SMART CONTRACTS DEFINITION RICARDIAN CONTRACTS

OVERVIEW OF THE PRESENTATION

- ➤ Introduction to Smart Contracts
- ➤ Key Features of Smart Contracts
- Benefits & Real-World Applications

OVERVIEW OF THE PRESENTATION

- > Introduction to Ricardian Contracts
- Key Properties of Ricardian Contracts
- ➤ Implementation Process of Ricardian Contracts
- ➤ Bowtie Model Linking Law & Accounting
- > Ricardian Contracts vs. Smart Contracts

Introduction to Smart Contracts

- A smart contract is a secure and unstoppable computer program that represents an agreement and executes automatically.
- ➤ It is written in a machine-readable language and encodes business logic between parties.
- Execution is **triggered by predefined conditions**, eliminating the need for intermediaries.

1. Automatic Execution:

- Smart contracts run autonomously and execute predefined actions without requiring manual intervention.
- Once the specified conditions are met (e.g., payment received, verification completed), the contract executes automatically.

2. Self-Enforcing:

- Unlike traditional contracts, which rely on legal enforcement, smart contracts are self-enforcing.
- The code ensures that the agreement is fulfilled exactly as programmed, removing the need for intermediaries.

3. Trustless Transactions:

- Participants do not need to trust each other because execution is guaranteed by blockchain consensus mechanisms.
- ➤ The contract removes the risk of manipulation, fraud, or breaches by ensuring **decentralized enforcement**.

4. Transparency & Auditability:

- All transactions and contract terms are recorded on a public ledger, allowing anyone to verify the contract's execution.
- > This reduces disputes, builds trust, and ensures accountability in financial and business agreements.

5. Interoperability & Integration:

- All transactions and contract terms are recorded on a public ledger, allowing anyone to verify the contract's execution.
- > This reduces disputes, builds trust, and ensures accountability in financial and business agreements.

Benefits & Real-World Applications

- •Efficiency & Speed Automates processes, reducing time delays and errors.
- •Cost Reduction Eliminates intermediaries, reducing transaction costs.
- •Decentralization & Fairness Ensures fair execution without external influence.
- •Applications Used in finance (DeFi), supply chains, insurance, legal agreements, and more.

Introduction to Ricardian Contracts

Origin & Background:

- Proposed by lan Grigg in the late 1990s in the paper Financial Cryptography in 7 Layers.
- > Initially used in **Ricardo**, a bond trading and payment system.
- Aims to create contracts understandable by both courts of law and computer systems.

Introduction to Ricardian Contracts

Purpose:

- >Addresses the challenge of issuing value over the internet.
- Ensures contracts are **legally binding** while remaining **machine-readable**.
- ➤ Identifies the **issuer and captures all contractual terms** in a structured document.

Key Properties of Ricardian Contracts

- Legally Recognizable Designed to be readable and enforceable by courts.
- ➤ Machine-Readable Contains structured data tags for software processing.
- ➤ Digitally Signed Signed by the issuer's private key, ensuring authenticity.

Key Properties of Ricardian Contracts

- ➤ Unique & Secure Identifier Uses hashing to create a distinct fingerprint of the contract.
- ➤ Issuer & Holder Roles Clearly defines who issues the contract and who holds the rights.
- ➤Integration with Accounting Systems Helps businesses track transactions securely.

Implementation Process of Ricardian Contracts

- >A single document contains:
- Legal prose (human-readable)
- ➤ Machine-readable tags (software-parsable)
- >The contract document is digitally signed by the issuer.
- The document is **hashed using a message digest function**, generating a unique **identifier hash**.
- This hash is used to **link every transaction** performed under the contract.

Bowtie Model – Linking Law & Accounting

World of Law (Left Side)

- >The legal contract document originates here.
- >Written in legal prose with machine-readable elements.
- >The document is hashed to generate an identifier.

World of Accountancy (Right Side)

- > The identifier hash is used in transactions as a reference.
- > Represents trading, accounting, and financial systems.
- Ensures that every transaction is securely linked to the original contract.

Bowtie Model – Linking Law & Accounting

Genesis Transaction

- > The first transaction includes the contract's identifier hash.
- All subsequent transactions use this hash, creating a secure and verifiable link.

Bowtie Model – Linking Law & Accounting

Introduction to Ricardian Contracts vs. Smart Contracts

- > Smart Contracts focus on execution and automation without legal documentation.
- Ricardian Contracts emphasize semantic richness, combining legal prose with machine-readable data.
- Introduced by lan Grigg, Ricardian contracts aim to be both legally binding and computer-readable.

Key Differences Between Ricardian and Smart Contracts

Feature	Ricardian Contract	Smart Contract
Definition	A digitally signed legal document that is readable by both humans and machines.	A self-executing program that runs on a blockchain to automate transactions.
Purpose	Acts as a legally enforceable agreement that can be referenced by smart contracts.	Automates transactions based on predefined conditions.
Readability	Human-readable (plain legal text) + machine- readable (hash & digital signature).	Only machine-readable (written in code like Solidity, Rust, etc.).
Execution	Not self-executing; it requires external validation and enforcement.	Self-executing when conditions are met (trustless automation).
Legally Binding?	Yes, because it contains legally enforceable terms.	No, unless supported by jurisdictional law.
Blockchain Integration	Stored as a cryptographic hash on a blockchain.	Runs entirely on a blockchain as executable code.
Modification	Can be updated if needed (versioning possible).	Immutable once deployed.

Semantics in Contracts – Operational vs. Denotational

Operational Semantics

- Defines how a contract executes step by step in a computational system.
- Ensures that the contract runs correctly, following predefined rules.
- Critical for smart contracts, where automated execution is essential.
- Used in blockchain environments where transactions must be deterministic and predictable.

Denotational Semantics (Real-World Meaning Focused)

- Describes what a contract means in the legal and business context.
- Ensures that contract terms are understandable to humans, including courts and regulatory bodies.
- > Helps in bridging the gap between legal agreements and automated execution.
- Found in **Ricardian contracts**, which encode both legal prose and machine-readable elements.

Ricardian Contracts - Legal Semantics & Human Readability

- Designed to be legally enforceable and understandable by courts.
- Contain natural language text along with machine-readable elements.
- Help in compliance, legal documentation, and regulatory acceptance.
- Used in financial agreements, legal documents, and business contracts.

Smart Contracts – Performance-Oriented Execution

- Fully automated, executing actions based on predefined conditions.
- > Do not require human intervention or third-party enforcement.
- > Immutable once deployed, ensuring trustless execution on blockchain networks.
- Used in decentralized finance (DeFi), automated transactions, and self-executing contracts.

THANK YOU!