A Disjoint set S is a collection of sets where

• Each set has a representative which is a member of the set (Usually the
minimum if the elements are comparable) .

1,...... nS S
i j i jS S   =

• Make-Set(x)
Creates a new set where x is it’s only element (and therefore it is the
representative of the set).

• Union(x, y)
Unites the dynamic sets that contain x and y say Sx and Sy into a new set which is
the union of two sets.

• Find(x)

 Returns the representative of the set containing x.

Disjoint sets

Operations

Example
• Maintain a set of pairwise disjoint sets.

• {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its members
• {3,5,7} , {4,2,8}, {9}, {1,6}

• Union(x,y) – take the union of two sets named x and y
• {3,5,7} , {4,2,8}, {9}, {1,6}

• Union(5,1)

 {3,5,7,1,6}, {4,2,8}, {9},

• Find(x) – return the name of the set containing x.
{3,5,7,1,6}, {4,2,8}, {9},
 Find(1) = 5
 Find(4) = 8
 Find(9) = 9

CONNECTED-COMPONENTS(G)

1 for each vertex v ϵ G.V

2 MAKE-SET(v)

3 for each edge (u , v) ϵ G:E

4 if FIND-SET(u) ≠ FIND-SET(v)

5 UNION(u, v);

SAME-COMPONENT(u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 else

 return FALSE

Applications of Disjoint-set
• Number of connected components in a graph.
• Minimum spanning tree

Application of Disjoint-set: Connected components

Edge
Processed

Collection of Disjoint sets

Initial sets

(b , d)

(e , g)

(a , c)

(h , i)

(a , b)

(e , f)

(b , c)

{h}{g}{f}{e}{d}{c}{b}{a} {i} {j}

{b, d}

{e, g}

{a, c}

{h, i}

{a} {c} {h}{g}{f}{e} {i} {j}

{b, d}{a} {c} {h}{f} {i} {j}

{e, g}{b, d} {h}{f} {i} {j}

{a, c} {e, g}{b, d} {f} {j}

{a, b, c, d} {h, i}{e, g} {f} {j}

{a, b, c, d} {h, i}{e, g, f} {j}

{a, b, c, d} {h, i}{e, g, f} {j}

Data structure/Representation of Disjoint sets
• Linked list representation

• Rooted trees representation

Linked list representation

Representation
of set S1 and S2

Union(g, e)

The representative is the set member in the first object in the list.

√ √ √ √

√

√

Rooted tree representation

The root of each tree contains the representative and is its own parent

Representation of set S1
with c as representative

Representation of set S2
f as representative

Union(g, e)

Simple Implementation of Union
• Consider Linked List representation of Disjoint sets.

• For suppose to perform a sequence of m operations on n objects as follows

x2

/

x1

/

x2

S2

/

x3

S3
/

x1

S1

S2

/

x3 x2 x1

S3

/

෍

𝑖=1

𝑛−1

𝑖 = n * (n-1) / 2 = ϴ(n2)

In the worst case, the above implementation of the UNION procedure requires an average

of ϴ(n) time per call because we may be appending a longer list onto a shorter list.

We can improve time using weighted-union heuristic

• Maintain a number of elements in the set

• In union append the shortest list to longer list, which results in less number of

objects is updated.

With this simple weighted-union heuristic, a single UNION operation can still Ω(n)

time if both sets have Ω(n) members. A sequence of m MAKE-SET, UNION, and

FIND-SET operations, n of which are MAKE-SET operations, takes O(m + n log n)

time.

x1 x2
x7x5 x6x4x3

x8

x1

x2

x3

x4

x5

x6

x7

x8

√ √ √ √

x1

x2 x3

x4

√

√

x5

x6 x7

x8

√

√

x1

x2 x3

x4

x5

x6 x7

x8

√

√ √

√Each object pointer back is updated at most ceil(log n)
i.e., x8 pointer is updated 3 times

Object #pointer
updated

x1
0

x2 1

x3 1

x4 2

x5 1

x6 2

x7 2

x8 3

Union

Union

Why n union operations are n*(log n) instead of O(n2)?

Example
Suppose that CONNECTED-COMPONENTS is run on the undirected graph G= (V, E) Where V
={a, b, c, d, e, f, g, h, i, j, k} and the edges are processed in the order (d,i), (f, k), (g, i),
(b, g), (a, h), (i, j) , (d, k), (b, j), (d, f), (g, j), (a, e). List the vertices in each connected

component after each iteration of lines 3–5.

Heuristics to improve running time

• Union by rank

• Path compression

Union by rank

For each node, we maintain a rank, which is an upper bound on the height of the node.

In union by rank, the root with smaller rank point to the root with larger rank during a

UNION operation

Path compression

During FIND-SET operations to make each node on the find path point directly to the

root. Path compression does not change any ranks.

Path compression:

Find-Set(a)

It maintains a list of objects visited while traversing
to find the root.
• list : [a, b, c, d, e]
• Update the root of [a, b, c, d, e] to f

	Slide 1
	Slide 2: Example
	Slide 3
	Slide 4: Application of Disjoint-set: Connected components
	Slide 5: Data structure/Representation of Disjoint sets
	Slide 6
	Slide 7: Simple Implementation of Union
	Slide 8
	Slide 9
	Slide 10: Example
	Slide 11: Heuristics to improve running time
	Slide 12

