Quizizz	NAME :
	CLASS :
unit-5 test-1 15 Questions	DATE :

1. Breadth First Search (BFS) is started on a binary tree beginning from the root vertex. There is a vertex t at a distance four from the root. If t is the n-th vertex in this BFS traversal, then the maximum possible value of n is

ExamSide.Con

2.

(a)

5

7

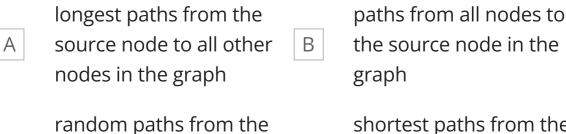
С

Consider the following directed graph:

The number of different topological orderings of the vertices of the graph is

3. Let G be a graph with n vertices and m edges. What is the tightest upper bound on the running time of Depth First Search on G, when G is represented as an adjacency matrix?

O(n log n)	В	O(n!)
O(m^2)	D	O(n^2)

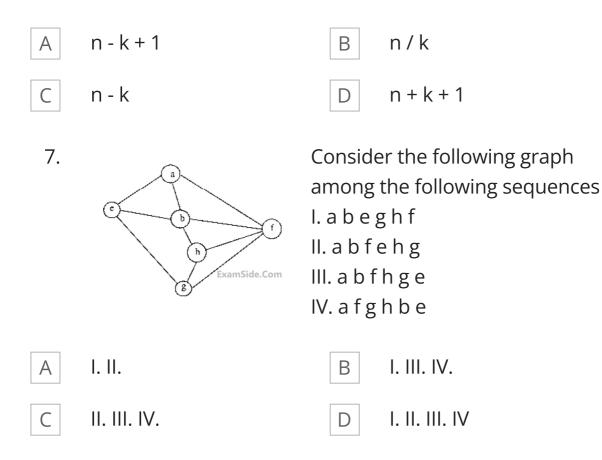

Suppose depth first search is executed on the graph below starting at some unknown vertex. Assume that a recursive call to visit a vertex is made only after first checking that the vertex has not been visited earlier. Then the maximum possible recursion depth (including the initial call) is

4.

В	18
D	20

 Consider the tree arcs of a BFS traversal from a source node W in an unweighted, connected, undirected graph. The tree T formed by the tree arcs is a data structure for computing

source node to all other


nodes in the graph

С

shortest paths from the source node to all other nodes in the graph

6. In a depth-first traversal of a graph G with n vertices,k edges are marked as tree edges. The number of connected components in G is

D

8. Let G be a graph with 100! vertices, with each vertex labelled by a distinct permutation of the numbers 1,2,...,100. There is an edge between vertices U and V if and only if the label of U can be obtained by swapping two adjacent numbers in the label of V. Let y denote the degree of a vertex in G, and z denote the number of connected components in G. Then, y+10z=____.

A	110	В	109
С	108	D	107

9. In an adjacency list representation of an undirected simple graph G=(V,E), each edge (u,v) has two adjacency list entries: [v] in the adjacency list of u, and [u] in the adjacency list of v. These are called twins of each other. A twin pointer is a pointer from an adjacency list entry to its twin. If |E|=m and |V|=n, and the memory size is not a constraint, what is the time complexity of the most efficient algorithm to set the twin pointer in each entry in each adjacency list?

Α

O(m*n)

O(m+n)

В	O(m^2)
D	O(n^2)

10. Let G = (V, E) be a simple undirected graph, and s be a particular vertex in it called the source. For $x \in V$, let d(x) denote the shortest distance in G from s to x. A breadth first search (BFS) is performed starting at s. Let T be the resultant BFS tree. If (u, v) is an edge of G that is not in T, then which one of the following CANNOT be the value of d(u)-d(v)?

Α	-1	В	0
С	1	D	2

11. Let G be a connected undirected graph of 100 vertices and300 edges. The weight of a minimum spanning tree of G is500. When the weight of each edge of G is increased byfive, the weight of a minimum spanning tree becomes

А	1000	В	995
С	1005	D	1010

12. Let G be a weighted graph with edge weights greater than one and G' be the graph constructed by squaring the weights of edges in G. Let T and T' be the minimum spanning trees of G and G' respectively, with total weights t and t'. Which of the following statements is TRUE?

$$T' = T, t'=t^2$$
 B $T' = T, t'$

 $T' != T, t'=t^2$

С

13.

W =	/0	1	8	1	4)
	1	0	12	4	9
W =	8	12	0	7	3
	1	4	7	0	2
	$\setminus 4$	9	3	2	0/

Consider a complete undirected graph with vertex set {0,1,2,3,4}. Entry W_{ij} in the matrix W below is the weight of the edge {i, j} What is the minimum possible weight of a spanning tree T in this graph such that vertex 0 is a leaf node in the tree T? What is the minimum possible weight of a path P from vertex 1 to vertex 2 in this graph such that P contains at most 3 edges?

Α	7,8	В	8,9
С	9,10	D	10,8

14. What is the largest integer m such that every simple connected graph with n vertices and n edges contains at least m different spanning trees?

15. Consider the depth-first-search of an undirected graph with 3 vertices P, Q, and R. Let discovery time d(u) represent the time instant when the vertex u is first visited, and finish time f(u) represent the time instant when the vertex u is last visited. Given that d(P) = 5 units f(P) = 12 units d(Q) = 6 units f(Q) = 10 units d(R) = 14 unit f(R) = 18 units Which one of the following statements is TRUE about the graph

P and Q are conected

R and Q are conected

P and R are conected

_		
	D	

P and Q are not connected

Answer Key			
1. c	2. b	3. d	4. c
5. d	б. с	7. b	8. b
9. c	10. d	11. b	12. b
13. d	14. c	15. a	