
Deploying Smart

Contracts in Blockchain

Overview
Introduction 01
Blockchain 02
Ethereum 03
Bitcoin 04
Platforms 05
Languages 06
DAO 07
Security 08

Introduction

• A smart contract is a self-executing contract with the terms of the agreement directly written into
lines of code.

• It automatically executes, controls, or documents legally relevant events and actions according to
the terms of the contract.

• Blockchain’s decentralized and secure nature makes it ideal for deploying smart contracts.
• These contracts are immutable and transparent, ensuring trust between parties without the need

for intermediaries.
• Blockchain enables the automation of processes through smart contracts, reducing the need for

manual intervention.
• Once conditions are met, the contract automatically executes the agreed-upon actions, increasing

efficiency and reducing delays or human errors.
• By removing intermediaries (such as banks or lawyers), blockchain-based smart contracts can

significantly lower transaction fees and administrative costs. This makes it a more affordable
alternative for conducting business and executing agreements.

What is a Smart Contract?

Why Blockchain?

Blockchain
Decentralization

• Blockchain operates without a central authority,
distributing control across a network of nodes.

• Participants interact directly in a peer-to-peer network,
removing intermediaries and enabling trustless
transactions.

• Trust in the system is maintained through cryptography
and consensus mechanisms, not reliance on a central
entity.

 Consensus
• Consensus ensures that all nodes in the network agree

on the validity of transactions and the current state of
the blockchain.

• Proof of Work (PoW) involves miners solving complex
mathematical problems to validate and add new blocks
to the blockchain.

• Proof of Stake (PoS) selects validators to add blocks
based on the amount of cryptocurrency.

Ethereum
• Ethereum is an open-source, decentralized blockchain

platform designed for building and deploying smart
contracts and decentralized applications (DApps).

• It provides a global computing environment where
developers can create programmable, trustless
applications.

Blockchain Virtual Machine Smart Contracts

enables peer-to-peer interactions
without the need for

intermediaries. It operates on a
decentralized network, allowing

secure and transparent execution
of smart contracts. Unlike Bitcoin,
Ethereum's primary purpose is to

support decentralized applications
and smart contracts.

The EVM is the environment that
executes smart contracts and

DApps on Ethereum. It ensures
that smart contracts are

processed consistently across all
nodes in the network,

maintaining the integrity of
execution through its

decentralized consensus.

Smart contracts on Ethereum are
self-executing agreements where
the terms are written directly into
the code. They allow for automatic

execution of transactions when
predefined conditions are met,

providing security, efficiency, and
transparency without

intermediaries.

• Ethereum uses its native cryptocurrency, Ether (ETH), to
power transactions and contract execution within its
ecosystem.

Concepts of Bitcoin

The Bitcoin blockchain is a distributed
ledger that records all transactions in
a secure and transparent manner.
Each transaction is grouped into
blocks, which are then added to a
chain, forming a permanent and
immutable history of transactions.

Bitcoin relies on mining, where miners
solve complex cryptographic puzzles
to validate transactions and add them
to the blockchain. This process, known
as Proof-of-Work (PoW), ensures
security and integrity within the
network.

Decentralized Digital Currency Bitcoin’s Blockchain Mining and Proof-of-Work (PoW)

Bitcoin is a decentralized digital
currency that operates on a peer-to-
peer network, allowing users to send
and receive transactions without the
need for intermediaries like banks. It
uses blockchain technology to record
and verify transactions.

Platforms
• Blockchain platforms that support smart contracts provide decentralized

environments where self-executing contracts can be deployed and run
autonomously.

It provides the Ethereum Virtual
Machine (EVM), which processes

contract execution across the
network. Developers use Solidity
to write smart contracts, which

are then deployed and run
autonomously on the blockchain.

Ethereum

It allows smart contracts, called
chain code, to be deployed in a

permissioned blockchain
environment. It supports

multiple programming languages
like Go, Java, and JavaScript and
allows for fine-grained access

control.

Hyperledger

 Its smart contracts are
lightweight and primarily handle

payment-related functions. Stellar
uses a simpler scripting language
to enable quick and cost-effective
execution of basic contract logic

related to asset exchange and
payment settlement.

Stellar

Languages
Smart contracts are executed by
blockchain platforms through various
programming languages. These
languages are designed to ensure
determinism, security, and efficiency in
the decentralized environment of a
blockchain.

Primary language for Ethereum smart contracts. It is a
contract-oriented, high-level language resembling
JavaScript and C++.
Features:
• Used for decentralized apps (DApps).
• Handles complex contract logic like token creation.

Solidity

Smart contracts in Hyperledger Fabric, written in Go,
Java, or JavaScript, used for private enterprise
blockchains.
Features:
• Focused on business processes.
• Works in permissioned blockchains.

Chain

code

A Python-based alternative to Solidity, focused on
security and simplicity for Ethereum smart contracts.
Features:
• Emphasizes readability and security.
• Fewer features to reduce complexity and risks.

Vyper

Used for smart contracts on Solana. Known for high
performance, memory safety, and concurrency.
Features:
• Ensures scalability and security.
• Ideal for high-throughput applications.

 Rust

DAO (Decentralized Autonomous Organization)

DAOs are designed to operate without a central authority.
Decision-making is carried out through voting mechanisms,
with members participating based on their token holdings or
other governance models.

Structure & Governance

Purpose & Functionality

Token-based voting: Members vote on proposals based on the
number of tokens they hold.
Transparent: All decisions and activities are visible on the
blockchain, ensuring accountability.

DAOs serve various functions, from managing investment funds
to overseeing decentralized applications (DApps) or collective
ventures. They operate autonomously, executing smart
contract-coded rules and decisions.

Autonomous Execution: Smart contracts automatically execute
decisions.
Open to All: Anyone can participate in the DAO's governance by
acquiring tokens.

DAO Security Concerns

DAOs rely on smart contracts to execute decisions
autonomously. Security flaws in the DAO’s code
can be exploited to manipulate votes or steal funds,
as seen in the 2016 DAO Hack.

To prevent security breaches, developers and
organizations must implement best practices
in coding, testing, and monitoring.

Mitigation Strategies

Security in Smart Contracts and DAOs

Smart Contract Vulnerabilities

Smart contracts are only as secure as the code
that powers them. Bugs or poorly written code
can lead to security risks, such as reentrancy
attacks, integer overflows, or logic flaws.

Risks

Reentrancy Attack: Occurs when a contract
calls another contract before finishing its own
execution, allowing attackers to withdraw funds
multiple times.

Risks

Governance Attacks: Attackers may control
governance votes or manipulate the decision-
making process.

Risks

Code Audits: Regular, in-depth reviews of code
by third-party experts to identify vulnerabilities.

THANK YOU!

