

1 © www.jntumaterials.co.in

 UNIT - IV
Model based software architectures: A Management perspective and technical perspective.

Work Flows of the process: Software process workflows, Iteration workflows.

7. Model based software architecture

 7.1ARCHITECTURE: A MANAGEMENT PERSPECTIVE

The most critical technical product of a software project is its architecture: the infrastructure,
control, and data interfaces that permit software components to cooperate as a system and
software designers to cooperate efficiently as a team.When the communications media
include multiple languages and intergroup literacy varies, the communications problem can
become extremely complex and even unsolvable. If a software development team is to be
successful, the inter project communications, as captured in the software architecture, must
be both accurate and precise

From a management perspective, there are three different aspects of architecture.
1. An architecture (the intangible design concept) is the design of a software system

this includes all engineering necessary to specify a complete bill of materials.

2. An architecture baseline (the tangible artifacts) is a slice of information across the
engineering artifact sets sufficient to satisfy all stakeholders that the vision
(function and quality) can be achieved within the parameters of the business case
(cost, profit, time, technology, and people).

3. An architecture description (a human-readable representation of an architecture,
which is one of the components of an architecture baseline) is an organized subset
of information extracted from the design set model(s). The architecture
description communicates how the intangible concept is realized in the tangible
artifacts.

The number of views and the level of detail in each view can vary widely.
The importance of software architecture and its close linkage with modern software
development processes can be summarized as follows:

 Achieving a stable software architecture represents a significant project milestone
at which the critical make/buy decisions should have been resolved.

 Architecture representations provide a basis for balancing the trade-offs between
the problem space (requirements and constraints) and the solution space (the
operational product).

 The architecture and process encapsulate many of the important (high-payoff or
high-risk) communications among individuals, teams, organizations, and
stakeholders.

 Poor architectures and immature processes are often given as reasons for project
failures.

 A mature process, an understanding of the primary requirements, and a
demonstrable architecture are important prerequisites for predictable planning.

 Architecture development and process definition are the intellectual steps that map
the problem to a solution without violating the constraints; they require human
innovation and cannot be automated.

 7.2 ARCHITECTURE: A TECHNICAL PERSPECTIVE
An architecture framework is defined in terms of views that are abstractions of the UML
models in the design set. The design model includes the full breadth and depth of
information. An architecture view is an abstraction of the design model; it contains only the
architecturally significant information. Most real-world systems require four views: design,

2 © www.jntumaterials.co.in

process, component, and deployment. The purposes of these views are as follows:
 Design: describes architecturally significant structures and functions of the design

model

 Process: describes concurrency and control thread relationships among the design,
component, and deployment views

 Component: describes the structure of the implementation set

 Deployment: describes the structure of the deployment set

Figure 7-1 summarizes the artifacts of the design set, including the architecture views and
architecture description.
The requirements model addresses the behavior of the system as seen by its end users,
analysts, and testers. This view is modeled statically using use case and class diagrams, and
dynamically using sequence, collaboration, state chart, and activity diagrams.

 The use case view describes how the system's critical (architecturally significant)
use cases are realized by elements of the design model. It is modeled statically
using use case diagrams, and dynamically using any of the UML behavioral
diagrams.

 The design view describes the architecturally significant elements of the design
model. This view, an abstraction of the design model, addresses the basic structure
and functionality of the solution. It is modeled statically using class and object
diagrams, and dynamically using any of the UML behavioral diagrams.

 The process view addresses the run-time collaboration issues involved in executing
the architecture on a distributed deployment model, including the logical software
network topology (allocation to processes and threads of control), interprocess
communication, and state management. This view is modeled statically using
deployment diagrams, and dynamically using any of the UML behavioral
diagrams.

 The component view describes the architecturally significant elements of the
implementation set. This view, an abstraction of the design model, addresses the
software source code realization of the system from the perspective of the project's
integrators and developers, especially with regard to releases and configuration
management. It is modeled statically using component diagrams, and dynamically
using any of the UML behavioral diagrams.

 The deployment view addresses the executable realization of the system, including
the allocation of logical processes in the distribution view (the logical software
topology) to physical resources of the deployment network (the physical system
topology). It is modeled statically using deployment diagrams, and dynamically
using any of the UML behavioral diagrams.

Generally, an architecture baseline should include the following:
 Requirements: critical use cases, system-level quality objectives, and priority

relationships among features and qualities

 Design: names, attributes, structures, behaviors, groupings, and relationships of
significant classes and components

 Implementation: source component inventory and bill of materials (number, name,
purpose, cost) of all primitive components

 Deployment: executable components sufficient to demonstrate the critical use
cases and the risk associated with achieving the system qualities

3 © www.jntumaterials.co.in

8. Workflow of the process

4 © www.jntumaterials.co.in

8.1 SOFTWARE PROCESS WORKFLOWS

The term WORKFLOWSis used to mean a thread of cohesive and mostly sequential activi-
ties. Workflows are mapped to product artifacts There are seven top-level workflows:

1. Management workflow: controlling the process and ensuring win conditions for all

stakeholders

2. Environment workflow: automating the process and evolving the maintenance

environment

3. Requirements workflow: analyzing the problem space and evolving the

requirements artifacts

4. Design workflow: modeling the solution and evolving the architecture and design

artifacts

5. Implementation workflow: programming the components and evolving the

implementation and deployment artifacts

6. Assessment workflow: assessing the trends in process and product quality

7. Deployment workflow: transitioning the end products to the user

Figure 8-1 illustrates the relative levels of effort expected across the phases in each of the

top-level workflows.

Table 8-1 shows the allocation of artifacts and the emphasis of each workflow in each of the
life-cycle phases of inception, elaboration, construction, and transition.

5 © www.jntumaterials.co.in

 8.2 ITERATION WORKFLOWS

6 © www.jntumaterials.co.in

Iteration consists of a loosely sequential set of activities in various proportions, depending on
where the iteration is located in the development cycle. Each iteration is defined in terms of a
set of allocated usage scenarios. An individual iteration's workflow, illustrated in Figure 8-2,
generally includes the following sequence:

 Management: iteration planning to determine the content of the release and develop
the detailed plan for the iteration; assignment of work packages, or tasks, to the
development team

 Environment: evolving the software change order database to reflect all new
baselines and changes to existing baselines for all product, test, and environment
components

 Requirements: analyzing the baseline plan, the baseline architecture, and the

baseline requirements set artifacts to fully elaborate the use cases to be
demonstrated at the end of this iteration and their evaluation criteria; updating any
requirements set artifacts to reflect changes necessitated by results of this
iteration's engineering activities

 Design: evolving the baseline architecture and the baseline design set artifacts to
elaborate fully the design model and test model components necessary to
demonstrate against the evaluation criteria allocated to this iteration; updating
design set artifacts to reflect changes necessitated by the results of this iteration's
engineering activities

 Implementation: developing or acquiring any new components, and enhancing or
modifying any existing components, to demonstrate the evaluation criteria
allocated to this iteration; integrating and testing all new and modified
components with existing baselines (previous versions)

7 © www.jntumaterials.co.in

 Assessment: evaluating the results of the iteration, including compliance with the
allocated evaluation criteria and the quality of the current baselines; identifying
any rework required and determining whether it should be performed before
deployment of this release or allocated to the next release; assessing results to
improve the basis of the subsequent iteration's plan

 Deployment: transitioning the release either to an external organization (such as a
user, independent verification and validation contractor, or regulatory agency) or
to internal closure by conducting a post-mortem so that lessons learned can be
captured and reflected in the next iteration

Iterations in the inception and elaboration phases focus on management. Requirements, and
design activities. Iterations in the construction phase focus on design, implementation, and
assessment. Iterations in the transition phase focus on assessment and deployment. Figure 8-
3 shows the emphasis on different activities across the life cycle. An iteration represents the
state of the overall architecture and the complete deliverable system. An increment
represents the current progress that will be combined with the preceding iteration to from the
next iteration. Figure 8-4, an example of a simple development life cycle, illustrates the
differences between iterations and increments.

8 © www.jntumaterials.co.in

