B-tree deletion
[image: ]
[image: ]
2-3 trees 
In binary search trees we have seen the average-case time for operationslikesearch/insert/delete is O(log N) and the worst-case time is O(N) whereNisthenumber of nodes in the tree. 
Like other Trees include AVL trees, Red Black Tree, B tree, 2-3 Tree isalsoaheight balanced tree. 
The time complexity of search/insert/delete is O(log N) . 
A 2-3 tree is a B-tree of order 3. 
Properties of 2-3 tree: 
∙ Nodes with two children are called 2-nodes. The 2-nodes have onedatavalue and two children 
∙ Nodes with three children are called 3-nodes. The 3-nodes have twodatavalues and three children. 
∙ Data is stored in sorted order. 
∙ It is a balanced tree. 
∙ All the leaf nodes are at same level. 
∙ Each node can either be leaf, 2 node, or 3 node. 
∙ Always insertion is done at leaf. 
Search: To search a key K in given 2-3 tree T, we follow the followingprocedure: 
Base cases: 
1. If T is empty, return False (key cannot be found in the tree). 2. If current node contains data value which is equal to K, return True. 3. If we reach the leaf-node and it doesn’t contain the required key valueK, return False. 
Recursive Calls: 
1. If K < currentNode.leftVal, we explore the left subtree of the current node. 2. Else if currentNode.leftVal < K < currentNode.rightVal, we explorethemiddlesubtree of the current node. 
3. Else if K > currentNode.rightVal, we explore the right subtree of thecurrent node. 
Consider the following example:
[image: ]
[image: ][image: ]
[image: ]
Insertion: There are 3 possible cases in insertion which have been discussedbelow: 
∙ Case 1: Insert in a node with only one data element 
[image: ]
∙ Case 2: Insert in a node with two data elements whose parent containsonlyone data element.
[image: ][image: ]
[image: ]
∙ Case 3: Insert in a node with two data elements whose parent alsocontainstwo data elements.
[image: ]
[image: ][image: ]
[image: ]
In Deletion Process for a specific value: 
∙ To delete a value, it is replaced by its in-order successor and thenremoved. ∙ If a node is left with less than one data value then two nodes must bemerged together. 
∙ If a node becomes empty after deleting a value, it is then merged withanother node. 
To Understand the deletion process- 
Consider the 2-3 tree given below 
[image: ]
Given 2-3 Tree 
delete the following values from it: 69,72, 99, 81.
To delete 69, swap it with its in-order successor, that is, 72. 69 nowcomesinthe leaf node. Remove the value 69 from the leaf node. [image: ]After deletion 69 
To delete 72, 72 is an internal node. To delete this value swap 72 withitsin- order successor 81 so that 72 now becomes a leaf node. Remove thevalue72from the leaf node. 
[image: ]
After deletion 72 
Now there is a leaf node that has less than 1 data value thereby violatingtheproperty of a 2-3 tree. So the node must be merged. 
To merge the node, pull down the lowest data value in the parent’s nodeandmerge it with its left sibling. 
[image: ]
Rebalancing to Satisfy 23 Tree property
To delete 99, 99 is present in a leaf node, so the data value can be easilyremoved. 
[image: ]
After deletion 99 
Now there is a leaf node that has less than 1 data value, thereby violatingtheproperty of a 2-3 tree. 
So the node must be merged. To merge the node, pull down the lowest datavalue in the parent’s node and merge it with its left sibling. 
[image: ]
Rebalancing to Satisfy 2-3 Tree Property 
To delete 81, 81 is an internal node. To delete this value swap 81 withitsin- order successor 90 so that 81 now becomes a leaf node. Remove thevalue81from the leaf node. 
[image: ]
After deletion 81
Now there is a leaf node that has less than 1 data value, thereby violatingtheproperty of a 2-3 tree. So the node must be merged. To merge the node, pull down the lowest data value in the parent’s node and merge it with its left sibling. 
[image: ]
Rebalancing to Satisfy 2-3 Tree property 
As internal node cannot be empty. So now pull down the lowest data valuefromthe parent’s node and merge the empty node with its left sibling 
[image: ]
Rebalancing to Satisfy 2-3 Tree Property
image21.png
K<2

2<K<9

K>9

13

Iy

Current Node





image11.png
13

5 Not Found. Return False





image14.png
Insert 4 in the following 2-3 Tree:

69 2|4 6

Initial After Insertion




image10.png
Insert 10 in the following 2-3 Tree:

Initial




image16.png
2|4 6910

Temporary Node with 3 data elements




image9.png
10

Move the middle element to
parent and split the current Node




image20.png
Insert 1 in the following 2-3 Tree:

10





image22.png
1] 2]a ]_' 10

Temporary Node with 3 data elements





image19.png
1 4 r; 10

Move the middle element to the parent
and split the current Node





image12.png
Move the middle element to the parent
and split the current Node




image23.png




image4.png




image7.png




image8.png




image5.png




image6.png




image3.png




image1.png




image2.png




image15.png
(a) Initial Tree

(b) F deleted: case 1

(€)M deleted: case 2a

(d) G deleted: case 2c




image18.png
(e) D deleted: case 3b





image17.png
Search 5 in the following 2-3 Tree:





image13.png
<~ Current Node





