7/31/2023

UNIT-4

* More powerful LR parsers: Canonical LR(1)
items - Constructing LR(1) Set of Iltems —
Canonical LR(1) Parsing Tables - Constructing
LALR Parsing tables

* To remove shift reduce conflicts in the SLR
parsing table, we are going for another
alternative and most expensive and most
efficient method is called CLR.

* |t works on very large class of grammars

CLR

The CLR parser stands for canonical LR parser.
It is a more powerful LR parser.
It makes use of look ahead symbols.

This method uses a large set of items called LR(1)
items.

The main difference between LR(0) and LR(1)
items is that, in LR(1) items, it is possible to carry
more information in a state, which will rule out
useless reduction states.

This extra information is incorporated into the
state by the look ahead symbol.

7/31/2023

7/31/2023

The general syntax becomes [A->.B, a |

where A->x.B is the production and a is a
terminal or right end marker $

LR(1) items=LR(0) items + look ahead

CASE 1 -
A->x.BC, a [0t production]
B->.D [1st production]

After B There is C, So FIRST(C) is look ahead symbol for 1
production. For Ex. If FIRST(C)={d} then

B->.D, d

CASE 2 -
A->x.B, a
B->.D, a

Here, we can see there’s nothing after B. So the look ahead of
0t production will be the look ahead of 15t production.

7/31/2023

* CASE3 -
Assume a production A->a|b

A->a,5s [0t production]
A->b,S [1t production]

Here, the 1st production is a part of the
previous production, so the look ahead will be
the same as that of its previous production.

Steps for constructing CLR parsing table

» Writing augmented grammar
»LR(1) collection of items to be found

» Defining 2 functions: gotollist of terminals] and
action[list of non-terminals] in the CLR parsing
table

Construct a CLR parsing table for the given context-
free grammar

S-->AA

A-->aA|b

STEP 1 - Find augmented grammar
* The augmented grammar of the given grammar
is:-
§'-->.5,$ [Oth production]
S-->.AA,S [1st production]
A-->.aA ,a|b [2nd production]
A-->.b ,a|b [3rd production]

7/31/2023

STEP 3

ACTION GOTO
a b $
0 53 54
1 accept
2 56 S7
3 53 54
4 R3 R3
5 R1
6 S6 ST
7 R3
" R2 R2
? R2
STACK I/P BUFFER ACTION TABLE GOTO TABLE PARSING ACTION
$0 aabb% [0.a]=53 Shift
$0a3 abb$%$ [3.a]=53 Shift
$0a3a3 bb$ [3.b]=54 Shift
S0a3a3(b4) b$ [4/b]=r3 [3.A]=8 Reduce
A—b
$0a3(a3A8) bs% [8,b]=r2 [3.A4]-8 Reduce
A — aA
$0(a3A8) b% [8.b]=r2 [0.4]=2 Reduce
A — aA
$0A2 b$ [2.b]=s7 Shift
$0A2(b4) $ [7.$]=r3 [2.A]=5 Reduce
A—b
SO[A2AS) 3 [5.5]=r1 [0.5]=1 Reduce
S — AA
%051 s [1.$]=accept

7/31/2023

Canonical LR(1) Collection -- Example

S — AaAb 5% 588 S LS 558
S — BbBa S — .AaAb.$ A
Ase S — .BbBa $ L: S — A.aAb ,$ —2 tol,
B—ose A—>.a B
B—.b L:S—BbBa$ 2 tol

I;: S — Aa.Ab $ A I;: S —> AaAb.$ a I;: S — AaAb. .$

A—>.Db
I;: S — Bb.Ba ,$ B 1;: S — BbB.a $ _ b Iy: S — BbBa. ,$

B—..a

Canonical LR(1) Collection — Example2

§° 5§ I;S’— .8.% I:$’—> S8..% I;L—*R, {$§,=}
1)S$ — L=R S— L=RS$ s R— L, {$=}
2)S >R S—> RS L:S — L-=E{$ —tol; Lo *R, ($,=)
3)L— *R L— *R,{$.=} L—.d, {$,=}
4)L—id L—.id, {$,=}
il R S8 I;:L - id., {$.=)
Iy:S — L=R.$
I;:;S - L=R3$ to Iy e
R LS - IyR—L.$
L— *RS$ R I, and I,
L—.id$ iy e el
e N\
I;L — *R,, {$,=} Ti=s .id,,$ 3 tol,, [; and 1,5
id
Iy R— L., {$;=} Il — id.$ L =ty

7/31/2023

LALR

Once we make a CLR parsing table, we can easily make
a LALR parsing table from it.

In the step2 diagram, we can see that

I3 and 16 are similar except their lookaheads.
14 and 17 are similar except their lookaheads.
I8 and |9 are similar except their lookaheads.

In LALR parsing table construction , we merge these
similar states.

Wherever there is 3 or 6, make it 36(combined form)
Wherever there is 4 or 7, make it 47(combined form)
Wherever there is 8 or 9, make it 89(combined form)

LALR PARSING TABLE

ACTION

GOTO

$

S36

547

accept

S36

547

536

47

R3

R3

R1

S36

Saz

89

R3

R2

R2

R2

7/31/2023

FINAL LALR PARSING TABLE

ACTION

GOTO

$

536

547

accept

536

547

536

S47

R3

R3

R3

R1

R2

R2

R2

* Intermediate code:

* Variants of Syntax Trees: Directed Acyclic
Graphs for Expressions

* Three address code: Addresses and

Instructions- Quadruples - Triples - Indirect
Triples.

7/31/2023

INTERMEDIATE CODE GENERATION

In the analysis-synthesis model of a compiler, the
front end analyzes a source program and creates an
intermediate representation, from which the back

end generates target code.

the back end.

the back end for machinej.

Ideally, details of the source language are confined to
the front end, and details of the target machine to

With a suitably defined intermediate representation,
a compiler for language i and machine j can then be
built by combining the front end for language i with

" Lexieal Analysis

Y

_

Svntax Analysis |

Y

-

Semaniic Analysis

Y
[Intermediate Code |

Greneration

[Cudeﬂp:imlnliun]

Y
Target Code
Generation

Front-End
{Machina
Indapandant)

Back-End
(Maehine
Dependent)

7/31/2023

10

4 Source 3 Target 4 Source 3 Target
languages machines languages machines

Intermediate
code optimizer

4 front ends +

1 optimizer +
4 front ends + 3 code generators
4x3 optimizers +
4x3 code generators

Logical structure of front end of a
compiler

Intermediate
code

Front End :F Back End ——

= Static checking:

= Type checking: ensures that operators are applied to compatible
operands
= Any syntactic checks that remain after parsing

7/31/2023

11

In the process of translating a program in a given source
language into code for a given target machine, compiler may
construct a sequence of intermediate representations.

High level representations are close to the source language and
low-level representations are close to the target machine.

Syntax trees are high level intermediate representations.
These are well suited for static type checking.

High Level Low Level
= [ntermediate —» ... —= Intermediate —e
Representation Representation

Source
Program

Target
(.l}l 1('

Figure 6.2: A compiler might use a sequence of intermediate representations

* A low level representations is suitable for machine
dependent tasks such as register allocation and
instruction selection.

* Three address code can range from high to low level
depending on choice of program.

* The choice of intermediate representations varies
from compiler to compiler.

An intermediate representation may either be:

-actual language or
= it may consist of internal data structures that are shared by phases
of the compiler.

7/31/2023

12

Intermediat

The following are commonly used intermediate code
representation :

> Syntax tree
» Postfix Notation
» Three-Address Code

VARIANTS IN SYNTAX TREE

* Nodes in a syntax tree represent constructs in the
source program;

* The children of a node represent the meaningful
components of a construct.

* A directed acyclic graph (hereafter called a DAG) for
an expression identifies the common sub
expressions (subexpressions that occur more than
once) of the expression.

7/31/2023

13

1. Directed Acyclic Graphs for
Expressions

* Like the syntax tree for an expression,

— a DAG has leaves corresponding to atomic operands
and interior codes corresponding to operators.

* The difference is that a node N in a DAG has more than
one parent if N represents a common sub expression;

* |In a syntax tree, the tree for the common sub expression
would be replicated as many times as the sub expression
appears in the original expression.

* Thus, a DAG not only represents expressions more
succinctly, it gives the compiler important clues regarding
the generation of efficient code to evaluate the
expressions.

Syntax tr

Example —
x=(@+b*c)/(a—b*c)

X iy (a+(b*c))/(a-(b*c))

Operator Root

7/31/2023

14

a+ax*x(b-¢)+(b-2¢)*d

+

+/ *
N, /\d
a/_,

RN

Figure 6.3: Dag for the expression a+a* (b-c) + (b-c) *d

Syntax-directed definition to produce syntax
trees or DAG's

PRODUCTION SEMANTIC RULES
1) E-E +T | E.node=new Node('+', Ey.node, T.node)
2) E—E -T | Enode=new Node('-', Ey.node, T.node)
3) E-T E.node = T.node
4 T—(F) T.node= E.node
3) T—id T.node = new Leaf(id, id.entry)
6) T — num T.node = new Leaf(num, num.val)

Figure 6.4: Syntax-directed definition to produce syntax trees or DAG’

+

+/ \lk
S N
E./ __

"

6.3: Dag for the expression a+a* (b-c) + (b-c) *d

=

1= Leaf (id, entry-o
po = Leaf (id, entry-a
ps = Leaf (id, entry-b
ps = Leaf (id, enfry-c
ps = Node(~',ps, ps)

= NOde('*’~P1,P5)

pr = Node('+',py, po)

ps = Leaf(id, entry-b) = ps
po = Leaf(id, entry-c) = py
pio = Node('~',p3,pa) = ps
pu = Leaf (id, entry-d)

pia = Node('¥',ps, pu1)

P13 = Node('+',pr,pr2)

o
=

=n

e Bt Mlor PO LS TR
==

,._.,_.,_._.
Lo ba — O S
R S i R =

Figure 6.5: Steps for constructing the DAG of Fig. 6.3

7/31/2023

15

* The ordinary (infix) way of writing the sum of a and b is with operator
inthe middle :a + b

* The postfix notation for the same expression places the operator at
the right end as ab +. In general, if e1 and e2 are any postfix
expressions, and + is any binary operator, the result of applying + to
the values denoted by e1 and e2 is postfix notation by e1e2 +. No
parentheses are needed in postfix notation because the position and
arity (number of arguments) of the operators permit only one way to
decode a postfix expression. In postfix notation the operator follows
the operand.

Example — The postfix representation of the expression (a —
b)*(c+d)+(a—Db)is

ab —cd + ab -+*.

7/31/2023

16

Three-Address Code

o In three-address code, there is at most one operator on the
right side of an instruction; that is, no built-up arithmetic
expressions are permitted.

e Example: A source-language expression x+y*z

might be translated into the sequence of three-address
instructions below where tl and tz are compiler-generated
temporary names.

=y *xz
ta X+t

* Where tl and t2 are compiler generated temporary names. /

e

Example 6.4: Three-address code is a linearized representation of a syntax
tree or a DAG in which explicit names correspond to the interior nodes of the
graph.

+
/ \ ti=b-c
- 3 to = a %t
* \d t3 = a+ tz
7 x t4 =t *xd
a /-\ ts = t3 + t4
b C
(a) DAG (b) Three-address code

7/31/2023

17

7/31/2023

Addresses and Instructions

® An address can be one of the following:

A name : For convenience, allow source-program names to
appear as addresses in three-address code. In an
implementation, a source name is replaced by a pointer to
its symbol-table entry, where all information about the
name is kept.

A constant : In practice, a compiler must deal with many
different types of constants and variables.

A compiler-generated temporary . It is useful, especially
in optimizing compilers, to create a distinct name each time

a temporary 1s needed. These temporaries can be combined
\ if possible, when registers are allocated to variables.

list of the common three-address

instruction forms:

e Assignment instructions of the form x =y op z, op is binary
operator

X = op y, where op is a unary operation.

Copy instructions of the form x =y,

An unconditional jump goto L.

Conditional jumps of the form if x goto L and if False x goto L.

Conditional jumps such as if x relop y goto L, which apply a
relational operator (<, ==, >=, etc.) to x and y, and execute the
instruction with label L next if x stands in relation relop to y. If
not, the three-address instruction following if x relop y goto L is
executed next, in sequence.

e 2

18

7/31/2023

= |
Procedure calls and returns are implemented using the following

instructions:

param X for parameters; call p,n and y = call p,n for procedute
and function calls, respectively; and return y , is optional.

Example: a call of the procedure p(x1x2.. .. x,). param I
param I,
param I,
call p,n

*Indexed copy instructions of the form x = y[i] and x[i]=y.
*Address and pointer assignments of the form

\ x=&y,x=*y,and*x=y. /

e Consider the statement
do { 1=1tl;} while (a[i] < V) ;

Two ways of assigning labels to three-address statements

L: t; =1+ 1 100: t; =4+ 1
i= 1t 101: i=1
ty =1i % 8 102: t2 =1i * 8
tg =a [2] 103: t3 =a [ta]
if t3 < v goto L 104: if t3 < v goto 100
(a) Symbolic labels. (b) Position numbers.

Figure 6.9: Two ways of assigning labels to three-address statements

The multiplication 1 * 8 1s appropriate for an array of elements

\that each take 8 units of space. /

19

e Then, the assignment
N=f{(a[i]);
e might translate into the following three-address code:
1)tl =1*4 // integer take 4 bytes
2yt2 =4 |i1]
3) param t2
4)t3 =call f,1 // 1 for 1 parameter

5)n=13

Data structure of three address code

Three address code instructions can be implemented as objects or as records with fields
for the operator and the operands. Three such representations are called
Quadruples A quadruple (or just "quad') has four fields, which we call op, arg.. arg2
and result
Triples: A triple has only three fields, which we call op. argl. and arg2. the DAG an
triple representations of expressions are equivalent
Indirect Triples: consist of a listing of pointers to triples, rather than a listing of
triples themselves.

#| The benefit of Quadruples over Triples can be seen in an optimizing compiler, where
mstructions are often moved around.
o| With quadruples . if we move an instruction that computes a temporary £ then the

instructions that use trequire no change. With friples. the result of an operation is
referred to by its position, so moving an instruction may require to change all references

to that result. This problem does not occur with indirect triples .

N

7/31/2023

20

7/31/2023

Three-address code for the assignment a = b¥x-c+b*-c;

op arg, arg, result
AT e

t, = minus ¢ G}Einus }_PC_._I-]
£2 = b % t; 1 # 1 b % | %2
. : SR e T,
ts = minus c 2 |minus , c ; ts
t: = b % t3 3 * |b‘:_rt;_:t4
tg = t2 + 14 4 +|1_32:t-_4:t5
a = tj 5 = 1 ts 1 1oa
(a) Three-address code (b) Quadruples

Figure 6.10: Three-address code and its quadruple representation

= op arg, arg,
N 0 minus| ¢ |
. /+\ 1 » 7o (0
‘ - T T
" * 2 m1nus: c :
/ \ / . 30 * ., b (2
b minus b minus sl + T 3)
| I 5 = 1 a | (4)
[c |
(a) Syntax tree (b) Triples
instruction op arg, arg,
35| (0) 0 |minus, c |
36| (1) 1 * , b, (0)
37| (2) 2 [minus, e |
38 (3 3 * T b 1(2
39 (4) 4+ (1) (3
40| () 5 = 1 a 1 (%)
Figure 6.12: Indirect triples representation of three-address code

21

