ORACLES

BLOCKCHAIN ORACLE

Real world Intermediary Blockchain-based
application

What are
oracles

Topics Covered In Presentation

How Oracles

: Work

)

Types Of
Oracles

Future Of
Oracles

Example
&
Conclusion

How to Integrate
an Oracle in
Smart Contracts

Use Cases Of
—

Oracles

Challenges In
Oracles

Oracle?

Definition: An oracle is an interface that delivers external, What ISd 27 Gonnecting Each Other

real-world data to smart contracts. Blockchain Oracle
Purpose: It bridges the gap between the isolated blockchain 0rac|e?
Blockchain Network

environment and the external world.
Data Examples: Stock prices, weather reports, 0T device ¢

data, flight delays, etc.

Data Providers

Oracles are entities. They supply
external data to blockchains. This data
can be real-world events. It could also
be price feeds or weather
information.

Bridge to Reality

Blockchains are isolated systems.
Oracles act as bridges. They connect
them to the outside world. They
enable smart contracts to interact
with external data.

Essential for Smart

Contracts
Many smart contracts require external

data. Oracles make this data available.
This allows contracts to execute based
on real-world conditions.

How Oracles Work

1. Data Flow: Oracles fetch external data and send it to smart contracts.

Push vs. Pull:

1.
Push: Oracle sends data to smart contract.
Pull: Smart contract requests data from the oracle.

1. Trust: Oracles ensure data is authentic and can be signed digitally to prove its source.
Example Case: Weather-Based Insurance Smart Contract

1. Scenario: A farmer takes out an insurance policy that pays out if it doesn't rain for a certain
number of days.

2. Push: An oracle continuously monitors weather data. If the conditions (no rain) are met, the oracle
sends the data directly to the smart contract, triggering the payout.

3. Pull: The smart contract, at a specified time, requests weather data from the oracle to check if the
payout conditions are met.

4. Trust: The oracle provides the weather data and signs it digitally, proving it came from a trusted

source.

How to Integrate an Oracle in Smart Contracts

Step 1: Deploy a smart contract that needs
external data. Designing contract program:

pragma solidity ~©.8.8;

Step 2: Connect to an Oracle service (e.g.,
Cha|nl|nk) interface Chainlinkoffacle {

function reguestData(bytes32 queryId, address _callbackContract, bytess

Step 3: Set up a request-response Ffunction fulfillData(bytes32 _requestliId, bytes memor y _data) externals;
mechanism.

contract MyContract {

Step 4: Implement data validation to prevent
manipulation.

ChainlinkOracle private oracle:;

Py —— function requestPriceData() public {
. . . bytes32 queryId = oracle.requestData(™latest ETH price™, address(thi
function requestPriceData() public {
bytes32 queryId = oracle.requestData("latest ETH price”, address(this), ¥
b
function fulfillPriceData(bytes32 _requestId. bytes memor v _data) publi

#4 Parse and wvalidate received price data

function fulfillPriceData(bytes32 _requestId, bytes memory _data) public {

#4F uUpdate contract state with walidated data
/f Parse and validate _data

Types of Oracles:

On-Chain Oracles

On-chain oracles are smart

on the blockchain. They then transmit it to the
retrieve data from within the

blockchain network. entities.

Centralized Oracles

On-Chain and Off-Chain

Off-Chain Oracles

Off-chain oracles collect data
contracts. They reside directly from external sources. They

blockchain. These are external

Centralized oracles are controlled by a single entity. They are a sing
source of truth for data. However, they can be a point of failure.

CHAIMN

OFF

CHAIMN

oM

External Services External Services
Data) Decentralized Decentralized Decentralized " Data
Providers \ Oracle Network Qracle Network Oracle Network / Providers
I\\\I J;r'fl
Ec 0 N i Em»
isting Off-Chain Cress-Chain Off chain ing
Backends '_; A :_" Backends
! \\
/ ‘\\
Vi i i A \

Payment Y A Payment
Systems Systems
Y r/ \'r
Smart St Smart
Blockchains and Confract Contract Confrant
Smart Contracts o " "

Blockehain 1 Blockehain #2

Challenges in Oracle

Design and

Implementation

9

Security Risks

Oracles can be
vulnerable to attacks.
Data manipulation is
a major concern. This
compromises smart
contract integrity.

0
O

Data Accuracy

Ensuring data
accuracy is critical.
Oracles must provide
reliable information.
This avoids incorrect
contract execution.

i

Centralized oracles create
single points of failure.
This undermines
blockchain's decentralized
nature. Decentralization
enhances trust.

2Ny
(\o 75'

Solutions to Oracle Problems

Decentralized Oracles — Use multiple sources to validate data.
Reputation Systems — Rank Oracles based on accuracy history.
Cryptographic Proofs — Mechanisms like TLSNotary verify data integrity.

Economic Incentives — Oracles stake tokens and get penalized for incorrect
data.

Use Cases for Oracles in -.
Blockchain Applications

N -

Bank Payments

Supply Chain Management fi 1 P v
Boomberg , payrs @0

1 Oracles track goods. They verify product origin. This ensures 9 P
transparency. It improves supply chain efficiency. MarketDoa % : : gl Retpamens

Decentralized Finance (DeFi)

2 Oracles provide price feeds. These are used in lending. They're also &H m.X) =L 9 _ Y
used in trading platforms. They enable accurate financial WV &
transactions. A A

All Web APIs I 9 [9 Other Blockchains
Insurance a ¥
3 | | | ” &
Oracles verify event occurrences. This automates insurance I
payouts. It increases efficiency. It also reduces fraud.
Events Data Backend Systems

The Future of Oracles in the Blockchain
Ecosystem

Improved Security Greater Adoption

Wider Integration Enhanced Scalability

Example For Oracles In Block
Chaln

A farmer buys an insurance policy stored as a smart tra€t on“the blockchain.
. The smart contract needs real-time weather data to decide if a payout is
necessary.

. A blockchain Oracle fetches weather data from an external weather API.

If rainfall is below 10mm for a week, the Oracle sends this data to the smart
contract.

. The smart contract verifies the data and automatically releases the payout to the
farmer.

. This process ensures transparency, automation, and trust without manual claims.
. The Oracle acts as a bridge between real-world data and the blockchain, enabling
smart contracts to function autonomously.

Oracles play a crucial role in bridging blockchain smart contracts with real-world
data. They enable automation, trust, and accuracy by securely fetching external
information like weather, stock prices, or IoT data. Decentralized Oracles enhance
security and prevent data manipulation, ensuring reliable execution of smart
contracts. However, trust issues in centralized Oracles highlight the need for
verification mechanisms. With Oracles, blockchain technology can be integrated
into finance, insurance, supply chains, and beyond. Their continued
development will drive real-world blockchain adoption.

