
V.Anit
R.Sai R
V.Keert
Y.Abig

BLOCKCHAIN - INTERNET OF THINGS (IoT)

I ntroduction to IoT and Blockchain

• The I nternet of Things (IoT) refers to the network of interconnected physical devices (sensors, machines, etc.) that can
collect and exchange data, enabling real-time monitoring and control of devices via the internet.

• Blockchain is a distributed ledger technology that records transactions in a secure, transparent, and immutable way.

Four Main Functions:

• Sensing - Performed by sensors to monitor environments.

• Reacting - Carried out by actuators to control external environments.

• Collecting - Data collection via various sensors.

• Communicating - Done by chips for network connectivity.
Components Involved: Sensors, actuators, chips, and network connectivity tools.

The Blockchain Based I oT Model:
• Physical Objects Layer : These physical objects generate data through sensors and smart devices.

• Device L ayer : Contains IoT components like sensors, actuators, and smart devices that collect data from the physical
environment.

• Network L ayer : Responsible for transmitting data between IoT devices and the blockchain network. Ensures secure and
reliable data transmission.

• Management L ayer: Handles data processing and analytics for IoT devices. Uses AI,
machine learning, and big data techniques to extract meaningful insights.

• Application L ayer : Ensures that IoT-generated data and blockchain transactions
support real-world applications.

• Blockchain L ayer : Integrates blockchain technology to enhance security,
decentralization, and automation in IoT systems.

I oT Blockchain Experiment
Objective: Connect Raspberry Pi to Ethereum blockchain.

• Hardware Used: Raspberry Pi 3, LED, Resistors, Breadboard, Jumper wires.

• Software Used: Raspbian OS, Geth (Go Ethereum client), Web3.js.

• Raspberry Pi :A Raspberry Pi is a low-cost, credit-card-sized computer
used for a wide range of projects. It is popular building IoT applications
due to its affordability and flexibility. For this experiment, we use
Raspberry Pi 3 Model B.

• GPIO (General Purpose I nput/Output) pins allow for interaction with
external devices like sensors and actuators, making it a powerful tool
for experimentation.

1 Low-Cost Computer

Affordable and versatile for various
projects.

2 GPIO Pins

Enables interaction with external
sensors and actuators.

3 Educational Tool

Popular for learning robotics, IoT, and blockchain.

Setting Up the R aspberry Pi:
• Install NOOBS (New Out of Box Software), a simple operating system installation manager for Raspberry Pi, providing a

selection of OS options, including Raspbian.
• Install Raspbian OS using NOOBS: This can be downloaded and installed from the link : https://www.

raspberrypi.org/downloads/noobs/.

• Confirm the architecture of the Raspberry Pi by running the command uname -a in the terminal. For this experiment,
the architecture will typically be ARMv7. This helps identify the correct version of Geth to download.

Install NOOBS or Raspbian

Choose an operating system for the Raspberry Pi.

Check Architecture

Confirm the architecture using uname -a.

Download Geth

Get the appropriate ARM binary for your Raspberry Pi.

I nstalling Go Ethereum Client (Geth):
• Geth is a command-line client for running Ethereum nodes.

• Use wget to download the appropriate ARM binary for your Raspberry Pi. After downloading the Geth extract it with:

This creates a directory named :
• Move the Geth binary to /usr/bin so it can be used from anywhere: sudo mv geth-linux-arm7-1.5.6-2a609af5/geth /usr/bin/geth.

1 Download Geth
Use wget to download the ARM binary.

2 Extract Geth

Extract the tarball with tar -zxvf.

3 Install Geth

Copy the binary to /usr/bin to make it globally executable.

geth-linux-ar m7-1.5.6-2a609af5.

$ tar -zxvf geth-linux-ar m7-1.5.6-2a609af5.tar .gz.

Genesis Block and Node Setup for Blockchain-I oT :
Genesis Block :

• The Genesis Block is the first block in a blockchain network.

• It serves as the foundation for all subsequent blocks.

• In an Ethereum-based private blockchain, a custom genesis.json
file is required to initialize the network.

1. Creating a Genesis Block :

• A genesis.json file must be configured to define network-specific
parameters such as difficulty, gas limit, and chain ID.

Initializing the Genesis Block:
• Once the genesis.json file is created, it must be initialized on each

node participating in the private Ethereum network.

• The following command used to initialize the genesis block
on a Raspberry Pi or any other node is : $./geth init
genesis.json.

2. Connecting Nodes in a Private Blockchain:
• After initializing the genesis block, nodes must connect to form a pr ivate blockchain network.

• Adding Peers for Synchronization:Nodes communicate through static-nodes.json, which stores the enode addresses
of peer nodes.

• To retrieve a node’s enode ID, run:

> admin.nodeInfo

• The static-nodes.json file should be updated with the enode information:
json

[" enode://<peer-node-enode-id>@<peer-node-ip>:30303"]

3. Fir st Node Setup : The first node serves as the main blockchain participant. To start the first node, use:

$ geth --datadir .ethereum/pr ivatenet/ --networkid 786 --maxpeers 5 --rpc \ --rpcapi web3,eth,debug,personal,net –rpcport
9001 --rpccorsdomain " *" \ --port 30301 --identity " drequinox"

• networkid: Matches the network ID from genesis.json.

• rpc & rpcapi: Enables Remote Procedure Call (RPC) with
necessary APIs.

• identity: Assigns a unique name to the node.

4. Raspber ry Pi Node Setup :

$./geth --networkid 786 --maxpeers 5 --rpc --rpcapi \ web3,eth,debug,personal,net --rpccorsdomain " *" --port 30302 -
-identity " raspberry"

When " Block synchronization started" appears in the output, the node has successfully connected to its peer.

• Once the first node starts successfully, it should be kept
running for other nodes to connect.

Ver ifying Network Synchr onization :

• Attach the Geth console to check connected peers:

To connect Raspberry Pi to the blockchain network, run:

$ geth attach > admin.peers

• To attach from the first node:
$ geth attach ipc:.ethereum/pr ivatenet/geth.ipc

These steps confirm that Raspberry Pi and the first node are proper ly connected.

5. Installing Node.js and Dependencies : For smar t contr act execution and G PIO control, Node.js and additional libraries are
required.

Step 1: Install Node.js on Raspberry Pi:

$ cur l -sL https://deb.nodesource.com/setup_7.x |
sudo -E bash - $ sudo apt-get install nodejs

Verify the installation:

$ node -v $ npm -v
Recommended versions: Node.js v7.4.0 and npm 4.0.5.

Step 2: Install W eb3.js for Blockchain I nteraction

$ npm install web3@0.20.2
• Ensures compatibility with the Ethereum network.

Step 3: Install Onoff for GPI O Control

$ npm install onoff

• Enables Raspberry Pi to interact with
connected IoT devices.

Final Output – L ED Control
• The LED will turn on when the smart contract event is triggered, providing a visual indication of the IoT device being

controlled by the blockchain event.

• The console will display L ED On when the event is successfully triggered.

Smart Contract E vent
1

L ED Turns On2

Console Output: L E D On
3

Circuit Setup
• The circuit setup involves connecting an L ED to the Raspberry Pi GPIO pins.
• The positive leg (long leg) of the LED is connected to GPIO pin 21, while the

negative leg (short leg) is connected to a resistor, which is then grounded (GND).
• A ribbon cable is used to interface with the GPIO connector on the Raspberry Pi,

ensuring a stable connection for the IoT application.
Smart Contract Development :

Application Binary I nterface (ABI):ABI generated by the Remix IDE enables interaction
with the deployed smart contract.

• A Solidity-based smart contract is developed to control the L ED. The
contract contains a function that takes an input value and tr iggers an event if
the expected value matches the input.

• The smart contract source code is shown as follows :

Connecting R aspberry Pi to a Private Blockchain :

Two methods exist for the Raspberry Pi to interact with the private blockchain using Web3:
1. Running a L ocal Geth Client – The Raspberry Pi runs a local Geth client to maintain its ledger.

2. Connecting to an External Node – Due to resource constraints, the Pi connects to an external blockchain
node via a Web3 provider over RPC.

Deploying the Smart Contract : The contract is deployed on a private Ethereum network using Truffle:

$ truffle migrate

Once deployed, the contract’s address must be updated in the JavaScript client.

JavaScr ipt Client to Control I oT Device : A JavaScript program listens
for
smart contract events and triggers the LED using the Raspberry Pi GPIO

library. The code is as follows:

Running the Application :

The JavaScript client is executed using Node.js:

$ node index.js

Once running, the smart contract can be triggered via the Truffle console:

truffle(development)> getR ent(10)

• If the transaction is successful, the event is emitted, and the Raspberry Pi turns on the LED.

Thank Y ou!

