Overview and Etherium Network

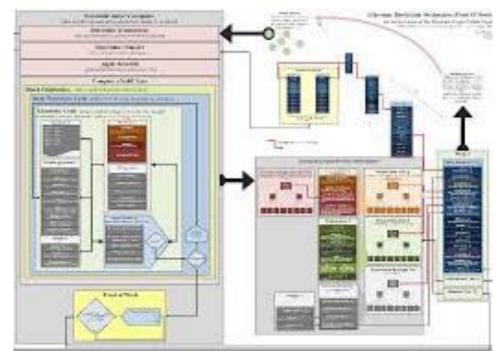
Introduction to Etherium

• Vitalik Buterin conceptualized Ethereum in November 2013, introducing a Turing-complete language to enable smart contracts and decentralized applications on the blockchain.

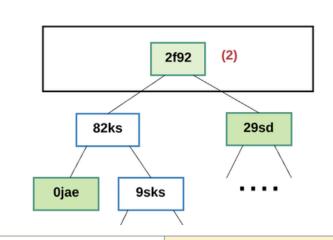
- Designed for smart contracts and decentralized applications (DApps).
- Unlike Bitcoin, Ethereum supports a Turing-complete scripting language.
- The **first version of Ethereum**, called Olympic, was released in May, 2015


The Etherium Yellow Paper

- Written by **Dr. Gavin Wood**, co-founder of Ethereum & Parity.
- It provides a formal definition of the Ethereum protocol and serves as a guide for implementing Ethereum clients.
- Developers can follow its rules to build compliant clients.
- It is a highly technical document requiring expertise.
- Understanding mathematical notations is necessary.
- Ethereum Yellow Paper

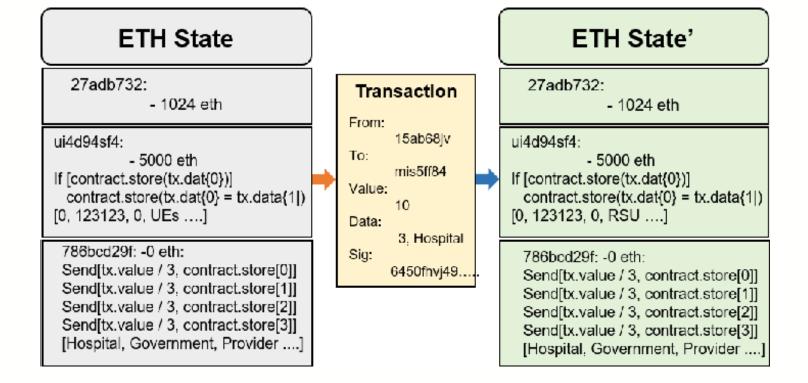

s we may define a world-state collapse function

$$L_S(\boldsymbol{\sigma}) \equiv \{p(a) : \boldsymbol{\sigma}[a] \neq \varnothing\}$$


 $p(a) \equiv \left(\text{KEC}(a), \text{RLP}\left((\boldsymbol{\sigma}[a]_{\text{n}}, \boldsymbol{\sigma}[a]_{\text{b}}, \boldsymbol{\sigma}[a]_{\text{s}}, \boldsymbol{\sigma}[a]_{\text{c}} \right) \right)$ s function, L_S , is used alongside the trie function a short identity (hash) of the world state:

- The Yellow Paper can be difficult to read. It requires knowledge of algebra and mathematical notations.
- It provides a complete formal specification. Developers can use it to create fully compliant Ethereum clients.
- Understanding symbols makes reading easier.Knowing their meanings helps in grasping key concepts.
- The paper defines Ethereum's core logic. It explains how transactions and state changes work.
- It serves as a technical guide for developers.

Whitepapers vs Yellowpapers


Useful Mathematical symbols

Symbol	Meaning	Symbol	Meaning
≡	Is defined as	≤	Less than or equal to
=	Is equal to	σ	Sigma, World state
≠	Is not equal to	μ	Mu, Machine state
	Length of	Υ	Upsilon, Ethereum state transition function
€	Is an element of	П	Block level state transition function
∉	Is not an element of		Sequence concatenation
٧	For all	3	There exists
U	Union	Λ	Contract creation function
Λ	Logical AND	Δ	Increment
:	Such that	[]	Floor, lowest element
{}	Set	[]	Ceiling, highest element
()	Function of tuple		No of bytes
[]	Array indexing	⊕	Exclusive OR
V	Logical OR	(a ,b)	Real numbers >= a and < b
>	Is greater than	Ø	Empty set, null
+	Addition		

- Mathematical symbols define Ethereum's logic.
 These symbols represent key functions, states, and operations.
- Understanding symbols helps in protocol implementation.
 Developers can use them to correctly interpret Ethereum's rules.

Etherium Blockchain

- Ethereum operates as a transaction-based state machine, as defined in the Ethereum yellow paper by Dr. Gavin Wood.
- A genesis state transforms into a final state by executing transactions incrementally.
- The Ethereum state transition function ensures that executed transactions lead to an undisputed final state.
- Mining plays a crucial role in validating transactions and facilitating state transitions.
- The Ethereum world state stores the global blockchain state, ensuring consistency across the network.

State transition function

Bird's eye view

Tap to copy this address. Share it with the sender via email or text.

OxeFc7aEF5150836955e9CEa8Bc360D57925e850..

Ethereum Transactions – User Perspective

- Ethereum transactions involve sending and receiving funds between users using Ethereum clients.
- A user can request funds by sharing their Ethereum address, often via a QR code.
- The sender can scan the QR code or manually enter the recipient's address to transfer Ether.
- Transactions can be initiated through wallets like Jaxx Wallet (https://jaxx.io) for seamless transfers.
- Requests and transactions can be shared via email, text, or other communication methods.

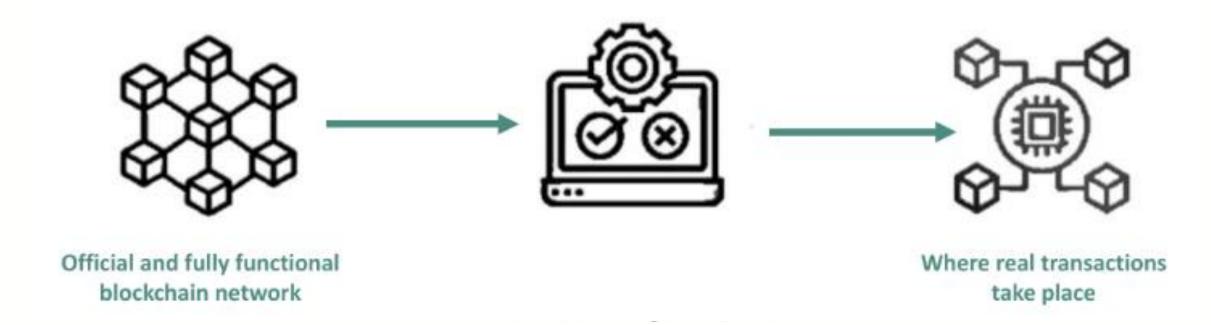
Bird's eye view

- The sender scans the QR code or copies the recipient's Ethereum address into their wallet software.
- The sender enters the amount and the destination address before confirming the transaction.
- Wallets like Jaxx (used in this example) facilitate Ethereum transactions.
- Multiple wallet applications are available on the iOS App Store, Android Play Store, and online.
- The transaction is first broadcasted to the Ethereum network and digitally signed by the sender. This signature proves ownership of the Ether and ensures transaction authenticity.

Bird's eye view

- Miners pick up the transaction for verification and include it in a block. Until a miner confirms it, the transaction remains unconfirmed in the network.
- The Proof of Work (PoW) process begins, where miners repeatedly hash the block with a nonce. This computational process ensures security and prevents fraudulent transactions.
- Once a miner solves the PoW puzzle, the block is broadcasted to the network. Other nodes verify the block and ensure that all transactions follow Ethereum's consensus rules.
- If the block is successfully verified, it is added to the blockchain. The recipient then receives the Ether, and the miners are rewarded for their efforts.
- A transaction hash (TxHash) is generated, which acts as a unique ID. This hash can be used to track and validate the transaction across the Ethereum blockchain.

Etherium Network


...

• The Ethereum network is a peer-to-peer system, where nodes work together to maintain the blockchain and ensure consensus. Different networks exist based on requirements and usage.

Types of Ethereum Networks

• **Mainnet**: The live Ethereum blockchain where real transactions occur. The latest version is Byzantium (Metropolis), and its Chain ID is 1. Users can explore blocks using Etherscan (https://etherscan.io).

Meaning Of Mainnet

Etherium Network

- **Testnet (Ropsten)**: A test environment for smart contracts and DApps before deploying them on the mainnet. Other testnets like Kovan and Rinkeby were merged into Ropsten for improved testing.
- **Private Net**: A custom Ethereum network created by defining a new genesis block. It is used for private blockchains where access is restricted to selected entities.
- **Network Identification**: Each Ethereum network has a unique Chain ID (e.g., Mainnet = 1, Ropsten = 3, Kovan = 42). These IDs help Ethereum clients differentiate between networks

Open to Queries

Thank you