Deletion from a B-tree 
Deleting an element on a B-tree consists of three main events: searching the node  where the key to be deleted exists, deleting the key and balancing the tree if required. While deleting a tree, a condition called underflow may occur. Underflow occurs when  a node contains less than the minimum number of keys it should hold. The terms to be understood before studying deletion operation are: 
1. Inorder Predecessor 
The largest key on the left child of a node is called its inorder predecessor. 2. Inorder Successor 
The smallest key on the right child of a node is called its inorder successor. Deletion Operation 
Before going through the steps below, one must know these facts about a B tree of  degree m. 
1. A node can have a maximum of m children. (i.e. 3) 
2. A node can contain a maximum of m - 1 keys. (i.e. 2) 
3. A node should have a minimum of ⌈m/2⌉ children. (i.e. 2) 
4. A node (except root node) should contain a minimum of ⌈m/2⌉ - 1 keys. (i.e. 1) There are three main cases for deletion operation in a B tree. 
Case I 
The key to be deleted lies in the leaf. There are two cases for it. 
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1. The deletion of the key does not violate the property of the minimum number of keys a  node should hold. 
In the tree below, deleting 32 does not violate the above properties.Deleting a leaf key  (32) from B-tree 
2. The deletion of the key violates the property of the minimum number of keys a node  should hold. In this case, we borrow a key from its immediate neighboring sibling node  in the order of left to right. 
First, visit the immediate left sibling. If the left sibling node has more than a minimum  number of keys, then borrow a key from this node. 
Else, check to borrow from the immediate right sibling node. 
In the tree below, deleting 31 results in the above condition. Let us borrow a key from  
the left sibling node. 
[image: ]Deleting a leaf key (31)If both the immediate sibling nodes already have a minimum 
number of keys, then merge the node with either the left sibling node or the right sibling  node. This merging is done through the parent node. 
Deleting 30 results in the above case. 
[image: ]Delete a leaf key (30) 
Case II 
If the key to be deleted lies in the internal node, the following cases occur.
1. The internal node, which is deleted, is replaced by an inorder predecessor if the left 
child has more than the minimum number of keys.
[image: ]Deleting an internal node (33) 
2. The internal node, which is deleted, is replaced by an inorder successor if the right child  has more than the minimum number of keys. 
3. If either child has exactly a minimum number of keys then, merge the left and the right  children.
[image: ]Deleting an internal node (30)After merging if the parent node has less than the  minimum number of keys then, look for the siblings as in Case I. Case III 
In this case, the height of the tree shrinks. If the target key lies in an internal node, and  the deletion of the key leads to a fewer number of keys in the node (i.e. less than the  minimum required), then look for the inorder predecessor and the inorder successor. If  both the children contain a minimum number of keys then, borrowing cannot take place.  This leads to Case II(3) i.e. merging the children. 
Again, look for the sibling to borrow a key. But, if the sibling also has only a minimum  number of keys then, merge the node with the sibling along with the parent. Arrange the  children accordingly (increasing order).
[image: ]Deleting an internal node (10) 
Deletion Complexity 
Best case Time complexity: Θ(log n) 
Average case Space complexity: Θ(n) 
Worst case Space complexity: Θ(n) 
Deletion in B-Tree 
For deletion in b tree we wish to remove from a leaf. There are three possible case for deletion in b  tree. 
Let k be the key to be deleted, x the node containing the key. Then the cases are: 
Case-I 
If the key is already in a leaf node, and removing it doesn’t cause that leaf node to have too few  keys, then simply remove the key to be deleted. key k is in node x and x is a leaf, simply delete k  from x.
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Case-II 
If key k is in node x and x is an internal node, there are three cases to consider: 
Case-II-a 
If the child y that precedes k in node x has at least t keys (more than the minimum), then find the  predecessor key k' in the subtree rooted at y. Recursively delete k' and replace k with k' in x
Case-II-b 
Symmetrically, if the child z that follows k in node x has at least t keys, find the successor k' and  delete and replace as before. Note that finding k' and deleting it can be performed in a single  downward pass. 
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[image: ]
Case-II-c 
Otherwise, if both y and z have only t−1 (minimum number) keys, merge k and all of z into y, so that  both k and the pointer to z are removed from x. y now contains 2t − 1 keys, and subsequently k is  deleted.
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Case-III 
If key k is not present in an internal node x, determine the root of the appropriate subtree that must  contain k. If the root has only t − 1 keys, execute either of the following two cases to ensure that we  descend to a node containing at least t keys. Finally, recurse to the appropriate child of x. 
Case-III-a 
If the root has only t−1 keys but has a sibling with t keys, give the root an extra key by moving a key  from x to the root, moving a key from the roots immediate left or right sibling up into x, and moving  the appropriate child from the sibling to x.
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[image: ]Case-III-b 
If the root and all of its siblings have t−1 keys, merge the root with one sibling. This involves moving  a key down from x into the new merged node to become the median key for that node. 
[image: ]4 deleted
[image: ][image: ]# Deleting a key on a B-tree in Python 
# Btree node 
class BTreeNode: 
 def __init__(self, leaf=False): 
 self.leaf = leaf 
self.keys = [] 
self.child = [] 
class BTree: 
 def __init__(self, t): 
 self.root = BTreeNode(True) 
 self.t = t 
 # Insert a key 
def insert(self, k): 
 root = self.root 
if len(root.keys) == (2 * self.t) - 1:  temp = BTreeNode() 
self.root = temp 
temp.child.insert(0, root) 
self.split_child(temp, 0) 
 self.insert_non_full(temp, k)  else: 
 self.insert_non_full(root, k)  # Insert non full
 def insert_non_full(self, x, k): 
 i = len(x.keys) - 1 
 if x.leaf: 
 x.keys.append((None, None))  while i >= 0 and k[0] < x.keys[i][0]:  x.keys[i + 1] = x.keys[i]  i -= 1 
 x.keys[i + 1] = k 
 else: 
 while i >= 0 and k[0] < x.keys[i][0]:  i -= 1 
 i += 1 
if len(x.child[i].keys) == (2 * self.t) - 1:  self.split_child(x, i) if k[0] > x.keys[i][0]: 
 i += 1 
 self.insert_non_full(x.child[i], k) 
 # Split the child 
def split_child(self, x, i): 
 t = self.t 
 y = x.child[i] 
 z = BTreeNode(y.leaf) 
 x.child.insert(i + 1, z) 
 x.keys.insert(i, y.keys[t - 1])  z.keys = y.keys[t: (2 * t) - 1]  y.keys = y.keys[0: t - 1] 
 if not y.leaf: 
 z.child = y.child[t: 2 * t]  y.child = y.child[0: t - 1] 
 # Delete a node 
def delete(self, x, k): 
 t = self.t 
 i = 0 
while i < len(x.keys) and k[0] > x.keys[i][0]:  i += 1 
 if x.leaf: 
 if i < len(x.keys) and x.keys[i][0] == k[0]:  x.keys.pop(i) 
return 
 return 
 if i < len(x.keys) and x.keys[i][0] == k[0]:  return self.delete_internal_node(x, k, i)  elif len(x.child[i].keys) >= t:  self.delete(x.child[i], k)  else: 
 if i != 0 and i + 2 < len(x.child):  if len(x.child[i - 1].keys) >= t:  self.delete_sibling(x, i, i - 1)  elif len(x.child[i + 1].keys) >= t:  self.delete_sibling(x, i, i + 1)  else: 
 self.delete_merge(x, i, i + 1)  elif i == 0: 
 if len(x.child[i + 1].keys) >= t:  self.delete_sibling(x, i, i + 1)  else: 
 self.delete_merge(x, i, i + 1)  elif i + 1 == len(x.child):  if len(x.child[i - 1].keys) >= t:
 self.delete_sibling(x, i, i - 1)  else: 
 self.delete_merge(x, i, i - 1)  self.delete(x.child[i], k) 
 # Delete internal node 
def delete_internal_node(self, x, k, i): 
 t = self.t 
 if x.leaf: 
 if x.keys[i][0] == k[0]: 
 x.keys.pop(i) 
return 
 return 
 if len(x.child[i].keys) >= t: 
 x.keys[i] = self.delete_predecessor(x.child[i])  return 
 elif len(x.child[i + 1].keys) >= t:  x.keys[i] = self.delete_successor(x.child[i + 1])  return 
 else: 
self.delete_merge(x, i, i + 1) 
 self.delete_internal_node(x.child[i], k, self.t - 1)
 # Delete the predecessor 
def delete_predecessor(self, x): 
 if x.leaf: 
 return x.pop() 
 n = len(x.keys) - 1 
 if len(x.child[n].keys) >= self.t:  self.delete_sibling(x, n + 1, n)  else: 
 self.delete_merge(x, n, n + 1)  self.delete_predecessor(x.child[n]) 
 # Delete the successor 
def delete_successor(self, x): 
 if x.leaf: 
 return x.keys.pop(0) 
 if len(x.child[1].keys) >= self.t:  self.delete_sibling(x, 0, 1) 
 else: 
 self.delete_merge(x, 0, 1) 
 self.delete_successor(x.child[0]) 
 # Delete resolution 
def delete_merge(self, x, i, j): 
 cnode = x.child[i] 
 if j > i: 
 rsnode = x.child[j] 
cnode.keys.append(x.keys[i]) 
 for k in range(len(rsnode.keys)):  cnode.keys.append(rsnode.keys[k]) if len(rsnode.child) > 0: 
 cnode.child.append(rsnode.child[k])  if len(rsnode.child) > 0: 
 cnode.child.append(rsnode.child.pop())  new = cnode 
x.keys.pop(i) 
x.child.pop(j) 
 else:
 lsnode = x.child[j] 
lsnode.keys.append(x.keys[j]) 
for i in range(len(cnode.keys)): 
 lsnode.keys.append(cnode.keys[i])  if len(lsnode.child) > 0:  lsnode.child.append(cnode.child[i])  if len(lsnode.child) > 0: 
 lsnode.child.append(cnode.child.pop())  new = lsnode 
x.keys.pop(j) 
x.child.pop(i) 
 if x == self.root and len(x.keys) == 0:  self.root = new 
 # Delete the sibling 
def delete_sibling(self, x, i, j): 
 cnode = x.child[i] 
 if i < j: 
 rsnode = x.child[j] 
cnode.keys.append(x.keys[i]) 
 x.keys[i] = rsnode.keys[0] 
 if len(rsnode.child) > 0: 
 cnode.child.append(rsnode.child[0])  rsnode.child.pop(0) 
 rsnode.keys.pop(0) 
 else: 
 lsnode = x.child[j] 
cnode.keys.insert(0, x.keys[i - 1]) 
 x.keys[i - 1] = lsnode.keys.pop()  if len(lsnode.child) > 0: 
 cnode.child.insert(0, lsnode.child.pop()) 
 # Print the tree 
def print_tree(self, x, l=0): 
 print("Level ", l, " ", len(x.keys), end=":")  for i in x.keys: 
 print(i, end=" ") 
 print() 
 l += 1 
if len(x.child) > 0: 
 for i in x.child: 
 self.print_tree(i, l) 
B = BTree(3) 
for i in range(10): 
 B.insert((i, 2 * i)) 
B.print_tree(B.root) 
B.delete(B.root, (8,)) 
print("\n") 
B.print_tree(B.root)
image12.png
40

50|60

45 |1 55 | 65





image13.png




image9.png




image8.png




image15.png




image7.png




image17.png
j\./?k





image4.png
/Lé?k




image6.png
s





image16.png




image5.png
z£<2x




image1.png




image2.png




image3.png




image14.png




image11.png




image10.png




