B-tree deletion
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2-3 trees 
In binary search trees we have seen the average-case time for operationslikesearch/insert/delete is O(log N) and the worst-case time is O(N) whereNisthenumber of nodes in the tree. 
Like other Trees include AVL trees, Red Black Tree, B tree, 2-3 Tree isalsoaheight balanced tree. 
The time complexity of search/insert/delete is O(log N) . 
A 2-3 tree is a B-tree of order 3. 
Properties of 2-3 tree: 
∙ Nodes with two children are called 2-nodes. The 2-nodes have onedatavalue and two children 
∙ Nodes with three children are called 3-nodes. The 3-nodes have twodatavalues and three children. 
∙ Data is stored in sorted order. 
∙ It is a balanced tree. 
∙ All the leaf nodes are at same level. 
∙ Each node can either be leaf, 2 node, or 3 node. 
∙ Always insertion is done at leaf. 
Search: To search a key K in given 2-3 tree T, we follow the followingprocedure: 
Base cases: 
1. If T is empty, return False (key cannot be found in the tree). 2. If current node contains data value which is equal to K, return True. 3. If we reach the leaf-node and it doesn’t contain the required key valueK, return False. 
Recursive Calls: 
1. If K < currentNode.leftVal, we explore the left subtree of the current node. 2. Else if currentNode.leftVal < K < currentNode.rightVal, we explorethemiddlesubtree of the current node. 
3. Else if K > currentNode.rightVal, we explore the right subtree of thecurrent node. 
Consider the following example:
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Insertion: There are 3 possible cases in insertion which have been discussedbelow: 
∙ Case 1: Insert in a node with only one data element 
[image: ]
∙ Case 2: Insert in a node with two data elements whose parent containsonlyone data element.
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∙ Case 3: Insert in a node with two data elements whose parent alsocontainstwo data elements.
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In Deletion Process for a specific value: 
∙ To delete a value, it is replaced by its in-order successor and thenremoved. ∙ If a node is left with less than one data value then two nodes must bemerged together. 
∙ If a node becomes empty after deleting a value, it is then merged withanother node. 
To Understand the deletion process- 
Consider the 2-3 tree given below 
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Given 2-3 Tree 
delete the following values from it: 69,72, 99, 81.
To delete 69, swap it with its in-order successor, that is, 72. 69 nowcomesinthe leaf node. Remove the value 69 from the leaf node. [image: ]After deletion 69 
To delete 72, 72 is an internal node. To delete this value swap 72 withitsin- order successor 81 so that 72 now becomes a leaf node. Remove thevalue72from the leaf node. 
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After deletion 72 
Now there is a leaf node that has less than 1 data value thereby violatingtheproperty of a 2-3 tree. So the node must be merged. 
To merge the node, pull down the lowest data value in the parent’s nodeandmerge it with its left sibling. 
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Rebalancing to Satisfy 23 Tree property
To delete 99, 99 is present in a leaf node, so the data value can be easilyremoved. 
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After deletion 99 
Now there is a leaf node that has less than 1 data value, thereby violatingtheproperty of a 2-3 tree. 
So the node must be merged. To merge the node, pull down the lowest datavalue in the parent’s node and merge it with its left sibling. 
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Rebalancing to Satisfy 2-3 Tree Property 
To delete 81, 81 is an internal node. To delete this value swap 81 withitsin- order successor 90 so that 81 now becomes a leaf node. Remove thevalue81from the leaf node. 
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After deletion 81
Now there is a leaf node that has less than 1 data value, thereby violatingtheproperty of a 2-3 tree. So the node must be merged. To merge the node, pull down the lowest data value in the parent’s node and merge it with its left sibling. 
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Rebalancing to Satisfy 2-3 Tree property 
As internal node cannot be empty. So now pull down the lowest data valuefromthe parent’s node and merge the empty node with its left sibling 
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Rebalancing to Satisfy 2-3 Tree Property
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(e) D deleted: case 3b
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