Floyd Warshall Algorithm
The Floyd-Warshall algorithm, named after its creators Robert Floyd and Stephen Warshall, is a fundamental algorithm in computer science and graph theory. It is used to find the shortest paths between all pairs of nodes in a weighted graph. This algorithm is highly efficient and can handle graphs with both positive and negative edge weights, making it a versatile tool for solving a wide range of network and connectivity problems.
Floyd Warshall Algorithm:
The Floyd Warshall Algorithm is an all pair shortest path algorithm unlike Dijkstra and Bellman Ford which are single source shortest path algorithms. This algorithm works for both the directed and undirected weighted graphs. But, it does not work for the graphs with negative cycles (where the sum of the edges in a cycle is negative). It follows Dynamic Programming approach to check every possible path going via every possible node in order to calculate shortest distance between every pair of nodes.
Idea Behind Floyd Warshall Algortihm:
Suppose we have a graph G[][] with V vertices from 1 to N. Now we have to evaluate a shortestPathMatrix[][] where shortestPathMatrix[i][j] represents the shortest path between vertices i and j.
Obviously the shortest path between i to j will have some k number of intermediate nodes. The idea behind floyd warshall algorithm is to treat each and every vertex from 1 to N as an intermediate node one by one.
The following figure shows the above optimal substructure property in floyd warshall algorithm:
[image: https://media.geeksforgeeks.org/wp-content/uploads/dpFloyd-Warshall-.jpg]
Floyd Warshall Algorithm Algorithm:
· Initialize the solution matrix same as the input graph matrix as a first step.
· Then update the solution matrix by considering all vertices as an intermediate vertex.
· The idea is to pick all vertices one by one and updates all shortest paths which include the picked vertex as an intermediate vertex in the shortest path.
· When we pick vertex number k as an intermediate vertex, we already have considered vertices {0, 1, 2, .. k-1} as intermediate vertices.
· For every pair (i, j) of the source and destination vertices respectively, there are two possible cases.
· k is not an intermediate vertex in shortest path from i to j. We keep the value of dist[i][j] as it is.
· k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j] as dist[i][k] + dist[k][j], if dist[i][j] > dist[i][k] + dist[k][j]
Pseudo-Code of Floyd Warshall Algorithm :
For k = 0 to n – 1
For i = 0 to n – 1
For j = 0 to n – 1
Distance[i, j] = min(Distance[i, j], Distance[i, k] + Distance[k, j])
where i = source Node, j = Destination Node, k = Intermediate Node
Illustration of Floyd Warshall Algorithm :
Suppose we have a graph as shown in the image:
[image: dryRun1drawio]
Step 1: Initialize the Distance[][] matrix using the input graph such that Distance[i][j]= weight of edge from i to j, also Distance[i][j] = Infinity if there is no edge from i to j.
[image: step1drawio]
Step 2: Treat node A as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:
= Distance[i][j] = minimum (Distance[i][j], (Distance from i to A) + (Distance from A to j))
= Distance[i][j] = minimum (Distance[i][j], Distance[i][A] + Distance[A][j])
[image: step2drawio]
Step 3: Treat node B as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:
= Distance[i][j] = minimum (Distance[i][j], (Distance from i to B) + (Distance from B to j))
= Distance[i][j] = minimum (Distance[i][j], Distance[i][B] + Distance[B][j])
[image: step3drawio]
Step 4: Treat node C as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:
= Distance[i][j] = minimum (Distance[i][j], (Distance from i to C) + (Distance from C to j))
= Distance[i][j] = minimum (Distance[i][j], Distance[i][C] + Distance[C][j])
[image: step4drawio]
Step 5: Treat node D as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:
= Distance[i][j] = minimum (Distance[i][j], (Distance from i to D) + (Distance from D to j))
= Distance[i][j] = minimum (Distance[i][j], Distance[i][D] + Distance[D][j])
[image: step5drawio]
Step 6: Treat node E as an intermediate node and calculate the Distance[][] for every {i,j} node pair using the formula:
= Distance[i][j] = minimum (Distance[i][j], (Distance from i to E) + (Distance from E to j))
= Distance[i][j] = minimum (Distance[i][j], Distance[i][E] + Distance[E][j])
[image: step6drawio]
Step 7: Since all the nodes have been treated as an intermediate node, we can now return the updated Distance[][] matrix as our answer matrix.
[image: step7drawio]

	// C++ Program for Floyd Warshall Algorithm
#include <bits/stdc++.h>
using namespace std;
 // Number of vertices in the graph
#define V 4
 /* Define Infinite as a large enough
value.This value will be used for
vertices not connected to each other */
#define INF 99999
 // A function to print the solution matrix
void printSolution(int dist[][V]);
 // Solves the all-pairs shortest path
// problem using Floyd Warshall algorithm
void floydWarshall(int dist[][V])
{
 int i, j, k;
 /* Add all vertices one by one to
 the set of intermediate vertices.
 ---> Before start of an iteration,
 we have shortest distances between all
 pairs of vertices such that the
 shortest distances consider only the
 vertices in set {0, 1, 2, .. k-1} as
 intermediate vertices.
 ----> After the end of an iteration,
 vertex no. k is added to the set of
 intermediate vertices and the set becomes {0, 1, 2, ..
 k} */
 for (k = 0; k < V; k++) {
 // Pick all vertices as source one by one
 for (i = 0; i < V; i++) {
 // Pick all vertices as destination for the
 // above picked source
 for (j = 0; j < V; j++) {
 // If vertex k is on the shortest path from
 // i to j, then update the value of
 // dist[i][j]
 if (dist[i][j] > (dist[i][k] + dist[k][j])
 && (dist[k][j] != INF
 && dist[i][k] != INF))
 dist[i][j] = dist[i][k] + dist[k][j];
 }
 }
 }
 // Print the shortest distance matrix
 printSolution(dist);
}
 /* A utility function to print solution */
void printSolution(int dist[][V])
{
 cout << "The following matrix shows the shortest "
 "distances"
 " between every pair of vertices \n";
 for (int i = 0; i < V; i++) {
 for (int j = 0; j < V; j++) {
 if (dist[i][j] == INF)
 cout << "INF"
 << " ";
 else
 cout << dist[i][j] << " ";
 }
 cout << endl;
 }
}
 // Driver's code
int main()
{
 /* Let us create the following weighted graph
 10
 (0)------->(3)
 | /|\
 5 | |
 | | 1
 \|/ |
 (1)------->(2)
 3 */
 int graph[V][V] = { { 0, 5, INF, 10 },
 { INF, 0, 3, INF },
 { INF, INF, 0, 1 },
 { INF, INF, INF, 0 } };
 // Function call
 floydWarshall(graph);
 return 0;
}

output
The following matrix shows the shortest distances between every pair of vertices
0 5 8 9
INF 0 3 4
INF INF 0 1
INF INF INF 0

image5.png
Example Graph

image3.png
Step1: Initializing Distance[][] using the Input Graph

A B C D E

image7.png
Step 2: Using Node A as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][A] + Distance[A][j])

A B C D E A B C D E

0 4 = 5 =

5| =
< 6
3 12
0 2
4 0

image6.png
Step 3: Using Node B as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][B] + Distance[B][j])

image4.png
Step 4: Using Node C as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][C] + Distance[C][j])

image2.png
Step 5: Using Node D as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][D] + Distance[D][j])

image8.png
Step 6: Using Node E as the Intermediate node

Distance[i][j] = min (Distance[i][i], Distance[il[E] + Distance[E][])

image9.png
Step 7: Return Distance[][] matrix as the result

image1.jpg
all intermediate vertices{0,1,2.....k-1} all intermediate vertices{0,1,2.....
< <
Xq X2

ik

