Quizizz NAME :

CLASS :
DS UNIT-2 TEST-1

DATE :
10 Questions

What does the following function do for a given Linked List with first node as head?
void fun1(struct node* head) {

if(head == NULL)

return;

fun1(head->next);

printf("%d ", head->data); }

Prints all nodes of linked lists
Prints alternate nodes of Linked List

Prints alternate nodes in reverse order Prints all nodes of linked list in reverse
order

Which of the following points is/are true about Linked List data structure when it is

compared with array?

The size of array has to be pre-decided,
linked lists can change their size any B
time

Random access is not allowed in a typical D
implementation of Linked Lists

Arrays have better cache locality that can
make them better in terms of
performance

It is easy to insert and delete elements in
Linked List

ALL THE ABOVE

Consider the following function that takes reference to head of a Doubly Linked List as
parameter.
Assume that a node of doubly linked list has previous pointer as prev and next pointer as
next.
void fun(struct node **head_ref) {
struct node *temp = NULL;
struct node current = head_ref;
while (current != NULL) {
temp = current->prey;
current->prev = current->next;
current->next = temp;
current = current->prev; }
if(ttemp != NULL)
*head_ref = temp->prey; }
Assume that reference of head of following doubly linked list is passed to above function
1<->2<-->3<-->4<-->5<-->6,
What should be the modified linked list after the function call?

2<-->1<-->4<-->3<-->6<-->5 B 5<-->4<-->3 <> 2 <> 1 <-->6.

6<->5<->4<->3<-->2<->1 D 6<-->5<->4<-->3<->1<-->2

Which of the following sorting algorithms can be used to sort a random linked list with
minimum time complexity?

Merge Sort B Selection Sort

Quick Sort
Insertion Sort

The following function reverse() is supposed to reverse a singly linked list. There is one
line missing at the end of the function.
struct node {

int data;

struct node* next; };

/* head_ref is a double pointer which points to head (or start) pointer
of linked list */
static void reverse(struct node** head_ref) {
struct node* prev = NULL;
struct node* current = *head_ref;
struct node* next;
while (current = NULL) {
next = current->next;
current->next = prev,
prev = current;
current = next; }
/*ADD A STATEMENT HERE*/
}
What should be added in place of "/*ADD A STATEMENT HERE*/", so that the function
correctly reverses a linked list.

*head_ref = NULL;
*head_ref = next;

*head_ref = prev; D *head_ref = current;

What is the output of following function in which start is pointing to the first node of the
following linked list 1->2->3->4->5->6 7
void fun(struct node* start) {
if(start == NULL)
return;
printf("%d ", start->data);
if(start->next != NULL)
fun(start->next->next);
printf("%d ", start->data); }

1235 B 146641

135531
135135

The following C function takes a simply-linked list as input argument. It modifies the list
by moving the last element to the front of the list and returns the modified list. Some
part of the code is left blank. Choose the correct alternative to replace the blank line.
typedef struct node {

int value;

struct node *next; }Node;

Node move_to_front(Node head) {
Node p, q;
if (head == NULL: | | (head->next == NULL))
return head;
g = NULL; p = head;
while (p-> next I=NULL) {
q=p
p = p->next;
}
//FILL THE MISSING CODE HERE //
return head;

}

q = NULL; g->next = NULL,;
p->next = head; B head = p;

head = p; p->next = head;
head = p; g->next = NULL;
p->next = q; D p->next = head;

g->next = NULL; head = p;

In the worst case, the number of comparisons needed to search a singly linked list of
length n for a given element is

log(2*n)

n/2 D log(2*n)-1

Suppose each set is represented as a linked list with elements in arbitrary order. Which
of the operations among union, intersection, membership, cardinality will be the slowest?

cardinality B union, intersection

membership D union

10.

Consider the function f defined below.
struct item

{
int data;
struct item * next; };

int f(struct item *p) {
return (
(p == NULL) | | (p->next == NULL) || ((p->data <= p->next->data) && f(p->next))
)i
}

not all elements in the list have the same
data value. B the elements in the list are sorted in
non-increasing order of data value

None of the Above the elements in the list are sorted in
non-decreasing order of data value

Answer Key

1.d

9.b

2.d

6.d

10.d

7.d

