Code: CS3T3, IT3T3

II B. Tech - I Semester - Regular Examinations - January 2014

DATA STRUCTURES (Common for CSE, IT)

Duration: 3 hours	Marks: 5x14=70	
Answer any FIVE questions.	All questions carry equal marks	
1. a) Define different asympto	otic notations. 8 M	
b) What are the general rules for running time calculations? 6 M		
2. a) With a detailed description of algorithm convert the following infix expression into postfix expression.		
(p+q)*(r-s)/(t+u).	10 M	
b) Explain Circular queue	. 4 M	
B. Explain clearly about a singly linked list and Write the algorithms for the following with reference to a singly		
linked list	2 M	
a) To create a singly	y linked list 4 M	
b) To insert a node	at a given position. 4 M	
c) To delete a node	from a given position 4 M	

4.	Given two sparse matrices of m rows and n cols write routines to convert them into sparse representation as perform addition.	
5. a) Given the Inorder and Preorder traversals construct a Binary Tree:	
	Inorder: DBHEIAFCG Preorder: ABDEHICFG	8 M
b) Define	
	i) Complete binary tree	
	ii) Depth of a Binary tree	
	iii) Height of a binary tree	6 M
6. a	Construct an AVL tree with the given numbers: 50, 2	5, 10,
	5, 7, 3, 30, 20, 8, 15.	8 M
b)	Explain Single Rotation of AVL tree with Algorithm	. 6 M
7.	Explain different tree traversal methods of a graph w	ith
	algorithms by taking an example.	14 M
8.	Explain the algorithm for merge sort by taking the following example 85, 24,63,45,17,31,96,15	14 M

.

•

•