
7/31/2023

1

UNIT-4

• More powerful LR parsers: Canonical LR(1)
items - Constructing LR(1) Set of Items –
Canonical LR(1) Parsing Tables - Constructing
LALR Parsing tables



7/31/2023

2

• To remove shift reduce conflicts in the SLR
parsing table, we are going for another
alternative and most expensive and most
efficient method is called CLR.

• It works on very large class of grammars

CLR
• The CLR parser stands for canonical LR parser.
• It is a more powerful LR parser.
• It makes use of look ahead symbols.
• This method uses a large set of items called LR(1)

items.
• The main difference between LR(0) and LR(1)

items is that, in LR(1) items, it is possible to carry
more information in a state, which will rule out
useless reduction states.

• This extra information is incorporated into the
state by the look ahead symbol.



7/31/2023

3

• The general syntax becomes [A->∝.B, a ]

• where A->∝.B is the production and a is a 
terminal or right end marker $

• LR(1) items=LR(0) items + look ahead

• CASE 1 –
A->∝.BC, a [0th production]
B->.D [1st production]

After B There is C, So FIRST(C) is look ahead symbol for 1st

production. For Ex. If FIRST(C)={d} then
B->.D, d

• CASE 2 –
A->∝.B, a
B->.D, a 

Here, we can see there’s nothing after B. So the look ahead of 
0th production will be the look ahead of 1st production.



7/31/2023

4

• CASE 3 –
Assume a production A->a|b

A->a,$ [0th production] 
A->b,$ [1st production]

Here, the 1st production is a part of the
previous production, so the look ahead will be
the same as that of its previous production.

Steps for constructing CLR parsing table 

Writing augmented grammar
LR(1) collection of items to be found
Defining 2 functions: goto[list of terminals] and

action[list of non-terminals] in the CLR parsing
table



7/31/2023

5

Construct a CLR parsing table for the given context-
free grammar
S-->AA 
A-->aA|b

STEP 1 – Find augmented grammar
• The augmented grammar of the given grammar 

is:-
S'-->.S ,$ [0th production] 
S-->.AA ,$ [1st production] 
A-->.aA ,a|b [2nd production] 
A-->.b ,a|b [3rd production]

STEP 2



7/31/2023

6

STEP 3



7/31/2023

7



7/31/2023

8

LALR

• Once we make a CLR parsing table, we can easily make 
a LALR parsing table from it.

• In the step2 diagram, we can see that
• I3 and I6 are similar except their lookaheads.
• I4 and I7 are similar except their lookaheads.
• I8 and I9 are similar except their lookaheads.
• In LALR parsing table construction , we merge these 

similar states.
• Wherever there is 3 or 6, make it 36(combined form)
• Wherever there is 4 or 7, make it 47(combined form)
• Wherever there is 8 or 9, make it 89(combined form)

LALR PARSING TABLE



7/31/2023

9

FINAL LALR PARSING TABLE

• Intermediate code:
• Variants of Syntax Trees: Directed Acyclic 

Graphs for Expressions
• Three address code: Addresses and 

Instructions- Quadruples - Triples - Indirect 
Triples. 



7/31/2023

10

INTERMEDIATE CODE GENERATION

• In the analysis-synthesis model of a compiler, the
front end analyzes a source program and creates an
intermediate representation, from which the back
end generates target code.

• Ideally, details of the source language are confined to
the front end, and details of the target machine to
the back end.

• With a suitably defined intermediate representation,
a compiler for language i and machine j can then be
built by combining the front end for language i with
the back end for machine j.



7/31/2023

11

Logical structure of front end of a 
compiler



7/31/2023

12

• In the process of translating a program in a given source
language into code for a given target machine, compiler may
construct a sequence of intermediate representations.

• High level representations are close to the source language and
low-level representations are close to the target machine.

• Syntax trees are high level intermediate representations.
• These are well suited for static type checking.

• A low level representations is suitable for machine
dependent tasks such as register allocation and
instruction selection.

• Three address code can range from high to low level
depending on choice of program.

• The choice of intermediate representations varies
from compiler to compiler.



7/31/2023

13

VARIANTS IN SYNTAX TREE

• Nodes in a syntax tree represent constructs in the
source program;

• The children of a node represent the meaningful
components of a construct.

• A directed acyclic graph (hereafter called a DAG) for
an expression identifies the common sub
expressions (subexpressions that occur more than
once) of the expression.



7/31/2023

14

1. Directed Acyclic Graphs for 
Expressions

• Like the syntax tree for an expression,
– a DAG has leaves corresponding to atomic operands

and interior codes corresponding to operators.
• The difference is that a node N in a DAG has more than

one parent if N represents a common sub expression;
• In a syntax tree, the tree for the common sub expression

would be replicated as many times as the sub expression
appears in the original expression.

• Thus, a DAG not only represents expressions more
succinctly, it gives the compiler important clues regarding
the generation of efficient code to evaluate the
expressions.



7/31/2023

15



7/31/2023

16



7/31/2023

17

• Where t1 and t2 are compiler generated temporary names.



7/31/2023

18



7/31/2023

19



7/31/2023

20



7/31/2023

21


