Quizizz NAME :

CLASS :

DS UNIT-2 TEST-2

DATE :
13 Questions

What are the time complexities of finding 8th element from beginning and 8th element
from end in a singly linked list? Let n be the number of nodes in linked list, you may
assume that n > 8.

O(1) and O(1) B O(n) and O(n)

O(n) and O(1) D O(1) and O(n)
Is it possible to create a doubly linked list using only one pointer with every node.

Yes, possible by storing XOR of current B Yes, possible by storing XOR of current
node and next node node and previous node

Not Possible Yes, possible by storing XOR of
addresses of previous and next nodes



Given pointer to a node X in a singly linked list. Only one pointer is given, pointer to head
node is not given, can we delete the node X from given linked list?

Possible if X is not first node. Use Possible if size of linked list is odd
following two steps (a) Copy the data of B
next of X to X. (b) Delete next of X.

Possible if X is not last node. Use Possible if size of linked list is even
following two steps (a) Copy the data of

next of X to X. (b)Update the pointer of |D

node X to the node after the next node.

Delete next of X.

Which of the following is an application of XOR-linked lists?

Implementing stacks B Caching data structures

Memory-efficient linked list
Implementing queues representation



Consider the following function to traverse a linked list.
void traverse(struct Node *head)
{
while (head->next = NULL)
{
printf("%d ", head->data);
head = head->next;
}

}
Which of the following is FALSE about above function?

The function doesn't print the last node
The function is implemented incorrectly | B when the linked list is not empty
because it changes head

None of the Above

D The function may crash when the linked
list is empty

Let P be a singly linked list. Let Q be the pointer to an intermediate node x in the list.
What is the worst-case time complexity of the best known algorithm to delete the node Q
from the list?

O(1) B O(log2 n)

o(n) D O(log n)



N items are stored in a sorted doubly linked list. For a delete operation, a pointer is
provided to the record to be deleted. For a decrease-key operation, a pointer is provided
to the record on which the operation is to be performed. An algorithm performs the
following operations on the list in this order: ©(N) delete, O(log N) insert, O(log N) find,
and O(N) decrease-key What is the time complexity of all these operations put together?

O(N Log N) B O(N)

O(Log?N)
O(N? Log N)

The concatenation of two lists is to be performed in O(1) time. Which of the following
implementations of a list should be used?

circular doubly linked list B doubly linked list

singly linked list D array implementation of lists



Consider the following piece of 'C' code fragment that removes duplicates from an
ordered list of integers.

Node remove-duplicates(Node head, int j) {

Node t1, t2; j=0; t1 = head;

if (t1!=NULL) t2 = t1 —next;

else return head;

j=1;

if(t2 == NULL)

return head;

while t2 1= NULL) {

if (t1.val I= t2.val) — (S1){

()++ t1 -> next =t2; t1 = t2: ----—----- —(S2)}

t2 =12 —next; }

t1 —next = NULL;

return head; }

Assume the list contains n elements (n=2) in the following questions. a). How many times
is the comparison in statement S7 made? b). What is the minimum and the maximum
number of times statements marked S2 get executed? c). What is the significance of the
value in the integer pointed to by j when the function completes?

(a). n-1 times, since comparison is (a). n times, since comparison is pairwise
pairwise for n elements. for n elements.

(b). maximum : n-1 for all distinct (b). maximum : n-1 for all distinct
elements, minimum: 1 for all same B elements, minimum: O for all same
elements. elements.

(C). j keeps count of distinct nodes in the (C). j keeps count of distinct nodes in the
list. list.

(a). n-1 times, since comparison is None of the Above

pairwise for n elements.

(b). maximum : n-1 for all distinct
elements, minimum: O for all same D
elements.



10.

11.

12.

(C). j keeps count of distinct nodes in the
list.

Suppose there are two singly linked lists both of which intersect at some point and
become a single linked list. The head or start pointers of both the lists are known, but the
intersecting node and lengths of lists are not known. What is worst case time complexity
of optimal algorithm to find intersecting node from two intersecting linked lists?

©(nA2), where m>n and m, n are lengths
©(m+n), where m, n are lengths of given B of given lists
lists

©(min(n, m)), where m, n are lengths of
given lists D ©(n*m), where m, n are lengths of given
lists

S1: Anyone of the followings can be used to declare a node for a singly linked list.

If we use the first declaration, “struct node * nodePtr;” would be used to declare pointer
to a node.

If we use the second declaration, “NODEPTR nodePtr;” can be used to declare pointer to a
node.

/* First declaration / struct node { int data; struct node nextPtr; };

/* Second declaration / typedef struct node{ int data; NODEPTR nextPtr; } NODEPTR;

Statement S1 is FALSE B Statement S1 is TRUE

In a doubly linked list, the number of pointers affected for an insertion operation will be

can not say B 1



13.

Consider an implementation of unsorted single linked list. Suppose it has its
representation with a head and a tail pointer (i.e. pointers to the first and last nodes of
the linked list). Given the representation, which of the following operation can not be
implemented in O(1) time ?

Deletion of the front node of the linked B Deletion of the last node of the linked
list list.
Insertion at the end of the linked list D Insertion at the front of the linked list
Answer Key
1.d 2.d 3.¢C 4.d
5.a 6.cC 7.a 8.a
9.c 10. a 11.a 12.a



