Quizizz NAME :

CLASS :

DS UNIT-2 TEST-3

DATE :
10 Questions

Which of the following operations is performed more efficiently by doubly linked list than
by linear linked list?

Inserting a node after the node with a

Traversing the list to process each node given location
Searching an unsorted list for a given D Deleting a node whose location is given
item

The minimum number of fields with each node of doubly linked list is
A) in a normal case
B) in an optimal way

4,4 B 2,3

1,2 D 3,2



A doubly linked list is declared as

struct Node {

int Value;

struct Node Fwd;

struct Node Bwd; );

Where Fwd and Bwd represent forward and backward link to the adjacent elements of
the list. Which of the following segments of code deletes the node pointed to by X from
the doubly linked list, if it is assumed that X points to neither the first nor the last node of
the list?

X->Bwd.Fwd = X->Fwd ; X.Fwd->Bwd = X- X->Bwd->Fwd = X->Fwd; X->Fwd->Bwd =

>Bwd ; 5 X->Bwd ;

X.Bwd->Fwd = X.Bwd ; X->Fwd.Bwd = X->Bwd->Fwd = X->Bwd ; X->Fwd->Bwd =
D

X.Bwd ; X->Fwd;

Consider a singly linked list of the form where F is a pointer to the first element in the
linked list and L is the pointer to the last element in the list. The time of which of the
following operations depends on the length of the list?

Delete the last element of the list
Add an element after the last element of | B
the list

Delete the first element of the list Interchange the first two elements of the
list



the reversed linked list should look like

It is not possible to reverse a singly
linked list in O(1) space.

The best algorithm for the problem
takes

theta(n)

theta time in the worst case

See the image and answer the question

The best algorithm for the problem
takes theta(n”2)
theta time in the worst case

The best algorithm for the problem
takes

theta(n logn)

theta time in the worst case



Correct Program to find Middle of a Linked list ?

class Node:
def init(self, k):
self.data = k
self.next = None
def printList(head):
curr = head
while curr '= None:
print(curr.data)
curr = curr.next
print()
def printMiddle(ptr):
if head == None:
return
count=0
curr = head
while curr :
curr = curr.next
count+=1
curr = head
foriinrange (count//2):
curr = curr.next
print(curr.data)
head = Node(10)
head.next = Node(10)
head.next.next = Node(20)
printList(head)
printMiddle(head)

class Node:
def init(self, k):
self.data = k
self.next = None
def printList(head):
curr = head
while curr != None:
print(curr.data)
curr = curr.next
print()
def printMiddle(ptr):
if head == None:
return
count=0
curr = head
while curr :
curr != curr.next
count+=1
curr = head
foriinrange (count//2):
curr = curr.next
print(curr.data)
head = Node(10)
head.next = Node(10)
head.next.next = Node(20)
printList(head)
printMiddle(head)




Which of the following problems can be solved using 2 pointers on linked list?

Finding intersection of two linked lists B Detecting cycle in a linked list

Finding middle element of a linked list

Which of the following is optimal to find an element at kth position at the linked
list?

Single Linked List B Double Linked List

Circular Linked List D Array implementation of Linked List

The type of pointer used to point to the address of the next element in a linked
list?

pointer to node B pointer to character

all of the above D pointer to integer

A linked list in which none of the nodes contains a NULL pointer is?

Circular Double Linked List B Double Linked List

Single Linked List D Circular Single Linked List



Answer Key

2.d

10.d, a

3.b

7.b,a,c

4.b

8.d



