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C H A P T E R  2 3

Introduction to
Transport Layer

he transport layer in the TCP/IP suite is located between the application layer and
the network layer. It provides services to the application layer and receives services

from the network layer. The transport layer acts as a liaison between a client program
and a server program, a process-to-process connection. The transport layer is the heart
of the TCP/IP protocol suite; it is the end-to-end logical vehicle for transferring data
from one point to another in the Internet.  This chapter is the first chapter devoted to the
transport layer; we discuss the Internet transport-layer protocols in the next chapter. 

We have divided this chapter into two sections:

❑ The first section introduces the idea behind a transport-layer protocol. We first dis-
cuss the general services we normally require from the transport layer, such as
process-to-process communication, addressing, multiplexing and demultiplexing,
error, flow, and congestion control. We then show that the transport-layer protocols
are divided into two categories: connectionless and connection-oriented. We dis-
cuss the characteristics of each category and show the application of each category.

❑ The second section discusses general transport-layer protocols. These protocols
concentrate on flow and error control services provided by an actual transport-
layer protocol. Understanding these protocols helps us better understand the design
of the transport-layer protocols in the Internet, such as UDP, TCP, and SCTP. In
this section, we first describe an imaginary protocol, which we call the Simple Pro-
tocol. This protocol does not have any flow or error control provision. We next
introduce the Stop-and-Wait protocol, which provides flow and error control but is
very inefficient for a high-speed internet. We then move to the Go-Back-N proto-
col, which is more efficient than the previous one. Finally, we discuss the Selective-
Repeat protocol, which has the characteristics of all previous protocols and some
more. 

T
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23.1 INTRODUCTION
The transport layer is located between the application layer and the network layer. It
provides a process-to-process communication between two application layers, one at
the local host and the other at the remote host. Communication is provided using a log-
ical connection, which means that the two application layers, which can be located in
different parts of the globe, assume that there is an imaginary direct connection through
which they can send and receive messages. Figure 23.1 shows the idea behind this log-
ical connection. 

The figure shows the same scenario we used in Chapter 3 for the physical layer
(Figure 3.1). Alice’s host in the Sky Research company creates a logical connection
with Bob’s host in the Scientific Books company at the transport layer. The two compa-

Figure 23.1 Logical connection at the transport layer
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nies communicate at the transport layer as though there is a real connection between
them. Figure 23.1 shows that only the two end systems (Alice’s and Bob’s computers)
use the services of the transport layer; all intermediate routers use only the first three
layers. 

23.1.1 Transport-Layer Services
As we discussed in Chapter 2, the transport layer is located between the network layer and
the application layer. The transport layer is responsible for providing services to the
application layer; it receives services from the network layer. In this section, we discuss
the services that can be provided by the transport layer; in the next section, we discuss
several transport-layer protocols. 

Process-to-Process Communication  

The first duty of a transport-layer protocol is to provide process-to-process communi-
cation. A process is an application-layer entity (running program) that uses the services
of the transport layer. Before we discuss how process-to-process communication can be
accomplished, we need to understand the difference between host-to-host communica-
tion and process-to-process communication.

The network layer (discussed in Chapters 18 to 22) is responsible for communica-
tion at the computer level (host-to-host communication). A network-layer protocol can
deliver the message only to the destination computer. However, this is an incomplete
delivery. The message still needs to be handed to the correct process. This is where a
transport-layer protocol takes over. A transport-layer protocol is responsible for deliv-
ery of the message to the appropriate process. Figure 23.2 shows the domains of a net-
work layer and a transport layer.

Addressing: Port Numbers

Although there are a few ways to achieve process-to-process communication, the most
common is through the client-server paradigm (see Chapter 25). A process on the
local host, called a client, needs services from a process usually on the remote host,
called a server. 

Figure 23.2 Network layer versus transport layer
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However, operating systems today support both multiuser and multiprogramming
environments. A remote computer can run several server programs at the same time,
just as several local computers can run one or more client programs at the same time.
For communication, we must define the local host, local process, remote host, and
remote process. The local host and the remote host are defined using IP addresses (dis-
cussed in Chapter 18). To define the processes, we need second identifiers, called port
numbers. In the TCP/IP protocol suite, the port numbers are integers between 0 and
65,535 (16 bits).

The client program defines itself with a port number, called the ephemeral port
number. The word ephemeral means “short-lived” and is used because the life of a cli-
ent is normally short. An ephemeral port number is recommended to be greater than
1023 for some client/server programs to work properly.

The server process must also define itself with a port number. This port number,
however, cannot be chosen randomly. If the computer at the server site runs a server pro-
cess and assigns a random number as the port number, the process at the client site that
wants to access that server and use its services will not know the port number. Of course,
one solution would be to send a special packet and request the port number of a specific
server, but this creates more overhead. TCP/IP has decided to use universal port numbers
for servers; these are called well-known port numbers. There are some exceptions to this
rule; for example, there are clients that are assigned well-known port numbers. Every cli-
ent process knows the well-known port number of the corresponding server process. For
example, while the daytime client process, a well-known client program, can use an
ephemeral (temporary) port number, 52,000, to identify itself, the daytime server process
must use the well-known (permanent) port number 13. Figure 23.3 shows this concept.

It should be clear by now that the IP addresses and port numbers play different
roles in selecting the final destination of data. The destination IP address defines the
host among the different hosts in the world. After the host has been selected, the port
number defines one of the processes on this particular host (see Figure 23.4).

Figure 23.3 Port numbers
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ICANN Ranges

ICANN (see Chapter 18) has divided the port numbers into three ranges: well-known,
registered, and dynamic (or private), as shown in Figure 23.5. 

❑ Well-known ports. The ports ranging from 0 to 1023 are assigned and controlled
by ICANN. These are the well-known ports. 

❑ Registered ports. The ports ranging from 1024 to 49,151 are not assigned or con-
trolled by ICANN. They can only be registered with ICANN to prevent duplication. 

❑ Dynamic ports. The ports ranging from 49,152 to 65,535 are neither controlled nor
registered. They can be used as temporary or private port numbers. 

Example 23.1

In UNIX, the well-known ports are stored in a file called /etc/services. Each line in this file gives
the name of the server and the well-known port number. We can use the grep utility to extract the
line corresponding to the desired application. The following shows the port for TFTP. Note that
TFTP can use port 69 on either UDP or TCP.   

SNMP (see Chapter 27) uses two port numbers (161 and 162), each for a different purpose. 

Figure 23.4 IP addresses versus port numbers

Figure 23.5 ICANN ranges
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Socket Addresses
A transport-layer protocol in the TCP suite needs both the IP address and the port num-
ber, at each end, to make a connection. The combination of an IP address and a port
number is called a socket address. The client socket address defines the client process
uniquely just as the server socket address defines the server process uniquely (see
Figure 23.6).

To use the services of the transport layer in the Internet, we need a pair of socket
addresses: the client socket address and the server socket address. These four pieces of
information are part of the network-layer packet header and the transport-layer packet
header. The first header contains the IP addresses; the second header contains the port
numbers.

Encapsulation and Decapsulation

To send a message from one process to another, the transport-layer protocol encapsu-
lates and decapsulates messages (Figure 23.7). Encapsulation happens at the sender
site. When a process has a message to send, it passes the message to the transport layer
along with a pair of socket addresses and some other pieces of information, which
depend on the transport-layer protocol. The transport layer receives the data and adds
the transport-layer header. The packets at the transport layer in the Internet are called
user datagrams, segments, or packets, depending on what transport-layer protocol we
use. In general discussion, we refer to transport-layer payloads as packets. 

Decapsulation happens at the receiver site. When the message arrives at the desti-
nation transport layer, the header is dropped and the transport layer delivers the mes-
sage to the process running at the application layer. The sender socket address is passed
to the process in case it needs to respond to the message received. 

$grep tftp/etc/services

tftp 69/tcp 
tftp 69/udp

$grep snmp/etc/services

snmp161/tcp#Simple Net Mgmt Proto
snmp161/udp#Simple Net Mgmt Proto
snmptrap162/udp#Traps for SNMP

Figure 23.6 Socket address
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Multiplexing and Demultiplexing

Whenever an entity accepts items from more than one source, this is referred to as
multiplexing (many to one); whenever an entity delivers items to more than one source,
this is referred to as demultiplexing (one to many). The transport layer at the source
performs multiplexing; the transport layer at the destination performs demultiplexing
(Figure 23.8). 

Figure 23.8 shows communication between a client and two servers. Three client
processes are running at the client site, P1, P2, and P3. The processes P1 and P3 need to
send requests to the corresponding server process running in a server. The client pro-
cess P2 needs to send a request to the corresponding server process running at another
server. The transport layer at the client site accepts three messages from the three pro-
cesses and creates three packets. It acts as a multiplexer. The packets 1 and 3 use the
same logical channel to reach the transport layer of the first server. When they arrive at
the server, the transport layer does the job of a demultiplexer and distributes the
messages to two different processes. The transport layer at the second server receives
packet 2 and delivers it to the corresponding process. Note that we still have demultiplex-
ing although there is only one message.   

Flow Control

Whenever an entity produces items and another entity consumes them, there should be
a balance between production and consumption rates. If the items are produced faster
than they can be consumed, the consumer can be overwhelmed and may need to discard
some items. If the items are produced more slowly than they can be consumed, the con-
sumer must wait, and the system becomes less efficient. Flow control is related to the
first issue. We need to prevent losing the data items at the consumer site. 

Pushing or Pulling
Delivery of items from a producer to a consumer can occur in one of two ways: pushing
or pulling. If the sender delivers items whenever they are produced⎯without a prior
request from the consumer⎯the delivery is referred to as pushing. If the producer
delivers the items after the consumer has requested them, the delivery is referred to as
pulling. Figure 23.9 shows these two types of delivery.

Figure 23.7 Encapsulation and decapsulation
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When the producer pushes the items, the consumer may be overwhelmed and there
is a need for flow control, in the opposite direction, to prevent discarding of the items.
In other words, the consumer needs to warn the producer to stop the delivery and to
inform the producer when it is again ready to receive the items. When the consumer
pulls the items, it requests them when it is ready. In this case, there is no need for flow
control.

Figure 23.8 Multiplexing and demultiplexing 

Figure 23.9 Pushing or pulling 
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Flow Control at Transport Layer
In communication at the transport layer, we are dealing with four entities: sender pro-
cess, sender transport layer, receiver transport layer, and receiver process. The send-
ing process at the application layer is only a producer. It produces message chunks
and pushes them to the transport layer. The sending transport layer has a double role:
it is both a consumer and a producer. It consumes the messages pushed by the pro-
ducer. It encapsulates the messages in packets and pushes them to the receiving trans-
port layer. The receiving transport layer also has a double role: it is the consumer for
the packets received from the sender and the producer that decapsulates the messages
and delivers them to the application layer. The last delivery, however, is normally a
pulling delivery; the transport layer waits until the application-layer process asks for
messages.

Figure 23.10 shows that we need at least two cases of flow control: from the send-
ing transport layer to the sending application layer and from the receiving transport
layer to the sending transport layer. 

Buffers
Although flow control can be implemented in several ways, one of the solutions is nor-
mally to use two buffers: one at the sending transport layer and the other at the receiv-
ing transport layer. A buffer is a set of memory locations that can hold packets at the
sender and receiver. The flow control communication can occur by sending signals
from the consumer to the producer. 

When the buffer of the sending transport layer is full, it informs the application
layer to stop passing chunks of messages; when there are some vacancies, it informs the
application layer that it can pass message chunks again. 

When the buffer of the receiving transport layer is full, it informs the sending
transport layer to stop sending packets. When there are some vacancies, it informs the
sending transport layer that it can send packets again. 

Example 23.2

The above discussion requires that the consumers communicate with the producers on two
occasions: when the buffer is full and when there are vacancies. If the two parties use a buffer

Figure 23.10 Flow control at the transport layer
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with only one slot, the communication can be easier. Assume that each transport layer uses a sin-
gle memory location to hold a packet. When this single slot in the sending transport layer is
empty, the sending transport layer sends a note to the application layer to send its next chunk;
when this single slot in the receiving transport layer is empty, it sends an acknowledgment to the
sending transport layer to send its next packet. As we will see later, however, this type of flow
control, using a single-slot buffer at the sender and the receiver, is inefficient. 

Error Control

In the Internet, since the underlying network layer (IP) is unreliable, we need to make
the transport layer reliable if the application requires reliability. Reliability can be
achieved to add error control services to the transport layer. Error control at the trans-
port layer is responsible for

1. Detecting and discarding corrupted packets. 

2. Keeping track of lost and discarded packets and resending them.

3. Recognizing duplicate packets and discarding them.

4. Buffering out-of-order packets until the missing packets arrive.

Error control, unlike flow control, involves only the sending and receiving transport
layers. We are assuming that the message chunks exchanged between the application
and transport layers are error free. Figure 23.11 shows the error control between the
sending and receiving transport layers. As with the case of flow control, the receiving
transport layer manages error control, most of the time, by informing the sending trans-
port layer about the problems. 

Sequence Numbers
Error control requires that the sending transport layer knows which packet is to be
resent and the receiving transport layer knows which packet is a duplicate, or which
packet has arrived out of order. This can be done if the packets are numbered. We can
add a field to the transport-layer packet to hold the sequence number of the packet.
When a packet is corrupted or lost, the receiving transport layer can somehow inform
the sending transport layer to resend that packet using the sequence number. The
receiving transport layer can also detect duplicate packets if two received packets have
the same sequence number. The out-of-order packets can be recognized by observing
gaps in the sequence numbers. 

Packets are numbered sequentially. However, because we need to include the sequence
number of each packet in the header, we need to set a limit. If the header of the packet
allows m bits for the sequence number, the sequence numbers range from 0 to 2m − 1. For

Figure 23.11 Error control at the transport layer
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example, if m is 4, the only sequence numbers are 0 through 15, inclusive. However, we
can wrap around the sequence. So the sequence numbers in this case are 

In other words, the sequence numbers are modulo 2m. 

Acknowledgment
We can use both positive and negative signals as error control, but we discuss only posi-
tive signals, which are more common at the transport layer. The receiver side can send an
acknowledgment (ACK) for each of a collection of packets that have arrived safe and
sound. The receiver can simply discard the corrupted packets. The sender can detect lost
packets if it uses a timer. When a packet is sent, the sender starts a timer. If an ACK does
not arrive before the timer expires, the sender resends the packet. Duplicate packets can
be silently discarded by the receiver. Out-of-order packets can be either discarded (to be
treated as lost packets by the sender), or stored until the missing one arrives. 

Combination of Flow and Error Control

We have discussed that flow control requires the use of two buffers, one at the sender site
and the other at the receiver site. We have also discussed that error control requires the use
of sequence and acknowledgment numbers by both sides. These two requirements can be
combined if we use two numbered buffers, one at the sender, one at the receiver. 

At the sender, when a packet is prepared to be sent, we use the number of the next
free location, x, in the buffer as the sequence number of the packet. When the packet is
sent, a copy is stored at memory location x, awaiting the acknowledgment from the
other end. When an acknowledgment related to a sent packet arrives, the packet is
purged and the memory location becomes free.

At the receiver, when a packet with sequence number y arrives, it is stored at the
memory location y until the application layer is ready to receive it. An acknowledgment
can be sent to announce the arrival of packet y. 

Sliding Window
Since the sequence numbers use modulo 2m, a circle can represent the sequence numbers
from 0 to 2m − 1 (Figure 23.12). The buffer is represented as a set of slices, called the
sliding window, that occupies part of the circle at any time. At the sender site, when a
packet is sent, the corresponding slice is marked. When all the slices are marked, it means
that the buffer is full and no further messages can be accepted from the application layer.
When an acknowledgment arrives, the corresponding slice is unmarked. If some con-
secutive slices from the beginning of the window are unmarked, the window slides over
the range of the corresponding sequence numbers to allow more free slices at the end of the
window. Figure 23.12 shows the sliding window at the sender. The sequence numbers are
in modulo 16 (m = 4) and the size of the window is 7. Note that the sliding window is just
an abstraction: the actual situation uses computer variables to hold the sequence numbers
of the next packet to be sent and the last packet sent.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... 

For error control, the sequence numbers are modulo 2m,
where m is the size of the sequence number field in bits. 
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Most protocols show the sliding window using linear representation. The idea is
the same, but it normally takes less space on paper. Figure 23.13 shows this representa-
tion. Both representations tell us the same thing. If we take both sides of each diagram
in Figure 23.13 and bend them up, we can make the same diagram as in Figure 23.12.

Figure 23.12 Sliding window in circular format

Figure 23.13 Sliding window in linear format
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Congestion Control

An important issue in a packet-switched network, such as the Internet, is congestion.
Congestion in a network may occur if the load on the network—the number of packets
sent to the network—is greater than the capacity of the network—the number of pack-
ets a network can handle. Congestion control refers to the mechanisms and techniques
that control the congestion and keep the load below the capacity. 

We may ask why there is congestion in a network. Congestion happens in any sys-
tem that involves waiting. For example, congestion happens on a freeway because any
abnormality in the flow, such as an accident during rush hour, creates blockage. 

Congestion in a network or internetwork occurs because routers and switches have
queues—buffers that hold the packets before and after processing. A router, for exam-
ple, has an input queue and an output queue for each interface. If a router cannot pro-
cess the packets at the same rate at which they arrive, the queues become overloaded
and congestion occurs. Congestion at the transport layer is actually the result of con-
gestion at the network layer, which manifests itself at the transport layer. We discussed
congestion at the network layer and its causes in Chapter 18. Later in this chapter, we
show how TCP, assuming that there is no congestion control at the network layer,
implements its own congestion control mechanism. 

23.1.2 Connectionless and Connection-Oriented Protocols
A transport-layer protocol, like a network-layer protocol, can provide two types of
services: connectionless and connection-oriented. The nature of these services at the
transport layer, however, is different from the ones at the network layer. At the network
layer, a connectionless service may mean different paths for different datagrams
belonging to the same message. At the transport layer, we are not concerned about the
physical paths of packets (we assume a logical connection between two transport layers).
Connectionless service at the transport layer means independency between packets;
connection-oriented means dependency. Let us elaborate on these two services. 

Connectionless Service

In a connectionless service, the source process (application program) needs to divide its
message into chunks of data of the size acceptable by the transport layer and deliver
them to the transport layer one by one. The transport layer treats each chunk as a single
unit without any relation between the chunks. When a chunk arrives from the applica-
tion layer, the transport layer encapsulates it in a packet and sends it. To show the inde-
pendency of packets, assume that a client process has three chunks of messages to send
to a server process. The chunks are handed over to the connectionless transport proto-
col in order. However, since there is no dependency between the packets at the transport
layer, the packets may arrive out of order at the destination and will be delivered out of
order to the server process (Figure 23.14).    

In Figure 23.14, we have shown the movement of packets using a time line, but we
have assumed that the delivery of the process to the transport layer and vice versa are
instantaneous. The figure shows that at the client site, the three chunks of messages are
delivered to the client transport layer in order (0, 1, and 2). Because of the extra delay
in transportation of the second packet, the delivery of messages at the server is not in
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order (0, 2, 1). If these three chunks of data belong to the same message, the server pro-
cess may have received a strange message.

The situation would be worse if one of the packets were lost. Since there is no
numbering on the packets, the receiving transport layer has no idea that one of the mes-
sages has been lost. It just delivers two chunks of data to the server process.

The above two problems arise from the fact that the two transport layers do not
coordinate with each other. The receiving transport layer does not know when the first
packet will come nor when all of the packets have arrived. 

We can say that no flow control, error control, or congestion control can be effec-
tively implemented in a connectionless service. 

Connection-Oriented Service

In a connection-oriented service, the client and the server first need to establish a
logical connection between themselves. The data exchange can only happen after the
connection establishment. After data exchange, the connection needs to be torn down
(Figure 23.15). 

As we mentioned before, the connection-oriented service at the transport layer is
different from the same service at the network layer. In the network layer, connection-
oriented service means a coordination between the two end hosts and all the routers in
between. At the transport layer, connection-oriented service involves only the two
hosts; the service is end to end. This means that we should be able to make a
connection-oriented protocol at the transport layer over either a connectionless or
connection-oriented protocol at the network layer. Figure 23.15 shows the connection-
establishment, data-transfer, and tear-down phases in a connection-oriented service at
the transport layer.

We can implement flow control, error control, and congestion control in a connection-
oriented protocol. 

Figure 23.14 Connectionless service
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Finite State Machine

The behavior of a transport-layer protocol, both when it provides a connectionless and
when it provides a connection-oriented protocol, can be better shown as a finite state
machine (FSM). Figure 23.16 shows a representation of a transport layer using an
FSM. Using this tool, each transport layer (sender or receiver) is taught as a machine
with a finite number of states. The machine is always in one of the states until an event
occurs. Each event is associated with two reactions: defining the list (possibly empty)
of actions to be performed and determining the next state (which can be the same as the
current state). One of the states must be defined as the initial state, the state in which
the machine starts when it turns on. In this figure we have used rounded-corner rectan-
gles to show states, colored text to show events, and regular black text to show actions.
A horizontal line is used to separate the event from the actions, although later we
replace the horizontal line with a slash. The arrow shows the movement to the next
state. 

We can think of a connectionless transport layer as an FSM with only one state: the
established state. The machine on each end (client and server) is always in the estab-
lished state, ready to send and receive transport-layer packets. 

An FSM in a connection-oriented transport layer, on the other hand, needs to go
through three states before reaching the established state. The machine also needs to
go through three states before closing the connection. The machine is in the closed state
when there is no connection. It remains in this state until a request for opening the con-
nection arrives from the local process; the machine sends an open request packet to the

Figure 23.15 Connection-oriented service
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remote transport layer and moves to the open-wait-I state. When an acknowledgment is
received from the other end, the local FSM moves to the open-wait-II state. When the
machine is in this state, a unidirectional connection has been established, but if a bidi-
rectional connection is needed, the machine needs to wait in this state until the other
end also requests a connection. When the request is received, the machine sends an
acknowledgment and moves to the established state. 

Data and data acknowledgment can be exchanged between the two ends when they
are both in the established state. However, we need to remember that the established
state, both in connectionless and connection-oriented transport layers, represents a set
of data transfer states, which we discuss in the next section, Transport-Layer Protocols.

To tear down a connection, the application layer sends a close request message to
its local transport layer. The transport layer sends a close-request packet to the other
end and moves to close-wait-I state. When an acknowledgment is received from the
other end, the machine moves to the close-wait-II state and waits for the close-request
packet from the other end. When this packet arrives, the machine sends an acknowledg-
ment and moves to the closed state. 

There are several variations of the connection-oriented FSM that we will discuss
later. We will also see how the FSM can be condensed or expanded and the names of
the states can be changed. 

Figure 23.16 Connectionless and connection-oriented service represented as FSMs
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23.2 TRANSPORT-LAYER PROTOCOLS
We can create a transport-layer protocol by combining a set of services described in the
previous sections. To better understand the behavior of these protocols, we start with
the simplest one and gradually add more complexity. The TCP/IP protocol uses a
transport-layer protocol that is either a modification or a combination of some of these
protocols. We discuss these general protocols in this section to pave the way for under-
standing more complex ones in the rest of the chapter. To make our discussion simpler,
we first discuss all of these protocols as a unidirectional protocol (i.e., simplex) in
which the data packets move in one direction. At the end of the chapter, we briefly dis-
cuss how they can be changed to bidirectional protocols where data can be moved in
two directions (i.e., full duplex).   

23.2.1 Simple Protocol
Our first protocol is a simple connectionless protocol with neither flow nor error control.
We assume that the receiver can immediately handle any packet it receives. In other
words, the receiver can never be overwhelmed with incoming packets. Figure 23.17
shows the layout for this protocol. 

The transport layer at the sender gets a message from its application layer, makes a
packet out of it, and sends the packet. The transport layer at the receiver receives a
packet from its network layer, extracts the message from the packet, and delivers the
message to its application layer. The transport layers of the sender and receiver provide
transmission services for their application layers. 

FSMs 

The sender site should not send a packet until its application layer has a message to
send. The receiver site cannot deliver a message to its application layer until a packet
arrives. We can show these requirements using two FSMs. Each FSM has only one
state, the ready state. The sending machine remains in the ready state until a request
comes from the process in the application layer. When this event occurs, the sending
machine encapsulates the message in a packet and sends it to the receiving machine.
The receiving machine remains in the ready state until a packet arrives from the send-
ing machine. When this event occurs, the receiving machine decapsulates the message
out of the packet and delivers it to the process at the application layer. Figure 23.18

Figure 23.17 Simple protocol
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shows the FSMs for the simple protocol. We see later that the UDP protocol is a slight
modification of this protocol.         

Example 23.3

Figure 23.19 shows an example of communication using this protocol. It is very simple. The
sender sends packets one after another without even thinking about the receiver.

23.2.2 Stop-and-Wait Protocol
Our second protocol is a connection-oriented protocol called the Stop-and-Wait
protocol, which uses both flow and error control. Both the sender and the receiver use a
sliding window of size 1. The sender sends one packet at a time and waits for an
acknowledgment before sending the next one. To detect corrupted packets, we need to
add a checksum to each data packet. When a packet arrives at the receiver site, it is
checked. If its checksum is incorrect, the packet is corrupted and silently discarded.

Figure 23.18 FSMs for the simple protocol

Figure 23.19 Flow diagram for Example 23.3
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The silence of the receiver is a signal for the sender that a packet was either corrupted
or lost. Every time the sender sends a packet, it starts a timer. If an acknowledgment
arrives before the timer expires, the timer is stopped and the sender sends the next
packet (if it has one to send). If the timer expires, the sender resends the previous
packet, assuming that the packet was either lost or corrupted. This means that the
sender needs to keep a copy of the packet until its acknowledgment arrives. Figure 23.20
shows the outline for the Stop-and-Wait protocol. Note that only one packet and one
acknowledgment can be in the channels at any time.    

The Stop-and-Wait protocol is a connection-oriented protocol that provides flow
and error control.    

Sequence Numbers

To prevent duplicate packets, the protocol uses sequence numbers and acknowledgment
numbers. A field is added to the packet header to hold the sequence number of that
packet. One important consideration is the range of the sequence numbers. Since we
want to minimize the packet size, we look for the smallest range that provides unam-
biguous communication. Let us discuss the range of sequence numbers we need.
Assume we have used x as a sequence number; we only need to use x + 1 after that.
There is no need for x + 2. To show this, assume that the sender has sent the packet with
sequence number x. Three things can happen.

1. The packet arrives safe and sound at the receiver site; the receiver sends an
acknowledgment. The acknowledgment arrives at the sender site, causing the
sender to send the next packet numbered x + 1. 

2. The packet is corrupted or never arrives at the receiver site; the sender resends the
packet (numbered x) after the time-out. The receiver returns an acknowledgment.

3. The packet arrives safe and sound at the receiver site; the receiver sends an acknowl-
edgment, but the acknowledgment is corrupted or lost. The sender resends the
packet (numbered x) after the time-out. Note that the packet here is a duplicate.
The receiver can recognize this fact because it expects packet x + 1 but packet x
was received. 

Figure 23.20 Stop-and-Wait protocol
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We can see that there is a need for sequence numbers x and x + 1 because the receiver
needs to distinguish between case 1 and case 3. But there is no need for a packet to be
numbered x + 2. In case 1, the packet can be numbered x again because packets x and x + 1
are acknowledged and there is no ambiguity at either site. In cases 2 and 3, the new packet
is x + 1, not x + 2. If only x and x + 1 are needed, we can let x = 0 and x + 1 = 1. This means
that the sequence is 0, 1, 0, 1, 0, and so on. This is referred to as modulo 2 arithmetic. 

Acknowledgment Numbers

Since the sequence numbers must be suitable for both data packets and acknowledg-
ments, we use this convention: The acknowledgment numbers always announce the
sequence number of the next packet expected by the receiver. For example, if packet 0
has arrived safe and sound, the receiver sends an ACK with acknowledgment 1 (mean-
ing packet 1 is expected next). If packet 1 has arrived safe and sound, the receiver sends
an ACK with acknowledgment 0 (meaning packet 0 is expected). 

The sender has a control variable, which we call S (sender), that points to the only
slot in the send window. The receiver has a control variable, which we call R (receiver),
that points to the only slot in the receive window. 

FSMs

Figure 23.21 shows the FSMs for the Stop-and-Wait protocol. Since the protocol is a
connection-oriented protocol, both ends should be in the established state before
exchanging data packets. The states are actually nested in the established state. 

Sender
The sender is initially in the ready state, but it can move between the ready and block-
ing state. The variable S is initialized to 0. 

❑ Ready state. When the sender is in this state, it is only waiting for one event to
occur. If a request comes from the application layer, the sender creates a packet
with the sequence number set to S. A copy of the packet is stored, and the
packet is sent. The sender then starts the only timer. The sender then moves to
the blocking state. 

❑ Blocking state. When the sender is in this state, three events can occur:

a. If an error-free ACK arrives with the ackNo related to the next packet to be sent,
which means ackNo = (S + 1) modulo 2, then the timer is stopped. The window
slides, S = (S + 1) modulo 2. Finally, the sender moves to the ready state. 

b. If a corrupted ACK or an error-free ACK with the ackNo ≠ (S + 1) modulo 2
arrives, the ACK is discarded.

c. If a time-out occurs, the sender resends the only outstanding packet and restarts
the timer. 

In the Stop-and-Wait protocol, the acknowledgment number always announces, in
modulo-2 arithmetic, the sequence number of the next packet expected.   
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Receiver
The receiver is always in the ready state. Three events may occur:

a. If an error-free packet with seqNo = R arrives, the message in the packet is
delivered to the application layer. The window then slides, R = (R + 1) modulo 2.
Finally an ACK with ackNo = R is sent.      

b. If an error-free packet with seqNo ≠ R arrives, the packet is discarded, but an
ACK with ackNo = R is sent.

c. If a corrupted packet arrives, the packet is discarded.

Example 23.4

Figure 23.22 shows an example of the Stop-and-Wait protocol. Packet 0 is sent and acknowl-
edged. Packet 1 is lost and resent after the time-out. The resent packet 1 is acknowledged and the
timer stops. Packet 0 is sent and acknowledged, but the acknowledgment is lost. The sender has
no idea if the packet or the acknowledgment is lost, so after the time-out, it resends packet 0,
which is acknowledged. 

Efficiency

The Stop-and-Wait protocol is very inefficient if our channel is thick and long. By
thick, we mean that our channel has a large bandwidth (high data rate); by long, we
mean the round-trip delay is long. The product of these two is called the bandwidth-
delay product. We can think of the channel as a pipe. The bandwidth-delay product
then is the volume of the pipe in bits. The pipe is always there. It is not efficient if it

Figure 23.21 FSMs for the Stop-and-Wait protocol
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is not used. The bandwidth-delay product is a measure of the number of bits a sender
can transmit through the system while waiting for an acknowledgment from the
receiver. 

Example 23.5

Assume that, in a Stop-and-Wait system, the bandwidth of the line is 1 Mbps, and 1 bit takes
20 milliseconds to make a round trip. What is the bandwidth-delay product? If the system data
packets are 1,000 bits in length, what is the utilization percentage of the link?

Solution
The bandwidth-delay product is (1 × 106) × (20 × 10−3) = 20,000 bits. The system can send
20,000 bits during the time it takes for the data to go from the sender to the receiver and the
acknowledgment to come back. However, the system sends only 1,000 bits. We can say that the
link utilization is only 1,000/20,000, or 5 percent. For this reason, in a link with a high bandwidth
or long delay, the use of Stop-and-Wait wastes the capacity of the link.

Example 23.6

What is the utilization percentage of the link in Example 23.5 if we have a protocol that can
send up to 15 packets before stopping and worrying about the acknowledgments? 

Figure 23.22 Flow diagram for Example 23.4
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Solution
The bandwidth-delay product is still 20,000 bits. The system can send up to 15 packets or
15,000 bits during a round trip. This means the utilization is 15,000/20,000, or 75 percent. Of
course, if there are damaged packets, the utilization percentage is much less because packets
have to be resent.

Pipelining

In networking and in other areas, a task is often begun before the previous task has
ended. This is known as pipelining. There is no pipelining in the Stop-and-Wait
protocol because a sender must wait for a packet to reach the destination and be
acknowledged before the next packet can be sent. However, pipelining does apply to
our next two protocols because several packets can be sent before a sender receives
feedback about the previous packets. Pipelining improves the efficiency of the
transmission if the number of bits in transition is large with respect to the bandwidth-
delay product. 

23.2.3 Go-Back-N Protocol (GBN)
To improve the efficiency of transmission (to fill the pipe), multiple packets must be in
transition while the sender is waiting for acknowledgment. In other words, we need to
let more than one packet be outstanding to keep the channel busy while the sender is
waiting for acknowledgment. In this section, we discuss one protocol that can achieve this
goal; in the next section, we discuss a second. The first is called Go-Back-N (GBN) (the
rationale for the name will become clear later). The key to Go-back-N is that we can
send several packets before receiving acknowledgments, but the receiver can only buf-
fer one packet. We keep a copy of the sent packets until the acknowledgments arrive.
Figure 23.23 shows the outline of the protocol. Note that several data packets and
acknowledgments can be in the channel at the same time. 

Sequence Numbers

As we mentioned before, the sequence numbers are modulo 2m, where m is the size of
the sequence number field in bits. 

Figure 23.23 Go-Back-N protocol
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Acknowledgment Numbers

An acknowledgment number in this protocol is cumulative and defines the sequence
number of the next packet expected. For example, if the acknowledgment number
(ackNo) is 7, it means all packets with sequence number up to 6 have arrived, safe and
sound, and the receiver is expecting the packet with sequence number 7.

Send Window

The send window is an imaginary box covering the sequence numbers of the data pack-
ets that can be in transit or can be sent. In each window position, some of these
sequence numbers define the packets that have been sent; others define those that can
be sent. The maximum size of the window is 2m −  1, for reasons that we discuss later.
In this chapter, we let the size be fixed and set to the maximum value, but we will see
later that some protocols may have a variable window size. Figure 23.24 shows a slid-
ing window of size 7 (m = 3) for the Go-Back-N protocol.  

The send window at any time divides the possible sequence numbers into four
regions. The first region, left of the window, defines the sequence numbers belonging
to packets that are already acknowledged. The sender does not worry about these
packets and keeps no copies of them. The second region, colored, defines the range
of sequence numbers belonging to the packets that have been sent, but have an
unknown status. The sender needs to wait to find out if these packets have been
received or were lost. We call these outstanding packets. The third range, white in the
figure, defines the range of sequence numbers for packets that can be sent; however,
the corresponding data have not yet been received from the application layer. Finally,
the fourth region, right of the window, defines sequence numbers that cannot be used
until the window slides.

The window itself is an abstraction; three variables define its size and location at
any time. We call these variables Sf (send window, the first outstanding packet), Sn
(send window, the next packet to be sent), and Ssize (send window, size). The variable Sf
defines the sequence number of the first (oldest) outstanding packet. The variable

In the Go-Back-N protocol, the acknowledgment number is cumulative and
defines the sequence number of the next packet expected to arrive. 

Figure 23.24 Send window for Go-Back-N
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Sn holds the sequence number that will be assigned to the next packet to be sent.
Finally, the variable Ssize defines the size of the window, which is fixed in our protocol. 

 Figure 23.25 shows how a send window can slide one or more slots to the right
when an acknowledgment arrives from the other end. In the figure, an acknowledgment
with ackNo = 6 has arrived. This means that the receiver is waiting for packets with
sequence number 6.    

Receive Window

The receive window makes sure that the correct data packets are received and that the
correct acknowledgments are sent. In Go-Back-N, the size of the receive window is
always 1. The receiver is always looking for the arrival of a specific packet. Any packet
arriving out of order is discarded and needs to be resent. Figure 23.26 shows the
receive window. Note that we need only one variable, Rn (receive window, next packet
expected), to define this abstraction. The sequence numbers to the left of the window
belong to the packets already received and acknowledged; the sequence numbers to the
right of this window define the packets that cannot be received. Any received packet
with a sequence number in these two regions is discarded. Only a packet with a
sequence number matching the value of Rn is accepted and acknowledged. The receive
window also slides, but only one slot at a time. When a correct packet is received, the
window slides, Rn = (Rn + 1) modulo 2m. 

The send window is an abstract concept defining an imaginary
box of maximum size = 2m − 1 with three variables: Sf, Sn, and Ssize.   

Figure 23.25 Sliding the send window
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Timers

Although there can be a timer for each packet that is sent, in our protocol we use only
one. The reason is that the timer for the first outstanding packet always expires first. We
resend all outstanding packets when this timer expires.

Resending packets

When the timer expires, the sender resends all outstanding packets. For example, sup-
pose the sender has already sent packet 6 (Sn = 7), but the only timer expires. If Sf = 3,
this means that packets 3, 4, 5, and 6 have not been acknowledged; the sender goes
back and resends packets 3, 4, 5, and 6. That is why the protocol is called Go-Back-N.
On a time-out, the machine goes back N locations and resends all packets. 

FSMs

Figure 23.27 shows the FSMs for the GBN protocol. 

Sender
The sender starts in the ready state, but thereafter it can be in one of the two states:
ready or blocking. The two variables are normally initialized to 0 (Sf =  Sn =  0). 

❑ Ready state. Four events may occur when the sender is in ready state. 

a. If a request comes from the application layer, the sender creates a packet with
the sequence number set to Sn. A copy of the packet is stored, and the packet is
sent. The sender also starts the only timer if it is not running. The value of Sn is
now incremented, (Sn = Sn + 1) modulo 2m. If the window is full, Sn = (Sf +
Ssize) modulo 2m, the sender goes to the blocking state.

b. If an error-free ACK arrives with ackNo related to one of the outstanding pack-
ets, the sender slides the window (set Sf =  ackNo), and if all outstanding packets
are acknowledged (ackNo = Sn), then the timer is stopped. If all outstanding
packets are not acknowledged, the timer is restarted. 

Figure 23.26 Receive window for Go-Back-N

The receive window is an abstract concept defining an imaginary
box of size 1 with a single variable Rn. The window slides

when a correct packet has arrived; sliding occurs one slot at a time.   

Rsize = 1

Already received 
and acknowledged

 Cannot be 
received

2 13 27 00 5 61 4

Next
expected

Rn



CHAPTER 23 INTRODUCTION TO TRANSPORT LAYER 717

c. If a corrupted ACK or an error-free ACK with ackNo not related to the out-
standing packet arrives, it is discarded. 

d. If a time-out occurs, the sender resends all outstanding packets and restarts the
timer. 

❑ Blocking state. Three events may occur in this case:

a. If an error-free ACK arrives with ackNo related to one of the outstanding pack-
ets, the sender slides the window (set Sf =  ackNo) and if all outstanding packets
are acknowledged (ackNo = Sn), then the timer is stopped. If all outstanding
packets are not acknowledged, the timer is restarted. The sender then moves to
the ready state. 

b. If a corrupted ACK or an error-free ACK with the ackNo not related to the out-
standing packets arrives, the ACK is discarded.

c. If a time-out occurs, the sender sends all outstanding packets and restarts the timer. 

Figure 23.27 FSMs for the Go-Back-N protocol
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Receiver
The receiver is always in the ready state. The only variable, Rn, is initialized to 0. Three
events may occur:

a. If an error-free packet with seqNo = Rn arrives, the message in the packet is deliv-
ered to the application layer. The window then slides, Rn = (Rn + 1) modulo 2m.
Finally an ACK is sent with ackNo = Rn.

b. If an error-free packet with seqNo outside the window arrives, the packet is dis-
carded, but an ACK with ackNo = Rn is sent.    

c. If a corrupted packet arrives, it is discarded.

Send Window Size

We can now show why the size of the send window must be less than 2m. As an example,
we choose m = 2, which means the size of the window can be 2m − 1, or 3. Figure 23.28
compares a window size of 3 against a window size of 4. If the size of the window is 3
(less than 2m) and all three acknowledgments are lost, the only timer expires and all three
packets are resent. The receiver is now expecting packet 3, not packet 0, so the duplicate
packet is correctly discarded. On the other hand, if the size of the window is 4 (equal to
22) and all acknowledgments are lost, the sender will send a duplicate of packet 0. How-
ever, this time the window of the receiver expects to receive packet 0 (in the next cycle),
so it accepts packet 0, not as a duplicate, but as the first packet in the next cycle. This is an
error. This shows that the size of the send window must be less than 2m.  

Figure 23.28 Send window size for Go-Back-N
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Example 23.7

Figure 23.29 shows an example of Go-Back-N. This is an example of a case where the forward
channel is reliable, but the reverse is not. No data packets are lost, but some ACKs are delayed
and one is lost. The example also shows how cumulative acknowledgments can help if acknowledg-
ments are delayed or lost.  

After initialization, there are some sender events. Request events are triggered by message
chunks from the application layer; arrival events are triggered by ACKs received from the net-
work layer. There is no time-out event here because all outstanding packets are acknowledged
before the timer expires. Note that although ACK 2 is lost, ACK 3 is cumulative and serves as
both ACK 2 and ACK 3. There are four events at the receiver site. 

Example 23.8

Figure 23.30 shows what happens when a packet is lost. Packets 0, 1, 2, and 3 are sent. How-
ever, packet 1 is lost. The receiver receives packets 2 and 3, but they are discarded because they
are received out of order (packet 1 is expected). When the receiver receives packets 2 and 3, it
sends ACK1 to show that it expects to receive packet 1. However, these ACKs are not useful
for the sender because the ackNo is equal to Sf , not greater than Sf . So the sender discards
them. When the time-out occurs, the sender resends packets 1, 2, and 3, which are
acknowledged.  

Go-Back-N versus Stop-and-Wait

The reader may find that there is a similarity between the Go-Back-N protocol and the Stop-
and-Wait protocol. The Stop-and-Wait protocol is actually a Go-Back-N protocol in

Figure 23.29 Flow diagram for Example 23.7
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which there are only two sequence numbers and the send window size is 1. In other
words, m = 1 and 2m − 1 = 1. In Go-Back-N, we said that the arithmetic is modulo 2m; in
Stop-and-Wait it is modulo 2, which is the same as 2m when m = 1. 

23.2.4 Selective-Repeat Protocol
The Go-Back-N protocol simplifies the process at the receiver. The receiver keeps track
of only one variable, and there is no need to buffer out-of-order packets; they are
simply discarded. However, this protocol is inefficient if the underlying network proto-
col loses a lot of packets. Each time a single packet is lost or corrupted, the sender

Figure 23.30 Flow diagram for Example 23.8
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resends all outstanding packets, even though some of these packets may have been
received safe and sound but out of order. If the network layer is losing many packets
because of congestion in the network, the resending of all of these outstanding packets
makes the congestion worse, and eventually more packets are lost. This has an ava-
lanche effect that may result in the total collapse of the network. 

Another protocol, called the Selective-Repeat (SR) protocol, has been devised,
which, as the name implies, resends only selective packets, those that are actually lost.
The outline of this protocol is shown in Figure 23.31. 

Windows

The Selective-Repeat protocol also uses two windows: a send window and a receive
window. However, there are differences between the windows in this protocol and the
ones in Go-Back-N. First, the maximum size of the send window is much smaller; it is
2m−1. The reason for this will be discussed later. Second, the receive window is the
same size as the send window.

The send window maximum size can be 2m−1. For example, if m = 4, the sequence
numbers go from 0 to 15, but the maximum size of the window is just 8 (it is 15 in
the Go-Back-N Protocol). We show the Selective-Repeat send window in Figure 23.32
to emphasize the size.

The receive window in Selective-Repeat is totally different from the one in Go-
Back-N. The size of the receive window is the same as the size of the send window
(maximum 2m−1). The Selective-Repeat protocol allows as many packets as the size of
the receive window to arrive out of order and be kept until there is a set of consecutive
packets to be delivered to the application layer. Because the sizes of the send window
and receive window are the same, all the packets in the send packet can arrive out of
order and be stored until they can be delivered. We need, however, to emphasize that in a
reliable protocol the receiver never delivers packets out of order to the application layer.
Figure 23.33 shows the receive window in Selective-Repeat. Those slots inside the

Figure 23.31 Outline of Selective-Repeat 
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window that are shaded define packets that have arrived out of order and are waiting for
the earlier transmitted packet to arrive before delivery to the application layer. 

Timer

Theoretically, Selective-Repeat uses one timer for each outstanding packet. When a timer
expires, only the corresponding packet is resent. In other words, GBN treats outstanding
packets as a group; SR treats them individually. However, most transport-layer protocols
that implement SR use only a single timer. For this reason, we use only one timer. 

Acknowledgments

There is yet another difference between the two protocols. In GBN an ackNo is
cumulative; it defines the sequence number of the next packet expected, confirming
that all previous packets have been received safe and sound. The semantics of acknowl-
edgment is different in SR. In SR, an ackNo defines the sequence number of a single
packet that is received safe and sound; there is no feedback for any other.

Figure 23.32 Send window for Selective-Repeat protocol

Figure 23.33 Receive window for Selective-Repeat protocol
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Example 23.9

Assume a sender sends 6 packets: packets 0, 1, 2, 3, 4, and 5. The sender receives an ACK with
ackNo = 3. What is the interpretation if the system is using GBN or SR?

Solution
If the system is using GBN, it means that packets 0, 1, and 2 have been received uncorrupted and
the receiver is expecting packet 3. If the system is using SR, it means that packet 3 has been
received uncorrupted; the ACK does not say anything about other packets. 

FSMs

Figure 23.34 shows the FSMs for the Selective-Repeat protocol. It is similar to the ones
for the GBN, but there are some differences. 

Sender 
The sender starts in the ready state, but later it can be in one of the two states: ready or
blocking. The following shows the events and the corresponding actions in each state. 

❑ Ready state. Four events may occur in this case:

a. If a request comes from the application layer, the sender creates a packet with
the sequence number set to Sn. A copy of the packet is stored, and the packet is
sent. If the timer is not running, the sender starts the timer. The value of Sn is
now incremented, Sn = (Sn + 1) modulo 2m. If the window is full, Sn = (Sf +
Ssize) modulo 2m, the sender goes to the blocking state. 

b. If an error-free ACK arrives with ackNo related to one of the outstanding pack-
ets, that packet is marked as acknowledged. If the ackNo = Sf, the window slides
to the right until the Sf points to the first unacknowledged packet (all consecu-
tive acknowledged packets are now outside the window). If there are outstand-
ing packets, the timer is restarted; otherwise, the timer is stopped.

c. If a corrupted ACK or an error-free ACK with ackNo not related to an outstand-
ing packet arrives, it is discarded. 

d. If a time-out occurs, the sender resends all unacknowledged packets in the win-
dow and restarts the timer. 

❑ Blocking state. Three events may occur in this case:

a. If an error-free ACK arrives with ackNo related to one of the outstanding pack-
ets, that packet is marked as acknowledged. In addition, if the ackNo = Sf, the
window is slid to the right until the Sf points to the first unacknowledged packet
(all consecutive acknowledged packets are now outside the window). If the win-
dow has slid, the sender moves to the ready state. 

b. If a corrupted ACK or an error-free ACK with the ackNo not related to out-
standing packets arrives, the ACK is discarded.

c. If a time-out occurs, the sender resends all unacknowledged packets in the win-
dow and restarts the timer. 

Receiver
The receiver is always in the ready state. Three events may occur:
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a. If an error-free packet with seqNo in the window arrives, the packet is stored
and an ACK with ackNo = seqNo is sent. In addition, if the seqNo = Rn, then the
packet and all previously arrived consecutive packets are delivered to the appli-
cation layer and the window slides so that the Rn points to the first empty slot.

b. If an error-free packet with seqNo outside the window arrives, the packet is
discarded, but an ACK with ackNo = Rn is returned to the sender. This is
needed to let the sender slide its window if some ACKs related to packets with
seqNo < Rn were lost.   

c. If a corrupted packet arrives, the packet is discarded. 

Figure 23.34 FSMs for SR protocol
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Example 23.10

This example is similar to Example 23.8 (Figure 23.30) in which packet 1 is lost. We show how
Selective-Repeat behaves in this case. Figure 23.35 shows the situation. 

At the sender, packet 0 is transmitted and acknowledged. Packet 1 is lost. Packets 2 and 3
arrive out of order and are acknowledged. When the timer times out, packet 1 (the only unac-
knowledged packet) is resent and is acknowledged. The send window then slides.

At the receiver site we need to distinguish between the acceptance of a packet and its
delivery to the application layer. At the second arrival, packet 2 arrives and is stored and
marked (shaded slot), but it cannot be delivered because packet 1 is missing. At the next
arrival, packet 3 arrives and is marked and stored, but still none of the packets can be delivered.
Only at the last arrival, when finally a copy of packet 1 arrives, can packets 1, 2, and 3 be deliv-
ered to the application layer. There are two conditions for the delivery of packets to the appli-
cation layer: First, a set of consecutive packets must have arrived. Second, the set starts from
the beginning of the window. After the first arrival, there was only one packet and it started
from the beginning of the window. After the last arrival, there are three packets and the first
one starts from the beginning of the window. The key is that a reliable transport layer promises
to deliver packets in order. 

Figure 23.35 Flow diagram for Example 23.10
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Window Sizes

We can now show why the size of the sender and receiver windows can be at most one-half
of 2m. For an example, we choose m = 2, which means the size of the window is 2m/2 or
2(m−1) = 2. Figure 23.36 compares a window size of 2 with a window size of 3. 

If the size of the window is 2 and all acknowledgments are lost, the timer for
packet 0 expires and packet 0 is resent. However, the window of the receiver is now
expecting packet 2, not packet 0, so this duplicate packet is correctly discarded (the
sequence number 0 is not in the window). When the size of the window is 3 and all
acknowledgments are lost, the sender sends a duplicate of packet 0. However, this
time, the window of the receiver expects to receive packet 0 (0 is part of the win-
dow), so it accepts packet 0, not as a duplicate, but as a packet in the next cycle. This
is clearly an error.    

23.2.5 Bidirectional Protocols: Piggybacking
The four protocols we discussed earlier in this section are all unidirectional: data packets
flow in only one direction and acknowledgments travel in the other direction. In real life,
data packets are normally flowing in both directions: from client to server and from server
to client. This means that acknowledgments also need to flow in both directions. A tech-
nique called piggybacking is used to improve the efficiency of the bidirectional proto-
cols. When a packet is carrying data from A to B, it can also carry acknowledgment
feedback about arrived packets from B; when a packet is carrying data from B to A, it can
also carry acknowledgment feedback about the arrived packets from A. 

 Figure 23.37 shows the layout for the GBN protocol implemented bidirectionally
using piggybacking. The client and server each use two independent windows: send
and receive.  

In Selective-Repeat, the size of the sender and receiver window
can be at most one-half of 2m. 

Figure 23.36 Selective-Repeat, window size
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23.3 END-CHAPTER MATERIALS
23.3.1 Recommended Reading
For more details about subjects discussed in this chapter, we recommend the following
books. 

Books

Several books give information about transport-layer protocols. The items enclosed in
brackets refer to the reference list at the end of the book: In particular, we recommend
[Com 06], [PD 03], [GW 04], [Far 04], [Tan 03], and [Sta 04].

23.3.2 Key Terms

Figure 23.37 Design of piggybacking in Go-Back-N
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23.3.3 Summary
The main duty of a transport-layer protocol is to provide process-to-process commu-
nication. To define the processes, we need port numbers. The client program defines
itself with an ephemeral port number. The server defines itself with a well-known
port number. To send a message from one process to another, the transport-layer pro-
tocol encapsulates and decapsulates messages. The transport layer at the source per-
forms multiplexing; the transport layer at the destination performs demultiplexing.
Flow control balances the exchange of data items between a producer and a consumer. 

A transport-layer protocol can provide two types of services: connectionless and
connection-oriented. In a connectionless service, the sender sends packets to the
receiver without any connection establishment. In a connection-oriented service, the
client and the server first need to establish a connection between themselves.

 We have discussed several common transport-layer protocols in this chapter. The
Stop-and-Wait protocol provides both flow and error control, but is inefficient. The
Go-Back-N protocol is the more efficient version of the Stop-and-Wait protocol and takes
advantage of pipelining. The Selective-Repeat protocol, a modification of the Go-Back-N
protocol, is better suited to handle packet loss. All of these protocols can be implemented
bidirectionally using piggybacking. 

23.4 PRACTICE SET 
23.4.1 Quizzes
A set of interactive quizzes for this chapter can be found on the book website. It is
strongly recommended that the student take the quizzes to check his/her understanding
of the materials before continuing with the practice set. 

23.4.2 Questions
Q23-1. Assume we have a set of dedicated computers in a system, each designed to

perform only a single task. Do we still need host-to-host and process-to-
process communication and two levels of addressing? 

Q23-2. Operating systems assign a process number to every running application pro-
gram. Can you explain why these process numbers cannot be used instead of
port numbers? 

Q23-3. Assume you need to write and test a client-server application program on two
hosts you have at home.
a. What is the range of port numbers you would choose for the client program?
b. What is the range of port numbers you would choose for the server program?
c. Can the two port numbers be the same? 

Q23-4. Assume a new organization needs to create a new server process and allow its
customers to access the organization site using that process. How should the
port number for the server process be selected? 
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Q23-5. In a network, the size of the receive window is 1 packet. Which of the follow-
ing protocols is being used by the network?

Q23-6. In a network, the size of the send window is 20 packets. Which of the follow-
ing protocols is being used by the network?

Q23-7. In a network with fixed value for m > 1, we can either use the Go-Back-N or
the Selective-Repeat protocol. Describe the advantage and the disadvantage of
using each. What other network criteria should be considered to select either
of these protocols?

Q23-8. Since the field that stores the sequence number of a packet is limited in size,
the sequence number in a protocol needs to wrap around, which means that
two packets may have the same sequence number. In a protocol that uses m
bits for the sequence-number field, if a packet has the sequence number x, how
many packets need to be sent to see a packet with the same sequence number x,
assuming that each packet is assigned one sequence number? 

Q23-9. Does the wraparound situation we discussed in the previous question create a
problem in a network? 

Q23-10. Can you explain why some transport-layer packets may be received out of
order in the Internet?

Q23-11. Can you explain why some transport-layer packets may be lost in the Internet?
Q23-12. Can you explain why some transport-layer packets may be duplicated in the

Internet?
Q23-13. In the Go-Back-N protocol, the size of the send window can be 2m − 1, while

the size of the receive window is only 1. How can flow control be accom-
plished when there is a big difference between the size of the send and receive
windows? 

Q23-14. In the Selective-Repeat protocol, the size of the send and receive windows
is the same. Does this mean that there are supposed to be no packets in transit? 

23.4.3 Problems 
P23-1. Compare the range of 16-bit addresses, 0 to 65,535, with the range of 32-bit

IP addresses, 0 to 4,294,967,295 (discussed in Chapter 18). Why do we need
such a large range of IP addresses, but only a relatively small range of port
numbers?

P23-2. Can you explain why ICANN has divided the port numbers into three groups:
well-known, registered, and dynamic?

P23-3. A sender sends a series of packets to the same destination using 5-bit sequence
numbers. If the sequence numbers start with 0, what is the sequence number
of the 100th packet?

a. Stop-and-Wait b. Go-Back-N c. Selective-Repeat

a. Stop-and-Wait b. Go-Back-N c. Selective-Repeat
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P23-4. In each of the following protocols, how many packets can have independent
sequence numbers before wraparound occurs (see the previous problems).

a. Stop-and-Wait

b. Go-Back-N with m = 8 

c. Select-Repeat with m = 8 

P23-5. Using 5-bit sequence numbers, what is the maximum size of the send and
receive windows for each of the following protocols?

a. Stop-and-Wait

b. Go-Back-N

c. Selective-Repeat

P23-6. Show the FSM for an imaginary machine with three states: A (starting state),
B, and C; and four events: events 1, 2, 3, and 4. The following specify the
behavior of the machine:

a. When in state A, two events may occur: event 1 and event 2. If event 1
occurs, the machine performs action 1 and moves to state B. If event 2
occurs, the machine moves to state C (no action).

b. When in state B, two events may occur: event 3 and event 4. If event 3
occurs, the machine performs action 2, but remains in state B. If event 4
occurs, the machine just moves to state C.

c. When in state C, the machine remains in this state forever.

P23-7. Assume that our network never corrupts, loses, or duplicates packets. We are
only concerned about flow control. We do not want the sender to overwhelm
the receiver with packets. Design an FSM to allow the sender to send a packet
to the receiver only when the receiver is ready. If the receiver is ready to
receive a packet, it sends an ACK. Lack of getting an ACK for the sender
means that the receiver is not ready to receive more packets. 

P23-8. Assume that our network may corrupt packets, but it never loses or duplicates
a packet. We are also concerned about flow control. We do not want the sender
to overwhelm the receiver with packets. Design an FSM of a new protocol to
allow these features. 

P23-9. In the Stop-and-Wait protocol, show the case in which the receiver receives a
duplicate packet (which is also out of order). Hint: Think about a delayed
ACK. What is the reaction of the receiver to this event? 

P23-10. Assume we want to change the Stop-and-Wait protocol and add the NAK
(negative ACK) packet to the system. When a corrupted packet arrives at the
receiver, the receiver discards the packet, but sends a NAK with a nakNo
defining the seqNo of the corrupted packet. In this way, the sender can resend
the corrupted packet without waiting for the time-out. Explain what changes
need to be made in the FSM of Figure 23.21 and show an example of the oper-
ation of the new protocol with a time-line diagram. 

P23-11. Redraw Figure 23.19 with 5 packets exchanged (0, 1, 2, 3, 4). Assume packet 2
is lost and packet 3 arrives after packet 4. 
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P23-12. Create a scenario similar to Figure 23.22 in which the sender sends three
packets. The first and second packets arrive and are acknowledged. The third
packet is delayed and resent. The duplicate packet is received after the
acknowledgment for the original is sent. 

P23-13. Create a scenario similar to Figure 23.22 in which the sender sends two pack-
ets. The first packet is received and acknowledged, but the acknowledgment is
lost. The sender resends the packet after time-out. The second packet is lost
and resent. 

P23-14. Redraw Figure 23.29 when the sender sends 5 packets (0, 1, 2, 3, and 4). Pack-
ets 0, 1, and 2 are sent and acknowledged in a single ACK, which arrives at the
sender site after all packets have been sent. Packet 3 is received and acknowl-
edged in a single ACK. Packet 4 is lost and resent. 

P23-15. Redraw Figure 23.35 if the sender sends 5 packets (0, 1, 2, 3, and 4). Packets
0, 1, and 2 are received in order and acknowledged, one by one. Packet 3 is
delayed and received after packet 4.

P23-16. Answer the following questions related to the FSMs for the Stop-and-Wait
protocol (Figure 23.21):

a. The sending machine is in the ready state and S = 0. What is the sequence
number of the next packet to send?

b. The sending machine is in the blocking state and S = 1. What is the
sequence number of the next packet to send if a time-out occurs?

c. The receiving machine is in the ready state and R = 1. A packet with the
sequence number 1 arrives. What is the action in response to this event? 

d. The receiving machine is in the ready state and R = 1. A packet with the
sequence number 0 arrives. What is the action in response to this event?

P23-17. Answer the following questions related to the FSMs for the Go-back-N
protocol with m = 6 bits. Assume the window size is 63. (Figure 23.27):

a. The sending machine is in the ready state with Sf  = 10 and Sn = 15. What is
the sequence number of the next packet to send?

b. The sending machine is in the ready state with Sf  = 10 and Sn = 15. A time-out
occurs. How many packets are to be resent? What are their sequence numbers?

c. The sending machine is in the ready state with Sf = 10 and Sn = 15. An
ACK with ackNo = 13 arrives. What are the next values of Sf and Sn?

d. The sending machine is in the blocking state with Sf  = 14 and Sn = 21.
What is the size of the window? 

e. The sending machine is in the blocking state with Sf  = 14 and Sn = 21. An
ACK with ackNo = 18 arrives. What are the next values of Sf and Sn? What
is the state of the sending machine?

f. The receiving machine is in the ready state with Rn = 16. A packet with
sequence number 16 arrives. What is the next value of Rn? What is the
response of the machine to this event? 
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P23-18. Answer the following questions related to the FSMs for the Selective-Repeat
protocol with m = 7 bits. Assume the window size is 64. (Figure 23.34):

a. The sending machine is in the ready state with Sf  = 10 and Sn = 15. What is
the sequence number of the next packet to send?

b. The sending machine is in the ready state with Sf = 10 and Sn = 15. The
timer for packet 10 times out. How many packets are to be resent? What are
their sequence numbers?

c. The sending machine is in the ready state with Sf = 10 and Sn = 15. An
ACK with ackNo = 13 arrives. What are the next values of Sf and Sn? What
is the action in response to this event?

d. The sending machine is in the blocking state with Sf = 14 and Sn = 21.
What is the size of the window? 

e. The sending machine is in the blocking state with Sf  = 14 and Sn = 21. An
ACK with ackNo = 14 arrives. Packets 15 and 16 have already been
acknowledged. What are the next values of Sf and Sn? What is the state of
the sending machine?

f. The receiving machine is in the ready state with Rn = 16. The size of the
window is 8. A packet with sequence number 16 arrives. What is the next
value of Rn? What is the response of the machine to this event? 

P23-19. We can define the bandwidth-delay product in a network as the number of
packets that can be in the pipe during the round-trip time (RTT). What is the
bandwidth-delay product in each of the following situations?

a. Bandwidth: 1 Mbps, RTT: 20 ms, packet size: 1000 bits
b. Bandwidth: 10 Mbps, RTT: 20 ms, packet size: 2000 bits 
c. Bandwidth: 1 Gbps, RTT: 4 ms, packet size: 10,000 bits

P23-20. Assume we need to design a Go-Back-N sliding-window protocol for a net-
work in which the bandwidth is 100 Mbps and the average distance between
the sender and receiver is 10,000 km. Assume the average packet size is
100,000 bits and the propagation speed in the media is 2 × 108 m/s. Find the
maximum size of the send and receive windows, the number of bits in the
sequence number field (m), and an appropriate time-out value for the timer. 

P23-21. Assume we need to design a Selective-Repeat sliding-window protocol for a
network in which the bandwidth is 1 Gbps and the average distance between
the sender and receiver is 5,000 km. Assume the average packet size is 50,000
bits and the propagation speed in the media is 2 × 108 m. Find the maximum
size of the send and receive windows, the number of bits in the sequence num-
ber field (m), and an appropriate time-out value for the timer. 

P23-22. An acknowledgment number in the Go-Back-N protocol defines the next
packet expected, but an acknowledgment number in the Selective-Repeat pro-
tocol defines the sequence number of the packet to be acknowledged. Can you
explain the reason? 
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P23-23. In a network using the Go-Back-N protocol with m = 3 and the sending win-
dow of size 7, the values of variables are Sf  = 62, Sn = 66, and Rn = 64.
Assume that the network does not duplicate or reorder the packets. 

a. What are the sequence numbers of data packets in transit? 
b. What are the acknowledgment numbers of ACK packets in transit? 

P23-24. In a network using the Selective-Repeat protocol with m = 4 and the sending
window of size 8, the value of variables are Sf = 62, Sn = 67, and Rn = 64.
Packet 65 has already been acknowledged at the sender site; packets 65 and 66
are received out-of-order at the receiver site. Assume that the network does
not duplicate the packets. 

a. What are the sequence numbers of pending data packets (in transit, cor-
rupted, or lost)? 

b. What are the acknowledgment numbers of pending ACK packets (in tran-
sit, corrupted, or lost)?

23.5 SIMULATION EXPERIMENTS
23.5.1 Applets
We have created some Java applets to show some of the main concepts discussed in this
chapter. It is strongly recommended that the students activate these applets on the book
website and carefully examine the protocols in action. 

23.6 PROGRAMMING ASSIGNMENT
Write the source code, compile, and test the following programs in the programming
language of your choice:

Prg23-1. Write a program to simulate the sending-site FSMs for the simple protocol
(Figure 23.18).

Prg23-2. Write a program to simulate the sending-site FSMs for the Stop-and-Wait
protocol (Figure 23.21).

Prg23-3. Write a program to simulate the sending-site FSMs for the Go-Back-N pro-
tocol (Figure 23.27).

Prg23-4. Write a program to simulate the sending-site FSMs for the Selective Repeat
protocol (Figure 23.34).
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C H A P T E R  2 4

Transport-Layer Protocols

he transport layer in the TCP/IP suite is located between the application layer and
the network layer. It provides services to the application layer and receives services

from the network layer. The transport layer acts as a liaison between a client program
and a server program, a process-to-process connection. The transport layer is the heart
of the TCP/IP protocol suite; it is the end-to-end logical vehicle for transferring data
from one point to another in the Internet. We have divided this chapter into four sec-
tions:

❑ The first section introduces the three transport-layer protocols in the Internet and
gives some information common to all of them.

❑ The second section concentrates on UDP, which is the simplest of the three proto-
cols. UDP lacks many services we require from a transport-layer protocol, but its
simplicity is very attractive to some applications, as we show.

❑ The third section discusses TCP. The section first lists its services and features.
Using a transition diagram, it then shows how TCP provides a connection-oriented
service. The section then uses abstract windows to show how flow and error con-
trol are accomplished in TCP. Congestion control in TCP is discussed next, a topic
that was discussed for the network layer. 

❑ The fourth section discusses SCTP. The section first lists its services and features.
It then shows how STCP creates an association. The section then shows how flow
and error control are accomplished in SCTP using SACKs. 

T
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24.1 INTRODUCTION
After discussing the general principle behind the transport layer in the previous chapter,
we concentrate on the transport protocols in the Internet in this chapter. Figure 24.1
shows the position of these three protocols in the TCP/IP protocol suite. 

24.1.1 Services
Each protocol provides a different type of service and should be used appropriately.

UDP

UDP is an unreliable connectionless transport-layer protocol used for its simplicity and
efficiency in applications where error control can be provided by the application-layer
process.

TCP

TCP is a reliable connection-oriented protocol that can be used in any application
where reliability is important.

SCTP

SCTP is a new transport-layer protocol that combines the features of UDP and TCP.  

24.1.2 Port Numbers
As discussed in the previous chapter, a transport-layer protocol usually has several
responsibilities. One is to create a process-to-process communication; these protocols
use port numbers to accomplish this. Port numbers provide end-to-end addresses at the
transport layer and allow multiplexing and demultiplexing at this layer, just as IP
addresses do at the network layer. Table 24.1 gives some common port numbers for all
three protocols we discuss in this chapter. 

Figure 24.1 Position of transport-layer protocols in the TCP/IP protocol suite
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24.2 USER DATAGRAM PROTOCOL
The User Datagram Protocol (UDP) is a connectionless, unreliable transport protocol.
It does not add anything to the services of IP except for providing process-to-process
communication instead of host-to-host communication. If UDP is so powerless, why
would a process want to use it? With the disadvantages come some advantages. UDP is a
very simple protocol using a minimum of overhead. If a process wants to send a small
message and does not care much about reliability, it can use UDP. Sending a small mes-
sage using UDP takes much less interaction between the sender and receiver than using
TCP. We discuss some applications of UDP at the end of this section. 

24.2.1 User Datagram
UDP packets, called user datagrams, have a fixed-size header of 8 bytes made of four
fields, each of 2 bytes (16 bits). Figure 24.2 shows the format of a user datagram. The
first two fields define the source and destination port numbers. The third field defines
the total length of the user datagram, header plus data. The 16 bits can define a total
length of 0 to 65,535 bytes. However, the total length needs to be less because a UDP
user datagram is stored in an IP datagram with the total length of 65,535 bytes. The last
field can carry the optional checksum (explained later).    

Table 24.1 Some well-known ports used with UDP and TCP 

Port Protocol UDP TCP SCTP Description
7 Echo √ √ √ Echoes back a received datagram
9 Discard √ √ √ Discards any datagram that is received

11 Users √ √ √ Active users
13 Daytime √ √ √ Returns the date and the time
17 Quote √ √ √ Returns a quote of the day
19 Chargen √ √ √ Returns a string of characters
20 FTP-data √ √ File Transfer Protocol
21 FTP-21 √ √ File Transfer Protocol
23 TELNET √ √ Terminal Network
25 SMTP √ √ Simple Mail Transfer Protocol
53 DNS √ √ √ Domain Name Service 
67 DHCP √ √ √ Dynamic Host Configuration Protocol
69 TFTP √ √ √ Trivial File Transfer Protocol
80 HTTP √ √ HyperText Transfer Protocol
111 RPC √ √ √ Remote Procedure Call
123 NTP √ √ √ Network Time Protocol
161 SNMP-server √ Simple Network Management Protocol
162 SNMP-client √ Simple Network Management Protocol
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Example 24.1

The following is the content of a UDP header in hexadecimal format. 

a. What is the source port number?

b. What is the destination port number?

c. What is the total length of the user datagram?

d. What is the length of the data?

e. Is the packet directed from a client to a server or vice versa?

f. What is the client process?

Solution
a. The source port number is the first four hexadecimal digits (CB84)16, which means that

the source port number is 52100.

b. The destination port number is the second four hexadecimal digits (000D)16, which
means that the destination port number is 13.

c. The third four hexadecimal digits (001C)16 define the length of the whole UDP packet as
28 bytes.

d. The length of the data is the length of the whole packet minus the length of the header, or
28 − 8 = 20 bytes.

e. Since the destination port number is 13 (well-known port), the packet is from the client
to the server. 

f. The client process is the Daytime (see Table 24.1). 

24.2.2 UDP Services
Earlier we discussed the general services provided by a transport-layer protocol. In this
section, we discuss what portions of those general services are provided by UDP. 

Process-to-Process Communication

UDP provides process-to-process communication using socket addresses, a combina-
tion of IP addresses and port numbers. 

Figure 24.2 User datagram packet format
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Connectionless Services

As mentioned previously, UDP provides a connectionless service. This means that each
user datagram sent by UDP is an independent datagram. There is no relationship
between the different user datagrams even if they are coming from the same source pro-
cess and going to the same destination program. The user datagrams are not numbered.
Also, unlike TCP, there is no connection establishment and no connection termination.
This means that each user datagram can travel on a different path. 

One of the ramifications of being connectionless is that the process that uses
UDP cannot send a stream of data to UDP and expect UDP to chop them into differ-
ent, related user datagrams. Instead each request must be small enough to fit into one
user datagram. Only those processes sending short messages, messages less than
65,507 bytes (65,535 minus 8 bytes for the UDP header and minus 20 bytes for the
IP header), can use UDP. 

Flow Control

UDP is a very simple protocol. There is no flow control, and hence no window mecha-
nism. The receiver may overflow with incoming messages. The lack of flow control
means that the process using UDP should provide for this service, if needed. 

Error Control

There is no error control mechanism in UDP except for the checksum. This means that
the sender does not know if a message has been lost or duplicated. When the receiver
detects an error through the checksum, the user datagram is silently discarded. The lack of
error control means that the process using UDP should provide for this service, if needed. 

Checksum

We discussed checksum and its calculation in Chapter 10. UDP checksum calculation
includes three sections: a pseudoheader, the UDP header, and the data coming from the
application layer. The pseudoheader is the part of the header of the IP packet (discussed
in Chapter 19) in which the user datagram is to be encapsulated with some fields filled
with 0s (see Figure 24.3). 

Figure 24.3 Pseudoheader for checksum calculation
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If the checksum does not include the pseudoheader, a user datagram may arrive safe
and sound. However, if the IP header is corrupted, it may be delivered to the wrong host.

The protocol field is added to ensure that the packet belongs to UDP, and not to
TCP. We will see later that if a process can use either UDP or TCP, the destination port
number can be the same. The value of the protocol field for UDP is 17. If this value is
changed during transmission, the checksum calculation at the receiver will detect it and
UDP drops the packet. It is not delivered to the wrong protocol.   

Optional Inclusion of Checksum
The sender of a UDP packet can choose not to calculate the checksum. In this case, the
checksum field is filled with all 0s before being sent. In the situation where the sender
decides to calculate the checksum, but it happens that the result is all 0s, the checksum
is changed to all 1s before the packet is sent. In other words, the sender complements
the sum two times. Note that this does not create confusion because the value of the
checksum is never all 1s in a normal situation (see the next example). 

Example 24.2

What value is sent for the checksum in each one of the following hypothetical situations?

a. The sender decides not to include the checksum.

b. The sender decides to include the checksum, but the value of the sum is all 1s. 

c. The sender decides to include the checksum, but the value of the sum is all 0s.

Solution
a. The value sent for the checksum field is all 0s to show that the checksum is not calculated.

b. When the sender complements the sum, the result is all 0s; the sender complements the
result again before sending. The value sent for the checksum is all 1s. The second
complement operation is needed to avoid confusion with the case in part a. 

c. This situation never happens because it implies that the value of every term included in
the calculation of the sum is all 0s, which is impossible; some fields in the pseudoheader
have nonzero values. 

Congestion Control

Since UDP is a connectionless protocol, it does not provide congestion control. UDP
assumes that the packets sent are small and sporadic and cannot create congestion in
the network. This assumption may or may not be true today, when UDP is used for
interactive  real-time transfer of audio and video. 

Encapsulation and Decapsulation

To send a message from one process to another, the UDP protocol encapsulates and
decapsulates messages. 

Queuing

We have talked about ports without discussing the actual implementation of them. In
UDP, queues are associated with ports.

At the client site, when a process starts, it requests a port number from the operat-
ing system. Some implementations create both an incoming and an outgoing queue
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associated with each process. Other implementations create only an incoming queue
associated with each process. 

Multiplexing and Demultiplexing

In a host running a TCP/IP protocol suite, there is only one UDP but possibly several
processes that may want to use the services of UDP. To handle this situation, UDP mul-
tiplexes and demultiplexes.

Comparison between UDP and Generic Simple Protocol

We can compare UDP with the connectionless simple protocol we discussed earlier.
The only difference is that UDP provides an optional checksum to detect corrupted
packets at the receiver site. If the checksum is added to the packet, the receiving UDP
can check the packet and discard the packet if it is corrupted. No feedback, however,
is sent to the sender. 

24.2.3 UDP Applications
Although UDP meets almost none of the criteria we mentioned earlier for a reliable
transport-layer protocol, UDP is preferable for some applications. The reason is that
some services may have some side effects that are either unacceptable or not prefera-
ble. An application designer sometimes needs to compromise to get the optimum. For
example, in our daily life, we all know that a one-day delivery of a package by a carrier
is more expensive than a three-day delivery. Although high speed and low cost are both
desirable features in delivery of a parcel, they are in conflict with each other. We need
to choose the optimum. 

In this section, we first discuss some features of UDP that may need to be consid-
ered when we design an application program and then show some typical applications.

UDP Features

We briefly discuss some features of UDP and their advantages and disadvantages. 

Connectionless Service 
As we mentioned previously, UDP is a connectionless protocol. Each UDP packet is
independent from other packets sent by the same application program. This feature can
be considered as an advantage or disadvantage depending on the application require-
ments. It is an advantage if, for example, a client application needs to send a short
request to a server and to receive a short response. If the request and response can each
fit in a single user datagram, a connectionless service may be preferable. The overhead
to establish and close a connection may be significant in this case. In the connection-
oriented service, to achieve the above goal, at least 9 packets are exchanged between
the client and the server; in connectionless service only 2 packets are exchanged. The
connectionless service provides less delay; the connection-oriented service creates
more delay. If delay is an important issue for the application, the connectionless service
is preferred. 

UDP is an example of the connectionless simple protocol we discussed earlier with the 
exception of an optional checksum added to packets for error detection. 
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Example 24.3

A client-server application such as DNS (see Chapter 26) uses the services of UDP because a cli-
ent needs to send a short request to a server and to receive a quick response from it. The request
and response can each fit in one user datagram. Since only one message is exchanged in each
direction, the connectionless feature is not an issue; the client or server does not worry that mes-
sages are delivered out of order. 

Example 24.4

A client-server application such as SMTP (see Chapter 27), which is used in electronic mail, can-
not use the services of UDP because a user might send a long e-mail message, which could
include multimedia (images, audio, or video). If the application uses UDP and the message does
not fit in one user datagram, the message must be split by the application into different user data-
grams. Here the connectionless service may create problems. The user datagrams may arrive and
be delivered to the receiver application out of order. The receiver application may not be able to
reorder the pieces. This means the connectionless service has a disadvantage for an application
program that sends long messages. In SMTP, when we send a message, we do not expect to
receive a response quickly (sometimes no response is required). This means that the extra delay
inherent in connection-oriented service is not crucial for SMTP. 

Lack of Error Control
UDP does not provide error control; it provides an unreliable service. Most applications
expect reliable service from a transport-layer protocol. Although a reliable service is
desirable, it may have some side effects that are not acceptable to some applications.
When a transport layer provides reliable services, if a part of the message is lost or cor-
rupted, it needs to be resent. This means that the receiving transport layer cannot
deliver that part to the application immediately; there is an uneven delay between dif-
ferent parts of the message delivered to the application layer. Some applications, by
nature, do not even notice these uneven delays, but for some they are very problematic.

Example 24.5

Assume we are downloading a very large text file from the Internet. We definitely need to use a
transport layer that provides reliable service. We don’t want part of the file to be missing or cor-
rupted when we open the file. The delay created between the deliveries of the parts is not an over-
riding concern for us; we wait until the whole file is composed before looking at it. In this case,
UDP is not a suitable transport layer. 

Example 24.6

Assume we are using a real-time interactive application, such as Skype. Audio and video are
divided into frames and sent one after another. If the transport layer is supposed to resend a cor-
rupted or lost frame, the synchronizing of the whole transmission may be lost. The viewer sud-
denly sees a blank screen and needs to wait until the second transmission arrives. This is not
tolerable. However, if each small part of the screen is sent using a single user datagram, the
receiving UDP can easily ignore the corrupted or lost packet and deliver the rest to the applica-
tion program. That part of the screen is blank for a very short period of time, which most viewers
do not even notice. 

Lack of Congestion Control
UDP does not provide congestion control. However, UDP does not create additional
traffic in an error-prone network. TCP may resend a packet several times and thus
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contribute to the creation of congestion or worsen a congested situation. Therefore, in
some cases, lack of error control in UDP can be considered an advantage when conges-
tion is a big issue. 

Typical Applications

The following shows some typical applications that can benefit more from the services
of UDP than from those of TCP.   

❑ UDP is suitable for a process that requires simple request-response communication
with little concern for flow and error control. It is not usually used for a process
such as FTP that needs to send bulk data (see Chapter 26). 

❑ UDP is suitable for a process with internal flow- and error-control mechanisms.
For example, the Trivial File Transfer Protocol (TFTP) process includes flow and
error control. It can easily use UDP.

❑ UDP is a suitable transport protocol for multicasting. Multicasting capability is
embedded in the UDP software but not in the TCP software. 

❑ UDP is used for management processes such as SNMP (see Chapter 27). 

❑ UDP is used for some route updating protocols such as Routing Information Proto-
col (RIP) (see Chapter 20). 

❑ UDP is normally used for interactive real-time applications that cannot tolerate
uneven delay between sections of a received message (see Chapter 28). 

24.3 TRANSMISSION CONTROL PROTOCOL 
Transmission Control Protocol (TCP) is a connection-oriented, reliable protocol.
TCP explicitly defines connection establishment, data transfer, and connection tear-
down phases to provide a connection-oriented service. TCP uses a combination of
GBN and SR protocols to provide reliability. To achieve this goal, TCP uses checksum
(for error detection), retransmission of lost or corrupted packets, cumulative and selec-
tive acknowledgments, and timers. In this section, we first discuss the services provided
by TCP; we then discuss the TCP features in more detail. TCP is the most common
transport-layer protocol in the Internet. 

24.3.1 TCP Services
Before discussing TCP in detail, let us explain the services offered by TCP to the pro-
cesses at the application layer.

Process-to-Process Communication

As with UDP, TCP provides process-to-process communication using port numbers.
We have already given some of the port numbers used by TCP in Table 24.1 in the pre-
vious section. 
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Stream Delivery Service

TCP, unlike UDP, is a stream-oriented protocol. In UDP, a process sends messages with
predefined boundaries to UDP for delivery. UDP adds its own header to each of these
messages and delivers it to IP for transmission. Each message from the process is called
a user datagram, and becomes, eventually, one IP datagram. Neither IP nor UDP recog-
nizes any relationship between the datagrams. 

TCP, on the other hand, allows the sending process to deliver data as a stream of
bytes and allows the receiving process to obtain data as a stream of bytes. TCP creates
an environment in which the two processes seem to be connected by an imaginary
“tube” that carries their bytes across the Internet. This imaginary environment is
depicted in Figure 24.4. The sending process produces (writes to) the stream and the
receiving process consumes (reads from) it.  

Sending and Receiving Buffers
Because the sending and the receiving processes may not necessarily write or read
data at the same rate, TCP needs buffers for storage. There are two buffers, the send-
ing buffer and the receiving buffer, one for each direction. We will see later that these
buffers are also necessary for flow- and error-control mechanisms used by TCP. One
way to implement a buffer is to use a circular array of 1-byte locations as shown in
Figure 24.5. For simplicity, we have shown two buffers of 20 bytes each; normally
the buffers are hundreds or thousands of bytes, depending on the implementation. We
also show the buffers as the same size, which is not always the case. 

The figure shows the movement of the data in one direction. At the sender, the buf-
fer has three types of chambers. The white section contains empty chambers that can be
filled by the sending process (producer). The colored area holds bytes that have been
sent but not yet acknowledged. The TCP sender keeps these bytes in the buffer until it
receives an acknowledgment. The shaded area contains bytes to be sent by the sending
TCP. However, as we will see later in this chapter, TCP may be able to send only part of
this shaded section. This could be due to the slowness of the receiving process or to
congestion in the network. Also note that, after the bytes in the colored chambers are
acknowledged, the chambers are recycled and available for use by the sending process.
This is why we show a circular buffer. 

The operation of the buffer at the receiver is simpler. The circular buffer is divided
into two areas (shown as white and colored). The white area contains empty chambers
to be filled by bytes received from the network. The colored sections contain received

Figure 24.4 Stream delivery
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bytes that can be read by the receiving process. When a byte is read by the receiving
process, the chamber is recycled and added to the pool of empty chambers. 

Segments
Although buffering handles the disparity between the speed of the producing and consum-
ing processes, we need one more step before we can send data. The network layer, as a
service provider for TCP, needs to send data in packets, not as a stream of bytes. At the
transport layer, TCP groups a number of bytes together into a packet called a segment.
TCP adds a header to each segment (for control purposes) and delivers the segment to the
network layer for transmission. The segments are encapsulated in an IP datagram and
transmitted. This entire operation is transparent to the receiving process. Later we will see
that segments may be received out of order, lost or corrupted, and resent. All of these are
handled by the TCP receiver with the receiving application process unaware of TCP’s
activities. Figure 24.6 shows how segments are created from the bytes in the buffers. 

Note that segments are not necessarily all the same size. In the figure, for simplic-
ity, we show one segment carrying 3 bytes and the other carrying 5 bytes. In reality,
segments carry hundreds, if not thousands, of bytes. 

Figure 24.5 Sending and receiving buffers

Figure 24.6 TCP segments
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Full-Duplex Communication

TCP offers full-duplex service, where data can flow in both directions at the same time.
Each TCP endpoint then has its own sending and receiving buffer, and segments move
in both directions.

Multiplexing and Demultiplexing

Like UDP, TCP performs multiplexing at the sender and demultiplexing at the receiver.
However, since TCP is a connection-oriented protocol, a connection needs to be estab-
lished for each pair of processes. 

Connection-Oriented Service

TCP, unlike UDP, is a connection-oriented protocol. When a process at site A wants to
send to and receive data from another process at site B, the following three phases occur:

1. The two TCP’s establish a logical connection between them. 

2. Data are exchanged in both directions. 

3. The connection is terminated.
Note that this is a logical connection, not a physical connection. The TCP segment is
encapsulated in an IP datagram and can be sent out of order, or lost or corrupted, and
then resent. Each may be routed over a different path to reach the destination. There is
no physical connection. TCP creates a stream-oriented environment in which it accepts
the responsibility of delivering the bytes in order to the other site. 

Reliable Service

TCP is a reliable transport protocol. It uses an acknowledgment mechanism to check
the safe and sound arrival of data. We will discuss this feature further in the section on
error control.

24.3.2 TCP Features
To provide the services mentioned in the previous section, TCP has several features that
are briefly summarized in this section and discussed later in detail. 

Numbering System 

Although the TCP software keeps track of the segments being transmitted or received,
there is no field for a segment number value in the segment header. Instead, there are
two fields, called the sequence number and the acknowledgment number. These two
fields refer to a byte number and not a segment number. 

Byte Number
TCP numbers all data bytes (octets) that are transmitted in a connection. Numbering is
independent in each direction. When TCP receives bytes of data from a process, TCP
stores them in the sending buffer and numbers them. The numbering does not necessar-
ily start from 0. Instead, TCP chooses an arbitrary number between 0 and 232 − 1 for
the number of the first byte. For example, if the number happens to be 1057 and the
total data to be sent is 6000 bytes, the bytes are numbered from 1057 to 7056. We will
see that byte numbering is used for flow and error control.
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Sequence Number
After the bytes have been numbered, TCP assigns a sequence number to each segment
that is being sent. The sequence number, in each direction, is defined as follows:

1. The sequence number of the first segment is the ISN (initial sequence number),
which is a random number.

2. The sequence number of any other segment is the sequence number of the previous
segment plus the number of bytes (real or imaginary) carried by the previous seg-
ment. Later, we show that some control segments are thought of as carrying one
imaginary byte.  

Example 24.7

Suppose a TCP connection is transferring a file of 5000 bytes. The first byte is numbered 10001.
What are the sequence numbers for each segment if data are sent in five segments, each carrying
1000 bytes?

Solution
The following shows the sequence number for each segment: 

When a segment carries a combination of data and control information (piggy-
backing), it uses a sequence number. If a segment does not carry user data, it does not
logically define a sequence number. The field is there, but the value is not valid. How-
ever, some segments, when carrying only control information, need a sequence number
to allow an acknowledgment from the receiver. These segments are used for connection
establishment, termination, or abortion. Each of these segments consume one sequence
number as though it carries one byte, but there are no actual data. We will elaborate on
this issue when we discuss connections.   

Acknowledgment Number
As we discussed previously, communication in TCP is full duplex; when a connec-
tion is established, both parties can send and receive data at the same time. Each
party numbers the bytes, usually with a different starting byte number. The sequence
number in each direction shows the number of the first byte carried by the segment.
Each party also uses an acknowledgment number to confirm the bytes it has received.
However, the acknowledgment number defines the number of the next byte that the

The bytes of data being transferred in each connection are numbered by TCP. 
The numbering starts with an arbitrarily generated number.

Segment 1 → Sequence Number: 10001 Range: 10001 to 11000

Segment 2 → Sequence Number: 11001 Range: 11001 to 12000

Segment 3 → Sequence Number: 12001 Range: 12001 to 13000

Segment 4 → Sequence Number: 13001 Range: 13001 to 14000

Segment 5 → Sequence Number: 14001 Range: 14001 to 15000

The value in the sequence number field of a segment defines the number assigned to the 
first data byte contained in that segment.
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party expects to receive. In addition, the acknowledgment number is cumulative,
which means that the party takes the number of the last byte that it has received, safe
and sound, adds 1 to it, and announces this sum as the acknowledgment number. The
term cumulative here means that if a party uses 5643 as an acknowledgment number,
it has received all bytes from the beginning up to 5642. Note that this does not mean
that the party has received 5642 bytes, because the first byte number does not have
to be 0. 

24.3.3 Segment 
Before discussing TCP in more detail, let us discuss the TCP packets themselves. A
packet in TCP is called a segment. 

Format

The format of a segment is shown in Figure 24.7. The segment consists of a header of
20 to 60 bytes, followed by data from the application program. The header is 20 bytes if
there are no options and up to 60 bytes if it contains options. We will discuss some of
the header fields in this section. The meaning and purpose of these will become clearer
as we proceed through the section. 

The value of the acknowledgment field in a segment defines the number of the next byte 
a party expects to receive. The acknowledgment number is cumulative.

Figure 24.7 TCP segment format
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❑ Source port address. This is a 16-bit field that defines the port number of the
application program in the host that is sending the segment. 

❑ Destination port address. This is a 16-bit field that defines the port number of the
application program in the host that is receiving the segment. 

❑ Sequence number. This 32-bit field defines the number assigned to the first byte of
data contained in this segment. As we said before, TCP is a stream transport proto-
col. To ensure connectivity, each byte to be transmitted is numbered. The sequence
number tells the destination which byte in this sequence is the first byte in the seg-
ment. During connection establishment (discussed later) each party uses a random
number generator to create an initial sequence number (ISN), which is usually
different in each direction. 

❑ Acknowledgment number. This 32-bit field defines the byte number that the
receiver of the segment is expecting to receive from the other party. If the receiver
of the segment has successfully received byte number x from the other party, it
returns x + 1 as the acknowledgment number. Acknowledgment and data can be
piggybacked together. 

❑ Header length. This 4-bit field indicates the number of 4-byte words in the TCP
header. The length of the header can be between 20 and 60 bytes. Therefore, the
value of this field is always between 5 (5 × 4 = 20) and 15 (15 × 4 = 60).

❑ Control. This field defines 6 different control bits or flags, as shown in Figure 24.8.
One or more of these bits can be set at a time. These bits enable flow control, con-
nection establishment and termination, connection abortion, and the mode of data
transfer in TCP. A brief description of each bit is shown in the figure. We will dis-
cuss them further when we study the detailed operation of TCP later in the chapter. 

❑ Window size. This field defines the window size of the sending TCP in bytes. Note
that the length of this field is 16 bits, which means that the maximum size of the
window is 65,535 bytes. This value is normally referred to as the receiving window
(rwnd) and is determined by the receiver. The sender must obey the dictation of the
receiver in this case. 

❑ Checksum. This 16-bit field contains the checksum. The calculation of the check-
sum for TCP follows the same procedure as the one described for UDP. However, the
use of the checksum in the UDP datagram is optional, whereas the use of the
checksum for TCP is mandatory. The same pseudoheader, serving the same

Figure 24.8 Control field
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purpose, is added to the segment. For the TCP pseudoheader, the value for the pro-
tocol field is 6. See Figure 24.9.   

❑ Urgent pointer. This 16-bit field, which is valid only if the urgent flag is set, is
used when the segment contains urgent data. It defines a value that must be added
to the sequence number to obtain the number of the last urgent byte in the data sec-
tion of the segment. This will be discussed later in this chapter.

❑ Options. There can be up to 40 bytes of optional information in the TCP header.
We will discuss some of the options used in the TCP header later in the section. 

Encapsulation

A TCP segment encapsulates the data received from the application layer. The TCP
segment is encapsulated in an IP datagram, which in turn is encapsulated in a frame at
the data-link layer. 

24.3.4 A TCP Connection
TCP is connection-oriented. As discussed before, a connection-oriented transport proto-
col establishes a logical path between the source and destination. All of the segments
belonging to a message are then sent over this logical path. Using a single logical path-
way for the entire message facilitates the acknowledgment process as well as retrans-
mission of damaged or lost frames. You may wonder how TCP, which uses the services
of IP, a connectionless protocol, can be connection-oriented. The point is that a TCP
connection is logical, not physical. TCP operates at a higher level. TCP uses the ser-
vices of IP to deliver individual segments to the receiver, but it controls the connection
itself. If a segment is lost or corrupted, it is retransmitted. Unlike TCP, IP is unaware of

Figure 24.9 Pseudoheader added to the TCP datagram
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this retransmission. If a segment arrives out of order, TCP holds it until the missing seg-
ments arrive; IP is unaware of this reordering. 

In TCP, connection-oriented transmission requires three phases: connection estab-
lishment, data transfer, and connection termination.

Connection Establishment

TCP transmits data in full-duplex mode. When two TCPs in two machines are con-
nected, they are able to send segments to each other simultaneously. This implies that
each party must initialize communication and get approval from the other party before
any data are transferred. 

Three-Way Handshaking 
The connection establishment in TCP is called three-way handshaking. In our exam-
ple, an application program, called the client, wants to make a connection with another
application program, called the server, using TCP as the transport-layer protocol. 

The process starts with the server. The server program tells its TCP that it is ready
to accept a connection. This request is called a passive open. Although the server TCP
is ready to accept a connection from any machine in the world, it cannot make the con-
nection itself. 

The client program issues a request for an active open. A client that wishes to con-
nect to an open server tells its TCP to connect to a particular server. TCP can now start
the three-way handshaking process, as shown in Figure 24.10.

To show the process we use time lines. Each segment has values for all its header
fields and perhaps for some of its option fields too. However, we show only the few fields
necessary to understand each phase. We show the sequence number, the acknowledgment

Figure 24.10 Connection establishment using three-way handshaking
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number, the control flags (only those that are set), and window size if relevant. The three
steps in this phase are as follows. 

1. The client sends the first segment, a SYN segment, in which only the SYN flag is set.
This segment is for synchronization of sequence numbers. The client in our example
chooses a random number as the first sequence number and sends this number to the
server. This sequence number is called the initial sequence number (ISN). Note that
this segment does not contain an acknowledgment number. It does not define the
window size either; a window size definition makes sense only when a segment
includes an acknowledgment. The segment can also include some options that we
discuss later in the chapter. Note that the SYN segment is a control segment and car-
ries no data. However, it consumes one sequence number because it needs to be
acknowledged. We can say that the SYN segment carries one imaginary byte. 

2. The server sends the second segment, a SYN + ACK segment with two flag bits set
as: SYN and ACK. This segment has a dual purpose. First, it is a SYN segment for
communication in the other direction. The server uses this segment to initialize a
sequence number for numbering the bytes sent from the server to the client. The
server also acknowledges the receipt of the SYN segment from the client by setting
the ACK flag and displaying the next sequence number it expects to receive from the
client. Because the segment contains an acknowledgment, it also needs to define the
receive window size, rwnd (to be used by the client), as we will see in the flow control
section. Since this segment is playing the role of a SYN segment, it needs to be
acknowledged. It, therefore, consumes one sequence number. 

3. The client sends the third segment. This is just an ACK segment. It acknowl-
edges the receipt of the second segment with the ACK flag and acknowledg-
ment number field. Note that the ACK segment does not consume any sequence
numbers if it does not carry data, but some implementations allow this third
segment in the connection phase to carry the first chunk of data from the client.
In this case, the segment consumes as many sequence numbers as the number of
data bytes.  

SYN Flooding Attack
The connection establishment procedure in TCP is susceptible to a serious security
problem called SYN flooding attack. This happens when one or more malicious attack-
ers send a large number of SYN segments to a server pretending that each of them is
coming from a different client by faking the source IP addresses in the datagrams. The
server, assuming that the clients are issuing an active open, allocates the necessary
resources, such as creating transfer control block (TCB) tables and setting timers. The

A SYN segment cannot carry data, but it consumes one sequence number. 

A SYN 1 ACK segment cannot carry data, 
but it does consume one sequence number. 

An ACK segment, if carrying no data, consumes no sequence number. 
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TCP server then sends the SYN + ACK segments to the fake clients, which are lost.
When the server waits for the third leg of the handshaking process, however, resources
are allocated without being used. If, during this short period of time, the number of
SYN segments is large, the server eventually runs out of resources and may be unable
to accept connection requests from valid clients. This SYN flooding attack belongs to a
group of security attacks known as a denial of service attack, in which an attacker
monopolizes a system with so many service requests that the system overloads and
denies service to valid requests. 

Some implementations of TCP have strategies to alleviate the effect of a SYN
attack. Some have imposed a limit of connection requests during a specified period of
time. Others try to filter out datagrams coming from unwanted source addresses. One
recent strategy is to postpone resource allocation until the server can verify that the
connection request is coming from a valid IP address, by using what is called
a cookie. SCTP, the new transport-layer protocol that we discuss later, uses this
strategy. 

Data Transfer

After connection is established, bidirectional data transfer can take place. The client
and server can send data and acknowledgments in both directions. We will study the
rules of acknowledgment later in the chapter; for the moment, it is enough to know
that data traveling in the same direction as an acknowledgment are carried on the
same segment. The acknowledgment is piggybacked with the data. Figure 24.11
shows an example.  

In this example, after a connection is established, the client sends 2,000 bytes of
data in two segments. The server then sends 2,000 bytes in one segment. The client
sends one more segment. The first three segments carry both data and acknowledg-
ment, but the last segment carries only an acknowledgment because there is no more
data to be sent. Note the values of the sequence and acknowledgment numbers. The
data segments sent by the client have the PSH (push) flag set so that the server TCP
knows to deliver data to the server process as soon as they are received. We discuss the
use of this flag in more detail later. The segment from the server, on the other hand,
does not set the push flag. Most TCP implementations have the option to set or not to
set this flag. 

Pushing Data
We saw that the sending TCP uses a buffer to store the stream of data coming from the
sending application program. The sending TCP can select the segment size. The receiv-
ing TCP also buffers the data when they arrive and delivers them to the application pro-
gram when the application program is ready or when it is convenient for the receiving
TCP. This type of flexibility increases the efficiency of TCP. 

However, there are occasions in which the application program has no need for this
flexibility. For example, consider an application program that communicates interac-
tively with another application program on the other end. The application program on
one site wants to send a chunk of data to the application program at the other site and
receive an immediate response. Delayed transmission and delayed delivery of data may
not be acceptable by the application program. 
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TCP can handle such a situation. The application program at the sender can
request a push operation. This means that the sending TCP must not wait for the win-
dow to be filled. It must create a segment and send it immediately. The sending TCP
must also set the push bit (PSH) to let the receiving TCP know that the segment
includes data that must be delivered to the receiving application program as soon as
possible and not to wait for more data to come. This means to change the byte-
oriented TCP to a chunk-oriented TCP, but TCP can choose whether or not to use this
feature.

Urgent Data
TCP is a stream-oriented protocol. This means that the data is presented from the appli-
cation program to TCP as a stream of bytes. Each byte of data has a position in the
stream. However, there are occasions in which an application program needs to send
urgent bytes, some bytes that need to be treated in a special way by the application at the
other end. The solution is to send a segment with the URG bit set. The sending applica-
tion program tells the sending TCP that the piece of data is urgent. The sending TCP

Figure 24.11 Data transfer
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creates a segment and inserts the urgent data at the beginning of the segment. The rest
of the segment can contain normal data from the buffer. The urgent pointer field in the
header defines the end of the urgent data (the last byte of urgent data). For example, if
the segment sequence number is 15000 and the value of the urgent pointer is 200, the
first byte of urgent data is the byte 15000 and the last byte is the byte 15200. The rest of
the bytes in the segment (if present) are nonurgent.  

It is important to mention that TCP’s urgent data is neither a priority service nor an
out-of-band data service as some people think. Rather, TCP urgent mode is a service by
which the application program at the sender side marks some portion of the byte stream
as needing special treatment by the application program at the receiver side. The
receiving TCP delivers bytes (urgent or nonurgent) to the application program in order,
but informs the application program about the beginning and end of urgent data. It is
left to the application program to decide what to do with the urgent data.

Connection Termination

Either of the two parties involved in exchanging data (client or server) can close the
connection, although it is usually initiated by the client. Most implementations today
allow two options for connection termination: three-way handshaking and four-way
handshaking with a half-close option. 

Three-Way Handshaking 
Most implementations today allow three-way handshaking for connection termination,
as shown in Figure 24.12.

1. In this situation, the client TCP, after receiving a close command from the client
process, sends the first segment, a FIN segment in which the FIN flag is set. Note
that a FIN segment can include the last chunk of data sent by the client or it can be
just a control segment as shown in the figure. If it is only a control segment, it con-
sumes only one sequence number because it needs to be acknowledged.    

2. The server TCP, after receiving the FIN segment, informs its process of the situation
and sends the second segment, a FIN + ACK segment, to confirm the receipt of the
FIN segment from the client and at the same time to announce the closing of the con-
nection in the other direction. This segment can also contain the last chunk of data
from the server. If it does not carry data, it consumes only one sequence number
because it needs to be acknowledged. 

3. The client TCP sends the last segment, an ACK segment, to confirm the receipt of
the FIN segment from the TCP server. This segment contains the acknowledgment
number, which is one plus the sequence number received in the FIN segment from
the server. This segment cannot carry data and consumes no sequence numbers. 

Half-Close
In TCP, one end can stop sending data while still receiving data. This is called a half-
close. Either the server or the client can issue a half-close request. It can occur when the
server needs all the data before processing can begin. A good example is sorting. When

The FIN segment consumes one sequence number if it does not carry data.
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the client sends data to the server to be sorted, the server needs to receive all the data
before sorting can start. This means the client, after sending all data, can close the con-
nection in the client-to-server direction. However, the server-to-client direction must
remain open to return the sorted data. The server, after receiving the data, still needs
time for sorting; its outbound direction must remain open. Figure 24.13 shows an exam-
ple of a half-close. 

The data transfer from the client to the server stops. The client half-closes the con-
nection by sending a FIN segment. The server accepts the half-close by sending the
ACK segment. The server, however, can still send data. When the server has sent all of
the processed data, it sends a FIN segment, which is acknowledged by an ACK from
the client. 

After half-closing the connection, data can travel from the server to the client and
acknowledgments can travel from the client to the server. The client cannot send any
more data to the server. 

Connection Reset

TCP at one end may deny a connection request, may abort an existing connection, or
may terminate an idle connection. All of these are done with the RST (reset) flag.

24.3.5 State Transition Diagram
To keep track of all the different events happening during connection establishment,
connection termination, and data transfer, TCP is specified as the finite state machine
(FSM) as shown in Figure 24.14.  

Figure 24.12 Connection termination using three-way handshaking
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The figure shows the two FSMs used by the TCP client and server combined in
one diagram. The rounded-corner rectangles represent the states. The transition from
one state to another is shown using directed lines. Each line has two strings separated
by a slash. The first string is the input, what TCP receives. The second is the output,
what TCP sends. The dotted black lines in the figure represent the transition that a
server normally goes through; the solid black lines show the transitions that a client
normally goes through. However, in some situations, a server transitions through a
solid line or a client transitions through a dotted line. The colored lines show special
situations. Note that the rounded-corner rectangle marked ESTABLISHED is in fact two
sets of states, a set for the client and another for the server, that are used for flow and
error control, as explained later in the chapter. We will discuss some timers mentioned
in the figure, including the 2MSL timer, at the end of the chapter. We use several sce-
narios based on Figure 24.14 and show the part of the figure in each case.   

Table 24.2 shows the list of states for TCP. 

Scenarios

To understand the TCP state machines and the transition diagrams, we go through one
scenario in this section.  

Figure 24.13 Half-close 
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Figure 24.14 State transition diagram
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A Half-Close Scenario
Figure 24.15 shows the state transition diagram for this scenario. 

The client process issues an active open command to its TCP to request a connection
to a specific socket address. TCP sends a SYN segment and moves to the SYN-SENT
state. After receiving the SYN + ACK segment, TCP sends an ACK segment and goes to
the ESTABLISHED state. Data are transferred, possibly in both directions, and
acknowledged. When the client process has no more data to send, it issues a command
called an active close. The TCP sends a FIN segment and goes to the FIN-WAIT-1 state.
When it receives the ACK segment, it goes to the FIN-WAIT-2 state. When the client
receives a FIN segment, it sends an ACK segment and goes to the TIME-WAIT state.
The client remains in this state for 2 MSL seconds (see TCP timers later in the chapter).
When the corresponding timer expires, the client goes to the CLOSED state. 

The server process issues a passive open command. The server TCP goes to the
LISTEN state and remains there passively until it receives a SYN segment. The TCP
then sends a SYN + ACK segment and goes to the SYN-RCVD state, waiting for the
client to send an ACK segment. After receiving the ACK segment, TCP goes to the
ESTABLISHED state, where data transfer can take place. TCP remains in this state
until it receives a FIN segment from the client signifying that there are no more data to
be exchanged and the connection can be closed. The server, upon receiving the FIN
segment, sends all queued data to the server with a virtual EOF marker, which means
that the connection must be closed. It sends an ACK segment and goes to the CLOSE-
WAIT state, but postpones acknowledging the FIN segment received from the client
until it receives a passive close command from its process. After receiving the passive
close command, the server sends a FIN segment to the client and goes to the LAST-
ACK state, waiting for the final ACK. When the ACK segment is received from the cli-
ent, the server goes to the CLOSE state. Figure 24.16 shows the same scenario with
states over the time line.    

Figure 24.15 Transition diagram with half-close connection termination
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24.3.6 Windows in TCP
Before discussing data transfer in TCP and the issues such as flow, error, and conges-
tion control, we describe the windows used in TCP. TCP uses two windows (send win-
dow and receive window) for each direction of data transfer, which means four
windows for a bidirectional communication. To make the discussion simple, we make
an unrealistic assumption that communication is only unidirectional (say from client to
server); the bidirectional communication can be inferred using two unidirectional com-
munications with piggybacking. 

Figure 24.16 Time-line diagram for a common scenario
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Send Window

Figure 24.17 shows an example of a send window. The window size is 100 bytes, but
later we see that the send window size is dictated by the receiver (flow control) and
the congestion in the underlying network (congestion control). The figure shows
how a send window opens, closes, or shrinks.  

The send window in TCP is similar to the one used with the Selective-Repeat pro-
tocol, but with some differences:

1. One difference is the nature of entities related to the window. The window size in
SR is the number of packets, but the window size in TCP is the number of bytes.
Although actual transmission in TCP occurs segment by segment, the variables
that control the window are expressed in bytes. 

2. The second difference is that, in some implementations, TCP can store data
received from the process and send them later, but we assume that the sending
TCP is capable of sending segments of data as soon as it receives them from its
process. 

3. Another difference is the number of timers. The theoretical Selective-Repeat pro-
tocol may use several timers for each packet sent, but as mentioned before, the
TCP protocol uses only one timer. 

Receive Window

Figure 24.18 shows an example of a receive window. The window size is 100 bytes.
The figure also shows how the receive window opens and closes; in practice, the win-
dow should never shrink.  

Figure 24.17 Send window in TCP
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There are two differences between the receive window in TCP and the one we used
for SR. 

1. The first difference is that TCP allows the receiving process to pull data at its own
pace. This means that part of the allocated buffer at the receiver may be occupied
by bytes that have been received and acknowledged, but are waiting to be pulled by
the receiving process. The receive window size is then always smaller than or equal
to the buffer size, as shown in Figure 24.18. The receive window size determines
the number of bytes that the receive window can accept from the sender before
being overwhelmed (flow control). In other words, the receive window size, nor-
mally called rwnd, can be determined as:  

2. The second difference is the way acknowledgments are used in the TCP protocol.
Remember that an acknowledgement in SR is selective, defining the uncorrupted
packets that have been received. The major acknowledgment mechanism in TCP is
a cumulative acknowledgment announcing the next expected byte to receive (in
this way TCP looks like GBN, discussed earlier). The new version of TCP, how-
ever, uses both cumulative and selective acknowledgments; we will discuss these
options on the book website. 

24.3.7 Flow Control
As discussed before, flow control balances the rate a producer creates data with the rate
a consumer can use the data. TCP separates flow control from error control. In this

Figure 24.18 Receive window in TCP
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section we discuss flow control, ignoring error control. We assume that the logical
channel between the sending and receiving TCP is error-free.   

Figure 24.19 shows unidirectional data transfer between a sender and a receiver;
bidirectional data transfer can be deduced from the unidirectional process.  

The figure shows that data travel from the sending process down to the sending
TCP, from the sending TCP to the receiving TCP, and from the receiving TCP up to
the receiving process (paths 1, 2, and 3). Flow control feedbacks, however, are travel-
ing from the receiving TCP to the sending TCP and from the sending TCP up to the
sending process (paths 4 and 5). Most implementations of TCP do not provide flow
control feedback from the receiving process to the receiving TCP; they let the receiv-
ing process pull data from the receiving TCP whenever it is ready to do so. In other
words, the receiving TCP controls the sending TCP; the sending TCP controls the
sending process.

Flow control feedback from the sending TCP to the sending process (path 5) is
achieved through simple rejection of data by the sending TCP when its window is full.
This means that our discussion of flow control concentrates on the feedback sent from
the receiving TCP to the sending TCP (path 4).

Opening and Closing Windows

To achieve flow control, TCP forces the sender and the receiver to adjust their window
sizes, although the size of the buffer for both parties is fixed when the connection is
established. The receive window closes (moves its left wall to the right) when more
bytes arrive from the sender; it opens (moves its right wall to the right) when more
bytes are pulled by the process. We assume that it does not shrink (the right wall does
not move to the left). 

The opening, closing, and shrinking of the send window is controlled by the
receiver. The send window closes (moves its left wall to the right) when a new
acknowledgment allows it to do so. The send window opens (its right wall moves to the
right) when the receive window size (rwnd) advertised by the receiver allows it to do so

Figure 24.19 Data flow and flow control feedbacks in TCP
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(new ackNo + new rwnd > last ackNo + last rwnd). The send window shrinks in the
event this situation does not occur.

A Scenario
We show how the send and receive windows are set during the connection establishment
phase, and how their situations will change during data transfer. Figure 24.20 shows a
simple example of unidirectional data transfer (from client to server). For the time being,
we ignore error control, assuming that no segment is corrupted, lost, duplicated, or has
arrived out of order. Note that we have shown only two windows for unidirectional data
transfer. Although the client defines server’s window size of 2000 in the third segment,
we have not shown that window because the communication is only unidirectional.

Eight segments are exchanged between the client and server:

1. The first segment is from the client to the server (a SYN segment) to request connec-
tion. The client announces its initial seqNo = 100. When this segment arrives at the
server, it allocates a buffer size of 800 (an assumption) and sets its window to cover
the whole buffer (rwnd = 800). Note that the number of the next byte to arrive is 101. 

Figure 24.20 An example of flow control
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2. The second segment is from the server to the client. This is an ACK + SYN seg-
ment. The segment uses ackNo = 101 to show that it expects to receive bytes
starting from 101. It also announces that the client can set a buffer size of
800 bytes. 

3. The third segment is the ACK segment from the client to the server. Note that the
client has defined a rwnd of size 2000, but we do not use this value in our figure
because the communication is only in one direction. 

4. After the client has set its window with the size (800) dictated by the server, the
process pushes 200 bytes of data. The TCP client numbers these bytes 101 to 300.
It then creates a segment and sends it to the server. The segment shows the starting
byte number as 101 and the segment carries 200 bytes. The window of the client is
then adjusted to show that 200 bytes of data are sent but waiting for acknowledg-
ment. When this segment is received at the server, the bytes are stored, and the
receive window closes to show that the next byte expected is byte 301; the stored
bytes occupy 200 bytes of buffer. 

5. The fifth segment is the feedback from the server to the client. The server
acknowledges bytes up to and including 300 (expecting to receive byte 301). The
segment also carries the size of the receive window after decrease (600). The cli-
ent, after receiving this segment, purges the acknowledged bytes from its window
and closes its window to show that the next byte to send is byte 301. The window
size, however, decreases to 600 bytes. Although the allocated buffer can store 800
bytes, the window cannot open (moving its right wall to the right) because the
receiver does not let it. 

6. Segment 6 is sent by the client after its process pushes 300 more bytes. The seg-
ment defines seqNo as 301 and contains 300 bytes. When this segment arrives at
the server, the server stores them, but it has to reduce its window size. After its
process has pulled 100 bytes of data, the window closes from the left for the
amount of 300 bytes, but opens from the right for the amount of 100 bytes. The
result is that the size is only reduced 200 bytes. The receiver window size is now
400 bytes. 

7. In segment 7, the server acknowledges the receipt of data, and announces that its
window size is 400. When this segment arrives at the client, the client has no
choice but to reduce its window again and set the window size to the value of rwnd =
400 advertised by the server. The send window closes from the left by 300 bytes,
and opens from the right by 100 bytes.

8. Segment 8 is also from the server after its process has pulled another 200 bytes. Its
window size increases. The new rwnd value is now 600. The segment informs the
client that the server still expects byte 601, but the server window size has expanded
to 600. We need to mention that the sending of this segment depends on the policy
imposed by the implementation. Some implementations may not allow advertise-
ment of the rwnd at this time; the server then needs to receive some data before doing
so. After this segment arrives at the client, the client opens its window by 200 bytes
without closing it. The result is that its window size increases to 600 bytes.



766 PART V TRANSPORT LAYER

Shrinking of Windows 

As we said before, the receive window cannot shrink. The send window, on the other
hand, can shrink if the receiver defines a value for rwnd that results in shrinking the
window. However, some implementations do not allow shrinking of the send window.
The limitation does not allow the right wall of the send window to move to the left. In
other words, the receiver needs to keep the following relationship between the last and
new acknowledgment and the last and new rwnd values to prevent shrinking of the send
window.  

The left side of the inequality represents the new position of the right wall with
respect to the sequence number space; the right side shows the old position of the right
wall. The relationship shows that the right wall should not move to the left. The
inequality is a mandate for the receiver to check its advertisement. However, note that
the inequality is valid only if Sf < Sn; we need to remember that all calculations are in
modulo 232.

Example 24.8

Figure 24.21 shows the reason for this mandate. 

Part a of the figure shows the values of the last acknowledgment and rwnd. Part b shows the
situation in which the sender has sent bytes 206 to 214. Bytes 206 to 209 are acknowledged and
purged. The new advertisement, however, defines the new value of rwnd as 4, in which 210 + 4 <
206 + 12. When the send window shrinks, it creates a problem: byte 214, which has already been
sent, is outside the window. The relation discussed before forces the receiver to maintain the
right-hand wall of the window to be as shown in part a, because the receiver does not know which
of the bytes 210 to 217 has already been sent. One way to prevent this situation is to let the

new ackNo 1  new rwnd ≥ last ackNo 1  last rwnd

Figure 24.21 Example 24.8
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receiver postpone its feedback until enough buffer locations are available in its window. In other
words, the receiver should wait until more bytes are consumed by its process to meet the relation-
ship described above.   

Window Shutdown
We said that shrinking the send window by moving its right wall to the left is strongly
discouraged. However, there is one exception: the receiver can temporarily shut down
the window by sending a rwnd of 0. This can happen if for some reason the receiver
does not want to receive any data from the sender for a while. In this case, the sender
does not actually shrink the size of the window, but stops sending data until a new
advertisement has arrived. As we will see later, even when the window is shut down
by an order from the receiver, the sender can always send a segment with 1 byte of
data. This is called probing and is used to prevent a deadlock (see the section on TCP
timers). 

Silly Window Syndrome

A serious problem can arise in the sliding window operation when either the sending
application program creates data slowly or the receiving application program consumes
data slowly, or both. Any of these situations results in the sending of data in very small
segments, which reduces the efficiency of the operation. For example, if TCP sends
segments containing only 1 byte of data, it means that a 41-byte datagram (20 bytes of
TCP header and 20 bytes of IP header) transfers only 1 byte of user data. Here the over-
head is 41/1, which indicates that we are using the capacity of the network very ineffi-
ciently. The inefficiency is even worse after accounting for the data-link layer and
physical-layer overhead. This problem is called the silly window syndrome. For each
site, we first describe how the problem is created and then give a proposed solution.

Syndrome Created by the Sender
The sending TCP may create a silly window syndrome if it is serving an application
program that creates data slowly, for example, 1 byte at a time. The application pro-
gram writes 1 byte at a time into the buffer of the sending TCP. If the sending TCP does
not have any specific instructions, it may create segments containing 1 byte of data.
The result is a lot of 41-byte segments that are traveling through an internet. 

The solution is to prevent the sending TCP from sending the data byte by byte. The
sending TCP must be forced to wait and collect data to send in a larger block. How long
should the sending TCP wait? If it waits too long, it may delay the process. If it does
not wait long enough, it may end up sending small segments. Nagle found an elegant
solution. Nagle’s algorithm is simple:

1. The sending TCP sends the first piece of data it receives from the sending applica-
tion program even if it is only 1 byte.

2. After sending the first segment, the sending TCP accumulates data in the output
buffer and waits until either the receiving TCP sends an acknowledgment or until
enough data have accumulated to fill a maximum-size segment. At this time, the
sending TCP can send the segment.

3. Step 2 is repeated for the rest of the transmission. Segment 3 is sent immediately if
an acknowledgment is received for segment 2, or if enough data have accumulated
to fill a maximum-size segment.
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The elegance of Nagle’s algorithm is in its simplicity and in the fact that it takes into
account the speed of the application program that creates the data and the speed of
the network that transports the data. If the application program is faster than the
network, the segments are larger (maximum-size segments). If the application pro-
gram is slower than the network, the segments are smaller (less than the maximum
segment size).

Syndrome Created by the Receiver
The receiving TCP may create a silly window syndrome if it is serving an application
program that consumes data slowly, for example, 1 byte at a time. Suppose that
the sending application program creates data in blocks of 1 kilobyte, but the receiv-
ing application program consumes data 1 byte at a time. Also suppose that the input
buffer of the receiving TCP is 4 kilobytes. The sender sends the first 4 kilobytes of
data. The receiver stores it in its buffer. Now its buffer is full. It advertises a window
size of zero, which means the sender should stop sending data. The receiving applica-
tion reads the first byte of data from the input buffer of the receiving TCP. Now there
is 1 byte of space in the incoming buffer. The receiving TCP announces a window
size of 1 byte, which means that the sending TCP, which is eagerly waiting to send
data, takes this advertisement as good news and sends a segment carrying only 1 byte
of data. The procedure will continue. One byte of data is consumed and a segment
carrying 1 byte of data is sent. Again we have an efficiency problem and the silly
window syndrome.

Two solutions have been proposed to prevent the silly window syndrome created
by an application program that consumes data more slowly than they arrive. Clark’s
solution is to send an acknowledgment as soon as the data arrive, but to announce a
window size of zero until either there is enough space to accommodate a segment of
maximum size or until at least half of the receive buffer is empty. The second solution
is to delay sending the acknowledgment. This means that when a segment arrives, it is
not acknowledged immediately. The receiver waits until there is a decent amount of
space in its incoming buffer before acknowledging the arrived segments. The delayed
acknowledgment prevents the sending TCP from sliding its window. After the sending
TCP has sent the data in the window, it stops. This kills the syndrome. 

Delayed acknowledgment also has another advantage: it reduces traffic. The receiver
does not have to acknowledge each segment. However, there also is a disadvantage in
that the delayed acknowledgment may result in the sender unnecessarily retransmitting
the unacknowledged segments. 

The protocol balances the advantages and disadvantages. It now defines that the
acknowledgment should not be delayed by more than 500 ms. 

24.3.8 Error Control
TCP is a reliable transport-layer protocol. This means that an application program that
delivers a stream of data to TCP relies on TCP to deliver the entire stream to the appli-
cation program on the other end in order, without error, and without any part lost or
duplicated.

TCP provides reliability using error control. Error control includes mechanisms for
detecting and resending corrupted segments, resending lost segments, storing out-of-
order segments until missing segments arrive, and detecting and discarding duplicated



CHAPTER 24 TRANSPORT-LAYER PROTOCOLS 769

segments. Error control in TCP is achieved through the use of three simple tools:
checksum, acknowledgment, and time-out. 

Checksum

Each segment includes a checksum field, which is used to check for a corrupted seg-
ment. If a segment is corrupted, as detected by an invalid checksum, the segment is dis-
carded by the destination TCP and is considered as lost. TCP uses a 16-bit checksum
that is mandatory in every segment. We discuss checksum calculation in Chapter 10. 

Acknowledgment

TCP uses acknowledgments to confirm the receipt of data segments. Control segments
that carry no data, but consume a sequence number, are also acknowledged. ACK seg-
ments are never acknowledged. 

Acknowledgment Type
In the past, TCP used only one type of acknowledgment: cumulative acknowledgment.
Today, some TCP implementations also use selective acknowledgment. 

Cumulative Acknowledgment (ACK) TCP was originally designed to acknowledge
receipt of segments cumulatively. The receiver advertises the next byte it expects to
receive, ignoring all segments received and stored out of order. This is sometimes
referred to as positive cumulative acknowledgment, or ACK. The word positive indi-
cates that no feedback is provided for discarded, lost, or duplicate segments. The 32-bit
ACK field in the TCP header is used for cumulative acknowledgments, and its value is
valid only when the ACK flag bit is set to 1.

Selective Acknowledgment (SACK) More and more implementations are adding
another type of acknowledgment called selective acknowledgment, or SACK. A SACK
does not replace an ACK, but reports additional information to the sender. A SACK
reports a block of bytes that is out of order, and also a block of bytes that is duplicated,
i.e., received more than once. However, since there is no provision in the TCP header
for adding this type of information, SACK is implemented as an option at the end of the
TCP header. We discuss this new feature when we discuss options in TCP on the book
website. 

Generating Acknowledgments
When does a receiver generate acknowledgments? During the evolution of TCP, several
rules have been defined and used by several implementations. We give the most com-
mon rules here. The order of a rule does not necessarily define its importance.

1. When end A sends a data segment to end B, it must include (piggyback) an
acknowledgment that gives the next sequence number it expects to receive. This
rule decreases the number of segments needed and therefore reduces traffic.

2. When the receiver has no data to send and it receives an in-order segment (with
expected sequence number) and the previous segment has already been acknowl-
edged, the receiver delays sending an ACK segment until another segment

ACK segments do not consume sequence numbers and
are not acknowledged. 
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arrives or until a period of time (normally 500 ms) has passed. In other words,
the receiver needs to delay sending an ACK segment if there is only one out-
standing in-order segment. This rule reduces ACK segments. 

3. When a segment arrives with a sequence number that is expected by the receiver,
and the previous in-order segment has not been acknowledged, the receiver imme-
diately sends an ACK segment. In other words, there should not be more than two
in-order unacknowledged segments at any time. This prevents the unnecessary
retransmission of segments that may create congestion in the network.

4. When a segment arrives with an out-of-order sequence number that is higher than
expected, the receiver immediately sends an ACK segment announcing the
sequence number of the next expected segment. This leads to the fast retransmis-
sion of missing segments (discussed later). 

5. When a missing segment arrives, the receiver sends an ACK segment to announce
the next sequence number expected. This informs the receiver that segments
reported missing have been received. 

6. If a duplicate segment arrives, the receiver discards the segment, but immediately
sends an acknowledgment indicating the next in-order segment expected. This
solves some problems when an ACK segment itself is lost. 

Retransmission

The heart of the error control mechanism is the retransmission of segments. When a
segment is sent, it is stored in a queue until it is acknowledged. When the retransmis-
sion timer expires or when the sender receives three duplicate ACKs for the first seg-
ment in the queue, that segment is retransmitted.

Retransmission after RTO
The sending TCP maintains one retransmission time-out (RTO) for each connec-
tion. When the timer matures, i.e. times out, TCP resends the segment in the front of
the queue (the segment with the smallest sequence number) and restarts the timer.
Note that again we assume Sf < Sn. We will see later that the value of RTO is dynamic
in TCP and is updated based on the round-trip time (RTT) of segments. RTT is the
time needed for a segment to reach a destination and for an acknowledgment to be
received.

Retransmission after Three Duplicate ACK Segments
The previous rule about retransmission of a segment is sufficient if the value of RTO is
not large. To expedite service throughout the Internet by allowing senders to retransmit
without waiting for a time out, most implementations today follow the three duplicate
ACKs rule and retransmit the missing segment immediately. This feature is called fast
retransmission. In this version, if three duplicate acknowledgments (i.e., an original
ACK plus three exactly identical copies) arrive for a segment, the next segment is
retransmitted without waiting for the time-out. We come back to this feature later in the
chapter. 

Out-of-Order Segments 

TCP implementations today do not discard out-of-order segments. They store them
temporarily and flag them as out-of-order segments until the missing segments arrive.
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Note, however, that out-of-order segments are never delivered to the process. TCP
guarantees that data are delivered to the process in order. 

FSMs for Data Transfer in TCP 

Data transfer in TCP is close to the Selective-Repeat protocol with a slight similarity to
GBN. Since TCP accepts out-of-order segments, TCP can be thought of as behaving more
like the SR protocol, but since the original acknowledgments are cumulative, it looks like
GBN. However, if the TCP implementation uses SACKs, then TCP is closest to SR. 

Sender-Side FSM 
Let us show a simplified FSM for the sender side of the TCP protocol similar to the one
we discussed for the SR protocol, but with some changes specific to TCP. We assume
that the communication is unidirectional and the segments are acknowledged using
ACK segments. We also ignore selective acknowledgments and congestion control for
the moment. Figure 24.22 shows the simplified FSM for the sender site. Note that the

Data may arrive out of order and be temporarily stored by the receiving TCP, 
but TCP guarantees that no out-of-order data are delivered to the process. 

TCP can best be modeled as a Selective-Repeat protocol. 

Figure 24.22 Simplified FSM for the TCP sender side
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FSM is rudimentary; it does not include issues such as silly window syndrome (Nagle’s
algorithm) or window shutdown. It defines a unidirectional communication, ignoring
all issues that affect bidirectional communication. 

There are some differences between the FSM in Figure 24.22 and the one we dis-
cussed for an SR protocol. One difference is the fast transmission (three duplicate
ACKs). The other is the window size adjustment based on the value of rwnd (ignoring
congestion control for the moment). 

Receiver-Side FSM
Now let us show a simplified FSM for the receiver-side TCP protocol similar to the one
we discuss for the SR protocol, but with some changes specific to TCP. We assume that
the communication is unidirectional and the segments are acknowledged using ACK
segments. We also ignore the selective acknowledgment and congestion control for the
moment. Figure 24.23 shows the simplified FSM for the receiver. Note that we ignore
some issues such as silly window syndrome (Clark’s solution) and window shutdown.

Again, there are some differences between this FSM and the one we discussed for
an SR protocol. One difference is the ACK delaying in unidirectional communication.
The other difference is the sending of duplicate ACKs to allow the sender to implement
fast retransmission policy. 

Figure 24.23 Simplified FSM for the TCP receiver side
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We also need to emphasize that bidirectional FSM for the receiver is not as simple
as the one for SR; we need to consider some policies such as sending an immediate
ACK if the receiver has some data to return. 

Some Scenarios

In this section we give some examples of scenarios that occur during the operation of
TCP, considering only error control issues. In these scenarios, we show a segment by a
rectangle. If the segment carries data, we show the range of byte numbers and the value
of the acknowledgment field. If it carries only an acknowledgment, we show only the
acknowledgment number in a smaller box. 

Normal Operation
The first scenario shows bidirectional data transfer between two systems as shown in
Figure 24.24. The client TCP sends one segment; the server TCP sends three. The fig-
ure shows which rule applies to each acknowledgment. At the server site, only rule 1
applies. There are data to be sent, so the segment displays the next byte expected.
When the client receives the first segment from the server, it does not have any more
data to send; it needs to send only an ACK segment. However, according to rule 2, the
acknowledgment needs to be delayed for 500 ms to see if any more segments arrive.
When the ACK-delaying timer matures, it triggers an acknowledgment. This is
because the client has no knowledge of whether other segments are coming; it cannot
delay the acknowledgment forever. When the next segment arrives, another ACK-
delaying timer is set. However, before it matures, the third segment arrives. The arrival
of the third segment triggers another acknowledgment based on rule 3. We have not
shown the RTO timer because no segment is lost or delayed. We just assume that the
RTO timer performs its duty.    

Figure 24.24 Normal operation
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Lost Segment
In this scenario, we show what happens when a segment is lost or corrupted. A lost or
corrupted segment is treated the same way by the receiver. A lost segment is discarded
somewhere in the network; a corrupted segment is discarded by the receiver itself. Both
are considered lost. Figure 24.25 shows a situation in which a segment is lost (probably
discarded by some router in the network due to congestion).  

We are assuming that data transfer is unidirectional: one site is sending, the other
receiving. In our scenario, the sender sends segments 1 and 2, which are acknowledged
immediately by an ACK (rule 3). Segment 3, however, is lost. The receiver receives
segment 4, which is out of order. The receiver stores the data in the segment in its buffer
but leaves a gap to indicate that there is no continuity in the data. The receiver immedi-
ately sends an acknowledgment to the sender displaying the next byte it expects (rule 4).
Note that the receiver stores bytes 801 to 900, but never delivers these bytes to the
application until the gap is filled. 

The sender TCP keeps one RTO timer for the whole period of connection. When
the third segment times out, the sending TCP resends segment 3, which arrives this
time and is acknowledged properly (rule 5). 

Fast Retransmission
In this scenario, we want to show fast retransmission. Our scenario is the same as the
second except that the RTO has a larger value (see Figure 24.26).  

Each time the receiver receives a subsequent segment, it triggers an acknowledg-
ment (rule 4). The sender receives four acknowledgments with the same value (three
duplicates). Although the timer has not matured, the rule for fast retransmission

Figure 24.25 Lost segment
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requires that segment 3, the segment that is expected by all of these duplicate acknowl-
edgments, be resent immediately. After resending this segment, the timer is restarted.

Delayed Segment
The fourth scenario features a delayed segment. TCP uses the services of IP, which is a
connectionless protocol. Each IP datagram encapsulating a TCP segment may reach the
final destination through a different route with a different delay. Hence TCP segments may
be delayed. Delayed segments sometimes may time out and be resent. If the delayed seg-
ment arrives after it has been resent, it is considered a duplicate segment and discarded. 

Duplicate Segment
A duplicate segment can be created, for example, by a sending TCP when a segment is
delayed and treated as lost by the receiver. Handling the duplicated segment is a simple
process for the destination TCP. The destination TCP expects a continuous stream of bytes.
When a segment arrives that contains a sequence number equal to an already received and
stored segment, it is discarded. An ACK is sent with ackNo defining the expected segment.

Automatically Corrected Lost ACK
This scenario shows a situation in which information in a lost acknowledgment is
contained in the next one, a key advantage of using cumulative acknowledgments.
Figure 24.27 shows a lost acknowledgment sent by the receiver of data. In the TCP
acknowledgment mechanism, a lost acknowledgment may not even be noticed by the
source TCP. TCP uses cumulative acknowledgment. We can say that the next
acknowledgment automatically corrects the loss of the previous acknowledgment. 

Figure 24.26 Fast retransmission
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Lost Acknowledgment Corrected by Resending a Segment
Figure 24.28 shows a scenario in which an acknowledgment is lost. 

If the next acknowledgment is delayed for a long time or there is no next acknowl-
edgment (the lost acknowledgment is the last one sent), the correction is triggered by
the RTO timer. A duplicate segment is the result. When the receiver receives a duplicate
segment, it discards it and resends the last ACK immediately to inform the sender that
the segment or segments have been received. 

Note that only one segment is retransmitted although two segments are not
acknowledged. When the sender receives the retransmitted ACK, it knows that both
segments are safe and sound because the acknowledgment is cumulative. 

Deadlock Created by Lost Acknowledgment   
There is one situation in which loss of an acknowledgment may result in system dead-
lock. This is the case in which a receiver sends an acknowledgment with rwnd set to 0
and requests that the sender shut down its window temporarily. After a while, the
receiver wants to remove the restriction; however, if it has no data to send, it sends an
ACK segment and removes the restriction with a nonzero value for rwnd. A problem

Figure 24.27 Lost acknowledgment

Figure 24.28 Lost acknowledgment corrected by resending a segment

Lost

Seq: 501–600
Ack: x

Seq: 601–700
Ack: x

Seq: 701–800
Ack: x

Ack: 901 

Ack: 701 

Client Server

Time Time

RTO
Start

Stop

Seq: 801–900
Ack: x

Lost

Seq: 501–600
Ack: x

Seq: 601–700
Ack: x

Seq: 501–600
Ack: x Ack: 701 

Ack: 701 

Client Server

RTO

Time
Resent

Time

Start

Restart

Stop

Rule 6



CHAPTER 24 TRANSPORT-LAYER PROTOCOLS 777

arises if this acknowledgment is lost. The sender is waiting for an acknowledgment that
announces the nonzero rwnd. The receiver thinks that the sender has received this and is
waiting for data. This situation is called a deadlock; each end is waiting for a response
from the other end and nothing is happening. A retransmission timer is not set. To pre-
vent deadlock, a persistence timer was designed that we will study later in the chapter.  

24.3.9 TCP Congestion Control
TCP uses different policies to handle the congestion in the network. We describe these
policies in this section.

Congestion Window

When we discussed flow control in TCP, we mentioned that the size of the send win-
dow is controlled by the receiver using the value of rwnd, which is advertised in each
segment traveling in the opposite direction. The use of this strategy guarantees that
the receive window is never overflowed with the received bytes (no end congestion).
This, however, does not mean that the intermediate buffers, buffers in the routers, do
not become congested. A router may receive data from more than one sender. No
matter how large the buffers of a router may be, it may be overwhelmed with data,
which results in dropping some segments sent by a specific TCP sender. In other
words, there is no congestion at the other end, but there may be congestion in the
middle. TCP needs to worry about congestion in the middle because many segments
lost may seriously affect the error control. More segment loss means resending the
same segments again, resulting in worsening the congestion, and finally the collapse
of the communication. 

TCP is an end-to-end protocol that uses the service of IP. The congestion in the
router is in the IP territory and should be taken care of by IP. However, as we discussed
in Chapters 18 and 19, IP is a simple protocol with no congestion control. TCP, itself,
needs to be responsible for this problem.

TCP cannot ignore the congestion in the network; it cannot aggressively send seg-
ments to the network. The result of such aggressiveness would hurt the TCP itself, as
we mentioned before. TCP cannot be very conservative, either, sending a small number
of segments in each time interval, because this means not utilizing the available band-
width of the network. TCP needs to define policies that accelerate the data transmission
when there is no congestion and decelerate the transmission when congestion is
detected. 

To control the number of segments to transmit, TCP uses another variable called a
congestion window, cwnd, whose size is controlled by the congestion situation in the
network (as we will explain shortly). The cwnd variable and the rwnd variable together
define the size of the send window in TCP. The first is related to the congestion in the
middle (network); the second is related to the congestion at the end. The actual size of
the window is the minimum of these two.

Lost acknowledgments may create deadlock 
if they are not properly handled. 

Actual window size 5 minimum (rwnd, cwnd )
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Congestion Detection

Before discussing how the value of cwnd should be set and changed, we need to
describe how a TCP sender can detect the possible existence of congestion in the net-
work. The TCP sender uses the occurrence of two events as signs of congestion in the
network: time-out and receiving three duplicate ACKs. 

The first is the time-out. If a TCP sender does not receive an ACK for a segment or
a group of segments before the time-out occurs, it assumes that the corresponding seg-
ment or segments are lost and the loss is due to congestion. 

Another event is the receiving of three duplicate ACKs (four ACKs with the same
acknowledgment number). Recall that when a TCP receiver sends a duplicate ACK, it
is the sign that a segment has been delayed, but sending three duplicate ACKs is the
sign of a missing segment, which can be due to congestion in the network. However,
the congestion in the case of three duplicate ACKs can be less severe than in the case of
time-out. When a receiver sends three duplicate ACKs, it means that one segment is
missing, but three segments have been received. The network is either slightly con-
gested or has recovered from the congestion. 

We will show later that an earlier version of TCP, called Taho TCP, treated both
events (time-out and three duplicate ACKs) similarly, but the later version of TCP,
called Reno TCP, treats these two signs differently. 

A very interesting point in TCP congestion is that the TCP sender uses only one
feedback from the other end to detect congestion: ACKs. The lack of regular, timely
receipt of ACKs, which results in a time-out, is the sign of a strong congestion; the
receiving of three duplicate ACKs is the sign of a weak congestion in the network. 

Congestion Policies

TCP’s general policy for handling congestion is based on three algorithms: slow start,
congestion avoidance, and fast recovery. We first discuss each algorithm before show-
ing how TCP switches from one to the other in a connection. 

Slow Start: Exponential Increase
The slow-start algorithm is based on the idea that the size of the congestion window
(cwnd) starts with one maximum segment size (MSS), but it increases one MSS each
time an acknowledgment arrives. As we discussed before, the MSS is a value negoti-
ated during the connection establishment, using an option of the same name. 

The name of this algorithm is misleading; the algorithm starts slowly, but grows
exponentially. To show the idea, let us look at Figure 24.29. We assume that rwnd is much
larger than cwnd, so that the sender window size always equals cwnd. We also assume
that each segment is of the same size and carries MSS bytes. For simplicity, we also
ignore the delayed-ACK policy and assume that each segment is acknowledged
individually. 

The sender starts with cwnd = 1. This means that the sender can send only one seg-
ment. After the first ACK arrives, the acknowledged segment is purged from the
window, which means there is now one empty segment slot in the window. The size of
the congestion window is also increased by 1 because the arrival of the acknowledg-
ment is a good sign that there is no congestion in the network. The size of the window
is now 2. After sending two segments and receiving two individual acknowledgments
for them, the size of the congestion window now becomes 4, and so on. In other words,
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the size of the congestion window in this algorithm is a function of the number of
ACKs arrived and can be determined as follows. 

If an ACK arrives, cwnd = cwnd + 1.

If we look at the size of the cwnd in terms of round-trip times (RTTs), we find that
the growth rate is exponential in terms of each round trip time, which is a very aggres-
sive approach: 

A slow start cannot continue indefinitely. There must be a threshold to stop this
phase. The sender keeps track of a variable named ssthresh (slow-start threshold).
When the size of the window in bytes reaches this threshold, slow start stops and the
next phase starts.  

We need, however, to mention that the slow-start strategy is slower in the case of
delayed acknowledgments. Remember, for each ACK, the cwnd is increased by only 1.
Hence, if two segments are acknowledged cumulatively, the size of the cwnd increases
by only 1, not 2. The growth is still exponential, but it is not a power of 2. With one
ACK for every two segments, it is a power of 1.5.      

Congestion Avoidance: Additive Increase
If we continue with the slow-start algorithm, the size of the congestion window
increases exponentially. To avoid congestion before it happens, we must slow down

Figure 24.29 Slow start, exponential increase
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this exponential growth. TCP defines another algorithm called congestion avoid-
ance, which increases the cwnd additively instead of exponentially. When the size of
the congestion window reaches the slow-start threshold in the case where cwnd = i,
the slow-start phase stops and the additive phase begins. In this algorithm, each time
the whole “window” of segments is acknowledged, the size of the congestion window
is increased by one. A window is the number of segments transmitted during RTT.
Figure 24.30 shows the idea. 

The sender starts with cwnd = 4. This means that the sender can send only four seg-
ments. After four ACKs arrive, the acknowledged segments are purged from the win-
dow, which means there is now one extra empty segment slot in the window. The size
of the congestion window is also increased by 1. The size of window is now 5. After
sending five segments and receiving five acknowledgments for them, the size of the
congestion window now becomes 6, and so on. In other words, the size of the conges-
tion window in this algorithm is also a function of the number of ACKs that have
arrived and can be determined as follows: 

If an ACK arrives, cwnd 5 cwnd 1 (1/cwnd).

The size of the window increases only 1/cwnd portion of MSS (in bytes). In other
words, all segments in the previous window should be acknowledged to increase the
window 1 MSS bytes. 

If we look at the size of the cwnd in terms of round-trip times (RTTs), we find that
the growth rate is linear in terms of each round-trip time, which is much more conser-
vative than the slow-start approach.       

Figure 24.30 Congestion avoidance, additive increase
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Fast Recovery The fast-recovery algorithm is optional in TCP. The old version of
TCP did not use it, but the new versions try to use it. It starts when three duplicate
ACKs arrive, which is interpreted as light congestion in the network. Like congestion
avoidance, this algorithm is also an additive increase, but it increases the size of the
congestion window when a duplicate ACK arrives (after the three duplicate ACKs that
trigger the use of this algorithm). We can say 

If a duplicate ACK arrives, cwnd 5 cwnd 1 (1 / cwnd).

Policy Transition

We discussed three congestion policies in TCP. Now the question is when each of these
policies is used and when TCP moves from one policy to another. To answer these
questions, we need to refer to three versions of TCP: Taho TCP, Reno TCP, and New
Reno TCP. 

Taho TCP
The early TCP, known as Taho TCP, used only two different algorithms in their conges-
tion policy: slow start and congestion avoidance. We use Figure 24.31 to show the FSM
for this version of TCP. However, we need to mention that we have deleted some small
trivial actions, such as incrementing and resetting the number of duplicate ACKs, to make
the FSM less crowded and simpler.    

Start                   → cwnd = i 
After 1 RTT              → cwnd = i + 1 
After 2 RTT → cwnd = i + 2 
After 3 RTT    → cwnd = i + 3 

In the congestion-avoidance algorithm, the size of the congestion window
increases additively until congestion is detected. 

Figure 24.31 FSM for Taho TCP
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Taho TCP treats the two signs used for congestion detection, time-out and three
duplicate ACKs, in the same way. In this version, when the connection is established,
TCP starts the slow-start algorithm and sets the ssthresh variable to a pre-agreed value
(normally a multiple of MSS) and the cwnd to 1 MSS. In this state, as we said before,
each time an ACK arrives, the size of the congestion window is incremented by 1. We
know that this policy is very aggressive and exponentially increases the size of the win-
dow, which may result in congestion. 

If congestion is detected (occurrence of time-out or arrival of three duplicate
ACKs), TCP immediately interrupts this aggressive growth and restarts a new slow
start algorithm by limiting the threshold to half of the current cwnd and resetting the
congestion window to 1. In other words, not only does TCP restart from scratch, but
it also learns how to adjust the threshold. If no congestion is detected while reaching
the threshold, TCP learns that the ceiling of its ambition is reached; it should not
continue at this speed. It moves to the congestion avoidance state and continues in
that state.

In the congestion-avoidance state, the size of the congestion window is increased
by 1 each time a number of ACKs equal to the current size of the window has been
received. For example, if the window size is now 5 MSS, five more ACKs should be
received before the size of the window becomes 6 MSS. Note that there is no ceiling for
the size of the congestion window in this state; the conservative additive growth of the
congestion window continues to the end of the data transfer phase unless congestion is
detected. If congestion is detected in this state, TCP again resets the value of the
ssthresh to half of the current cwnd and moves to the slow-start state again. 

Although in this version of TCP the size of ssthresh is continuously adjusted in
each congestion detection, this does not mean that it necessarily becomes lower than
the previous value. For example, if the original ssthresh value is 8 MSS and congestion
is detected when TCP is in the congestion avoidance state and the value of the cwnd is
20, the new value of the ssthresh is now 10, which means it has been increased. 

Example 24.9

Figure 24.32 shows an example of congestion control in a Taho TCP. TCP starts data transfer and
sets the ssthresh variable to an ambitious value of 16 MSS. TCP begins at the slow-start (SS)
state with the cwnd = 1. The congestion window grows exponentially, but a time-out occurs after
the third RTT (before reaching the threshold). TCP assumes that there is congestion in the net-
work. It immediately sets the new ssthresh = 4 MSS (half of the current cwnd, which is 8) and
begins a new slow-start (SA) state with cwnd = 1 MSS. The congestion window grows exponen-
tially until it reaches the newly set threshold. TCP now moves to the congestion-avoidance (CA)
state and the congestion window grows additively until it reaches cwnd = 12 MSS. At this
moment, three duplicate ACKs arrive, another indication of congestion in the network. TCP
again halves the value of ssthresh to 6 MSS and begins a new slow-start (SS) state. The expo-
nential growth of the cwnd continues. After RTT 15, the size of cwnd is 4 MSS. After sending
four segments and receiving only two ACKs, the size of the window reaches the ssthresh (6) and
TCP moves to the congestion-avoidance state. The data transfer now continues in the congestion-
avoidance (CA) state until the connection is terminated after RTT 20. 

Reno TCP
A newer version of TCP, called Reno TCP, added a new state to the congestion-control
FSM, called the fast-recovery state. This version treated the two signals of congestion,
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time-out and the arrival of three duplicate ACKs, differently. In this version, if a time-out
occurs, TCP moves to the slow-start state (or starts a new round if it is already in this
state); on the other hand, if three duplicate ACKs arrive, TCP moves to the fast-recovery
state and remains there as long as more duplicate ACKs arrive. The fast-recovery state is
a state somewhere between the slow-start and the congestion-avoidance states. It
behaves like the slow start, in which the cwnd grows exponentially, but the cwnd starts
with the value of ssthresh plus 3 MSS (instead of 1). When TCP enters the fast-recovery
state, three major events may occur. If duplicate ACKs continue to arrive, TCP stays in
this state, but the cwnd grows exponentially. If a time-out occurs, TCP assumes that
there is real congestion in the network and moves to the slow-start state. If a new (non-
duplicate) ACK arrives, TCP moves to the congestion-avoidance state, but deflates the
size of the cwnd to the ssthresh value, as though the three duplicate ACKs have not
occurred, and transition is from the slow-start state to the congestion-avoidance state.
Figure 24.33 shows the simplified FSM for Reno TCP. Again, we have removed some
trivial events to simplify the figure and discussion.       

Example 24.10

Figure 24.34 shows the same situation as Figure 24.32, but in Reno TCP. The changes in the con-
gestion window are the same until RTT 13 when three duplicate ACKs arrive. At this moment,
Reno TCP drops the ssthresh to 6 MSS (same as Taho TCP), but it sets the cwnd to a much
higher value (ssthresh + 3 = 9 MSS) instead of 1 MSS. Reno TCP now moves to the fast recov-
ery state. We assume that two more duplicate ACKs arrive until RTT 15, where cwnd grows
exponentially. In this moment, a new ACK (not duplicate) arrives that announces the receipt of
the lost segment. Reno TCP now moves to the congestion-avoidance state, but first deflates the

Figure 24.32 Example 24.9 
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congestion window to 6 MSS (the ssthresh value) as though ignoring the whole fast-recovery
state and moving back to the previous track. 

NewReno TCP
A later version of TCP, called NewReno TCP, made an extra optimization on the Reno
TCP. In this version, TCP checks to see if more than one segment is lost in the current
window when three duplicate ACKs arrive. When TCP receives three duplicate ACKs,
it retransmits the lost segment until a new ACK (not duplicate) arrives. If the new ACK
defines the end of the window when the congestion was detected, TCP is certain that
only one segment was lost. However, if the ACK number defines a position between the
retransmitted segment and the end of the window, it is possible that the segment defined
by the ACK is also lost. NewReno TCP retransmits this segment to avoid receiving
more and more duplicate ACKs for it. 

Additive Increase, Multiplicative Decrease

Out of the three versions of TCP, the Reno version is most common today. It has been
observed that, in this version, most of the time the congestion is detected and taken care
of by observing the three duplicate ACKs. Even if there are some time-out events, TCP
recovers from them by aggressive exponential growth. In other words, in a long TCP
connection, if we ignore the slow-start states and short exponential growth during fast
recovery, the TCP congestion window is cwnd = cwnd + (1 / cwnd) when an ACK arrives
(congestion avoidance), and cwnd = cwnd / 2 when congestion is detected, as though SS
does not exist and the length of FR is reduced to zero. The first is called additive

Figure 24.33 FSM for Reno TCP 
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increase; the second is called multiplicative decrease. This means that the congestion
window size, after it passes the initial slow-start state, follows a saw tooth pattern called
additive increase, multiplicative decrease (AIMD), as shown in Figure 24.35. 

TCP Throughput

The throughput for TCP, which is based on the congestion window behavior, can be
easily found if the cwnd is a constant (flat line) function of RTT. The throughput with
this unrealistic assumption is throughput = cwnd / RTT. In this assumption, TCP sends

Figure 24.34 Example 24.10

Figure 24.35 Additive increase, multiplicative decrease (AIMD)
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a cwnd bytes of data and receives acknowledgement for them in RTT time. The behav-
ior of TCP, as shown in Figure 24.35, is not a flat line; it is like saw teeth, with many
minimum and maximum values. If each tooth were exactly the same, we could say that
the throughput = [(maximum + minimum) / 2] / RTT. However, we know that the value
of the maximum is twice the value of the minimum because in each congestion detec-
tion the value of cwnd is set to half of its previous value. So the throughput can be bet-
ter calculated as  

in which Wmax is the average of window sizes when the congestion occurs. 

Example 24.11

If MSS = 10 KB (kilobytes) and RTT = 100 ms in Figure 24.35, we can calculate the throughput as
shown below.    

24.3.10 TCP Timers
To perform their operations smoothly, most TCP implementations use at least four timers:
retransmission, persistence, keepalive, and TIME-WAIT.

Retransmission Timer

To retransmit lost segments, TCP employs one retransmission timer (for the whole
connection period) that handles the retransmission time-out (RTO), the waiting time
for an acknowledgment of a segment. We can define the following rules for the
retransmission timer:

1. When TCP sends the segment in front of the sending queue, it starts the timer.

2. When the timer expires, TCP resends the first segment in front of the queue, and
restarts the timer. 

3. When a segment or segments are cumulatively acknowledged, the segment or seg-
ments are purged from the queue. 

4. If the queue is empty, TCP stops the timer; otherwise, TCP restarts the timer. 

Round-Trip Time (RTT)
To calculate the retransmission time-out (RTO), we first need to calculate the round-
trip time (RTT). However, calculating RTT in TCP is an involved process that we
explain step by step with some examples. 

❑ Measured RTT. We need to find how long it takes to send a segment and receive
an acknowledgment for it. This is the measured RTT. We need to remember that
the segments and their acknowledgments do not have a one-to-one relationship;
several segments may be acknowledged together. The measured round-trip time
for a segment is the time required for the segment to reach the destination and be
acknowledged, although the acknowledgment may include other segments. Note
that in TCP only one RTT measurement can be in progress at any time. This
means that if an RTT measurement is started, no other measurement starts until

throughput  5  (0.75) Wmax / RTT                     

Wmax = (10 + 12 + 10 + 8 + 8) / 5 = 9.6 MSS 
Throughput = (0.75 Wmax / RTT) = 0.75 × 960 kbps / 100 ms = 7.2 Mbps                     
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the value of this RTT is finalized. We use the notation RTTM to stand for mea-
sured RTT. 

❑ Smoothed RTT. The measured RTT, RTTM, is likely to change for each round trip.
The fluctuation is so high in today’s Internet that a single measurement alone
cannot be used for retransmission time-out purposes. Most implementations use a
smoothed RTT, called RTTS, which is a weighted average of RTTM and the previ-
ous RTTS, as shown below:

The value of α is implementation-dependent, but it is normally set to 1/8. In other
words, the new RTTS is calculated as 7/8 of the old RTTS and 1/8 of the current
RTTM.

❑ RTT Deviation. Most implementations do not just use RTTS; they also calculate the
RTT deviation, called RTTD, based on the RTTS and RTTM, using the following for-
mulas. (The value of β is also implementation-dependent, but is usually set to 1/4.)  

Retransmission Time-out (RTO) The value of RTO is based on the smoothed round-
trip time and its deviation. Most implementations use the following formula to calcu-
late the RTO: 

In other words, take the running smoothed average value of RTTS and add four
times the running smoothed average value of RTTD (normally a small value). 

Example 24.12

Let us give a hypothetical example. Figure 24.36 shows part of a connection. The figure shows
the connection establishment and part of the data transfer phases. 

1. When the SYN segment is sent, there is no value for RTTM, RTTS, or RTTD. The value of
RTO is set to 6.00 seconds. The following shows the value of these variables at this moment:  

2. When the SYN+ACK segment arrives, RTTM is measured and is equal to 1.5 seconds. The fol-
lowing shows the values of these variables:

In TCP, there can be only one RTT measurement in progress at any time.

Initially                                       → No value

After first measurement → RTTS = RTTM

After each measurement     → RTTS = (1 − α) RTTS + α  × RTTM

Initially                                            → No value
After first measurement → RTTD = RTTM /2

After each measurement → RTTD = (1 − β) RTTD + β × | RTTS − RTTM |

Original → Initial value  

After any measurement → RTO  = RTTS  + 4 × RTTD

RTO = 6

RTTM  = 1.5

RTTS   = 1.5

RTTD  = (1.5)/2 = 0.75
RTO    = 1.5 + 4 × 0.75 = 4.5
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3. When the first data segment is sent, a new RTT measurement starts. Note that the sender
does not start an RTT measurement when it sends the ACK segment, because it does not
consume a sequence number and there is no time-out. No RTT measurement starts for the
second data segment because a measurement is already in progress. The arrival of the last
ACK segment is used to calculate the next value of RTTM. Although the last ACK segment
acknowledges both data segments (cumulative), its arrival finalizes the value of RTTM for
the first segment. The values of these variables are now as shown below.  

Karn’s Algorithm
Suppose that a segment is not acknowledged during the retransmission time-out period
and is therefore retransmitted. When the sending TCP receives an acknowledgment for
this segment, it does not know if the acknowledgment is for the original segment or for
the retransmitted one. The value of the new RTT is based on the departure of the seg-
ment. However, if the original segment was lost and the acknowledgment is for the
retransmitted one, the value of the current RTT must be calculated from the time the
segment was retransmitted. This ambiguity was solved by Karn. Karn’s algorithm is
simple. Do not consider the round-trip time of a retransmitted segment in the calcula-
tion of RTTs. Do not update the value of RTTs until you send a segment and receive an
acknowledgment without the need for retransmission. 

Figure 24.36 Example 24.12
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Exponential Backoff
What is the value of RTO if a retransmission occurs? Most TCP implementations use
an exponential backoff strategy. The value of RTO is doubled for each retransmission.
So if the segment is retransmitted once, the value is two times the RTO. If it is retrans-
mitted twice, the value is four times the RTO, and so on. 

Example 24.13

Figure 24.37 is a continuation of the previous example. There is retransmission and Karn’s algo-
rithm is applied.

The first segment in the figure is sent, but lost. The RTO timer expires after 4.74 seconds.
The segment is retransmitted and the timer is set to 9.48, twice the previous value of RTO. This
time an ACK is received before the time-out. We wait until we send a new segment and receive
the ACK for it before recalculating the RTO (Karn’s algorithm). 

Persistence Timer

To deal with a zero-window-size advertisement, TCP needs another timer. If the receiv-
ing TCP announces a window size of zero, the sending TCP stops transmitting seg-
ments until the receiving TCP sends an ACK segment announcing a nonzero window
size. This ACK segment can be lost. Remember that ACK segments are not acknowl-
edged nor retransmitted in TCP. If this acknowledgment is lost, the receiving TCP
thinks that it has done its job and waits for the sending TCP to send more segments.
There is no retransmission timer for a segment containing only an acknowledgment.
The sending TCP has not received an acknowledgment and waits for the other TCP to

TCP does not consider the RTT of a retransmitted 
segment in its calculation of a new RTO. 

Figure 24.37 Example 24.13
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send an acknowledgment advertising the size of the window. Both TCP’s might con-
tinue to wait for each other forever (a deadlock). 

To correct this deadlock, TCP uses a persistence timer for each connection. When
the sending TCP receives an acknowledgment with a window size of zero, it starts a
persistence timer. When the persistence timer goes off, the sending TCP sends a special
segment called a probe. This segment contains only 1 byte of new data. It has a
sequence number, but its sequence number is never acknowledged; it is even ignored in
calculating the sequence number for the rest of the data. The probe causes the receiving
TCP to resend the acknowledgment.

 The value of the persistence timer is set to the value of the retransmission time.
However, if a response is not received from the receiver, another probe segment is sent
and the value of the persistence timer is doubled and reset. The sender continues send-
ing the probe segments and doubling and resetting the value of the persistence timer
until the value reaches a threshold (usually 60 s). After that the sender sends one probe
segment every 60 seconds until the window is reopened.

Keepalive Timer

A keepalive timer is used in some implementations to prevent a long idle connection
between two TCPs. Suppose that a client opens a TCP connection to a server, transfers
some data, and becomes silent. Perhaps the client has crashed. In this case, the connec-
tion remains open forever. 

To remedy this situation, most implementations equip a server with a keepalive
timer. Each time the server hears from a client, it resets this timer. The time-out is usu-
ally 2 hours. If the server does not hear from the client after 2 hours, it sends a probe
segment. If there is no response after 10 probes, each of which is 75 seconds apart, it
assumes that the client is down and terminates the connection.

TIME-WAIT Timer

The TIME-WAIT (2MSL) timer is used during connection termination. The maximum
segment lifetime (MSL) is the amount of time any segment can exist in a network before
being discarded. The implementation needs to choose a value for MSL. Common values
are 30 seconds, 1 minute, or even 2 minutes. The 2MSL timer is used when TCP per-
forms an active close and sends the final ACK. The connection must stay open for 2 MSL
amount of time to allow TCP to resend the final ACK in case the ACK is lost. This
requires that the RTO timer at the other end times out and new FIN and ACK segments
are resent. 

24.3.11 Options
The TCP header can have up to 40 bytes of optional information. Options convey addi-
tional information to the destination or align other options. These options are included
on the book website for further reference.  

TCP options are discussed on the book website. 
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24.5 END-CHAPTER MATERIALS
24.5.1 Recommended Reading
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. 

Books

Several books give information about transport-layer protocols. The items enclosed in
brackets refer to the reference list at the end of the book. In particular, we recommend
[Com 06], [PD 03], [GW 04], [Far 04], [Tan 03], and [Sta 04].

RFCs

The main RFC related to UDP is RFC 768. Several RFCs discuss TCP, including 793,
813, 879, 889, 896, 1122, 1975, 1987, 1988, 1993, 2018, 2581, 3168, and 3782. 

24.5.2 Key Terms

24.5.3 Summary
UDP is an unreliable and connectionless transport-layer protocol that creates a process-
to-process communication, which means it requires little overhead and offers fast deliv-
ery. The UDP packet is called a user datagram. UDP has no flow- or error-control
mechanism; its only attempt at error control is the checksum. A user datagram is encap-
sulated in the data field of an IP datagram. UDP uses multiplexing and demultiplexing
to handle outgoing and incoming user datagrams.

Transmission Control Protocol (TCP) is another transport-layer protocol in the
TCP/IP protocol suite. It provides process-to-process, full-duplex, and connection-
oriented service. A TCP connection consists of three phases: connection establishment,
data transfer, and connection termination. TCP software is normally implemented as a

additive increase, multiplicative 
decrease (AIMD)
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fast-recovery
fast retransmission
fragmentation
half-close
initial sequence number (ISN)
initial TSN
initiation tag
Karn’s algorithm
keepalive timer
multihoming service
multistream service

Nagle’s algorithm
persistence timer
primary address
retransmission time-out (RTO)
round-trip time (RTT)
silly window syndrome
slow-start algorithm
socket address
Stream Control Transmission Protocol

(SCTP)
stream identifier (SI)
stream sequence number (SSN)
SYN flooding attack
three-way handshaking
Transmission Control Protocol (TCP)
transmission sequence number (TSN)
user datagram
User Datagram Protocol (UDP)
verification tag (VT)
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finite state machine (FSM). TCP uses flow control, implemented as a sliding window
mechanism, to avoid overwhelming a receiver with data. The TCP window size is
determined by the receiver-advertised window size (rwnd) or the congestion window
size (cwnd), whichever is smaller. The bytes of data being transferred in each connec-
tion are numbered by TCP. The numbering starts with a randomly generated number.
TCP uses error control to provide a reliable service. Error control is handled by checksums,
acknowledgment, and time-outs. In modern implementations, a retransmission occurs if
the retransmission timer expires or three duplicate ACK segments have arrived. TCP uses
congestion control to avoid and detect congestion in the network. The slow-start (expo-
nential increase), congestion-avoidance (additive increase), and congestion-detection
(multiplicative decrease) strategies are used for congestion control.

SCTP is a message-oriented, reliable protocol that combines the good features of
UDP and TCP. SCTP provides additional services not provided by UDP or TCP, such
as multiple-stream and multihoming services. SCTP is a connection-oriented protocol,
in which a connection is called an association. SCTP provides flow control, error con-
trol, and congestion control. To distinguish between different streams, SCTP uses the
sequence identifier (SI). To distinguish between different data chunks belonging to the
same stream, SCTP uses the stream sequence number (SSN). The SCTP acknowledg-
ment SACK reports the cumulative TSN, the TSN of the last data chunk received in
order, and selective TSNs that have been received. 

24.6 PRACTICE SET 
24.6.1 Quizzes
A set of interactive quizzes for this chapter can be found on the book website. It is
strongly recommended that the student take the quizzes to check his/her understanding
of the materials before continuing with the practice set. 

24.6.2 Questions
Q24-1. Some of the application programs can use the services of two transport-layer

protocols (UDP or TCP). When a packet arrives at the destination, how can
the computer find which transport layer is involved?

Q24-2. A client residing on a host with IP address 122.45.12.7 sends a message to the
corresponding server residing on a host with IP address 200.112.45.90. If the
well-known port is 161 and the ephemeral port is 51000, what are the pair of
socket addresses used in this communication? 

Q24-3. UDP is a message-oriented protocol. TCP is a byte-oriented protocol. If an
application needs to protect the boundaries of its message, which protocol
should be used, UDP or TCP?

Q24-4. Assume a private internet, which uses point-to-point communication between
the hosts and needs no routing, has totally eliminated the use of the network
layer. Can this internet still benefit from the services of UDP or TCP? In other
words, can user datagrams or segments be encapsulated in the Ethernet frames?
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Q24-5. Assume a private internet uses a protocol suite totally different from the TCP/
IP protocol suite. Can this internet still use the services of UDP or TCP as an
end-to-end vehicle of message communication?

Q24-6. Can you explain why we need four (or sometimes three) segments for connec-
tion termination in TCP?

Q24-7. In TCP, some segment types can be used only for control; they cannot be used
to carry data at the same time. Can you define some of these segments?

Q24-8. In TCP, how do we define the sequence number of a segment (in each direc-
tion)? Consider two cases: the first segment and other segments.

Q24-9. In TCP, we have two consecutive segments. Assume the sequence number of
the first segment is 101. What is the sequence number of the next segment in
each of the following cases?

a. The first segment does not consume any sequence numbers.

b. The first segment consumes 10 sequence numbers.
Q24-10. In TCP, how many sequence numbers are consumed by each of the following

segments?

Q24-11. Can you explain why in TCP a SYN, SYN + ACK, and FIN segment each
consume a sequence number, but an ACK segment carrying no data does not
consume a sequence number? 

Q24-12. Looking at the TCP header (Figure 24.7), we find that the sequence number is
32 bits long, while the window size is only 16 bits long. Does this mean that
TCP is closer to the Go-Back-N or Selective-Repeat protocol in this respect?

Q24-13. The maximum window size of the TCP was originally designed to be 64 KB
(which means 64 × 1024 = 65,536 or actually 65,535). Can you think of a rea-
son for this? 

Q24-14. What is the maximum size of the TCP header? What is the minimum size of
the TCP header?

Q24-15. In TCP, does a SYN segment open a connection in only one direction or in
both directions?

Q24-16. In TCP, does a FIN segment close a connection in only one direction or in
both directions?

Q24-17. In TCP, what type of flag can totally close the communication in both directions?
Q24-18. Most of the flags can be used together in a segment. Give an example of two

flags that cannot be used simultaneously because they are ambiguous.
Q24-19. Assume a client sends a SYN segment to a server. When the server checks the

well-known port number, it finds that no process defined by the port number is
running. What is the server supposed to do in this case?

Q24-20. Can you explain how TCP, which uses the services provided by the unreliable
IP, can provide reliable communication? 

Q24-21. We said that TCP provides a connection-oriented service between the two
application programs. A connection in this case needs a connection identifier

a. SYN b. ACK c. SYN + ACK d. Data 



808 PART V TRANSPORT LAYER

that distinguishes one connection from another. What do you think the unique
connection identifier is in this case?

Q24-22. Assume Alice uses her browser to open two connections to the HTTP server
running on Bob’s server. How can these two connections be distinguished by
the TCP?

Q24-23. We used the terms passive open and active open in discussing a connection-
oriented communication using TCP. Assume there is a telephone conversation
between Alice and Bob. Since a telephone conversation is an example of a
connection-oriented communication, assume Alice calls Bob and they talk on
the telephone. Who is making a passive open connection in this case? Who is
making an active open connection in this case?

Q24-24. In TCP, can the sender window be smaller, larger, or the same size as the
receiver window?

Q24-25. Can you mention some tasks that can be done by one or a combination of TCP
segments?

Q24-26. In a TCP segment, what does a sequence number identify? 
Q24-27. In a TCP segment, what does an acknowledgment number identify? 
Q24-28. Is the use of checksum for error control optional or mandatory in  

Q24-29. Assume a TCP server expects to receive byte 2001, but it receives a segment
with sequence number 2200. What is the reaction of the TCP server to this
event? Can you justify the reaction? 

Q24-30. Assume a TCP client expects to receive byte 2001, but it receives a segment
with sequence number 1201. What is the reaction of the TCP client to this
event? Can you justify the reaction? 

Q24-31. Assume a TCP server is missing bytes 2001 to 3000. The server receives a
segment with sequence number 2001 that carries 400 bytes. What is the reac-
tion of the TCP server to this event? Can you justify the reaction? 

Q24-32. Assume a TCP server is expecting to receive byte 2401. It receives a
segment with the sequence number 2401 that carries 500 bytes. If the server
has no data to send at this moment and has not acknowledged the previous
segment, what is the reaction of the TCP server to this event? Can you justify
the reaction? 

Q24-33. Assume a TCP client is expecting to receive byte 3001. It receives a segment
with the sequence number 3001 that carries 400 bytes. If the client has no data
to be sent at this moment and has acknowledged the previous segment, what is
the reaction of the TCP client to this event? Can you justify the reaction? 

Q24-34. Assume a TCP server is expecting to receive byte 6001. It receives a segment
with the sequence number 6001 that carries 2000 bytes. If the server has bytes
4001 to 5000 to send, what should the reaction of the TCP server be to this
event? Can you justify the reaction? 

Q24-35. The first rule of generating ACKs for TCP is not shown in Figure 24.22 or
24.23. Can you explain the reason for this? 

a. UDP? b. TCP? 
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Q24-36. Which of the six rules we described for ACK generation in TCP can be
applied to the case where a server receives a SYN segment from a client? 

Q24-37. Which of the six rules we described for ACK generation in TCP can be
applied to the case where a client receives a SYN + ACK segment from a
server? 

Q24-38. Which of the six rules we described for ACK generation can be applied to the
case where a client or a server receives a FIN segment from the other end? 

Q24-39. In SCTP, a packet is carrying two DATA chunks, each containing 22 bytes of
user data. What is the size of each DATA chunk? What is the total size of the
packet?

Q24-40. In SCTP, a SACK chunk reports the receipt of three out-of-order data chunks
and five duplicate data chunks. What is the total size of the chunk in bytes?

Q24-41. In SCTP, a packet is carrying a COOKIE ECHO message and a DATA chunk.
If the size of the cookie is 200 bytes and that of the user data is 20 bytes, what
is the size of the packet?

Q24-42. In SCTP, a packet is carrying a COOKIE ACK message and a DATA chunk. If
the user data is 20 bytes, what is the size of the packet?

Q24-43. In SCTP, the value of the cumulative TSN in a SACK is 23. The value of the
previous cumulative TSN in the SACK was 29. What is the problem?

24.6.3 Problems 
P24-1. Answer the following questions:

a. What is the minimum size of a UDP user datagram?

b. What is the maximum size of a UDP user datagram?

c. What is the minimum size of the application-layer payload data that can be
encapsulated in a UDP user datagram?

d. What is the maximum size of the application-layer payload that can be
encapsulated in a UDP user datagram? 

P24-2. A client uses UDP to send data to a server. The data length is 16 bytes. Calcu-
late the efficiency of this transmission at the UDP level (ratio of useful bytes
to total bytes).

P24-3. The following is a dump (contents) of a UDP header in hexadecimal format. 

a. What is the source port number?

b. What is the destination port number?

c. What is the total length of the user datagram?

d. What is the length of the data?

e. Is the packet directed from a client to a server or vice versa?

f. What is the application-layer protocol?

g. Has the sender calculated a checksum for this packet?

0045DF0000580000



810 PART V TRANSPORT LAYER

P24-4. Compare the TCP header and the UDP header. List the fields in the TCP header
that are not part of the UDP header. Give the reason for each missing field.

P24-5. In TCP, if the value of HLEN is 0111, how many bytes of options are included
in the segment?

P24-6. What can you say about each of the following TCP segments, in which the
value of the control field is:

P24-7. The control field in a TCP segment is 6 bits. We can have 64 different combi-
nations of bits. List some combinations that you think are normally used. 

P24-8. The following is part of a TCP header dump (contents) in hexadecimal format. 

a. What is the source port number?

b. What is the destination port number?

c. What is the sequence number?

d. What is the acknowledgment number?

e. What is the length of the header?

f. What is the type of the segment?

g. What is the window size?

P24-9. To better understand the need for the three-handshake connection establish-
ment, let us go through a scenario. Alice and Bob have no access to telephones
or the Internet (think about the old days) to establish their next meeting at a
place far from their homes. 

a. Suppose that Alice sends a letter to Bob and defines the day and the time of
their meeting. Can Alice go to the meeting place and be sure that Bob is
there? 

b. Suppose that Bob responds to Alice’s request with a letter and confirms the
date and time. Can Bob go to the meeting place and be sure that Alice is
there? 

c. Suppose that Alice responds to Bob’s letter and confirms the same date and
time. Can either one go to the meeting and be sure that the other person is
there?

P24-10. To make the initial sequence number a random number, most systems start the
counter at 1 during bootstrap and increment the counter by 64,000 every half sec-
ond. How long does it take for the counter to wrap around? 

P24-11. In a TCP connection, the initial sequence number at the client site is 2171. The
client opens the connection, sends three segments, the second of which carries
1000 bytes of data, and closes the connection. What is the value of the
sequence number in each of the following segments sent by the client? 

a. The SYN segment

b. The data segment

c. The FIN segment

a. 000000 b. 000001 c. 010001
d. 000100 e. 000010 f. 010010

E293 0017 00000001 00000000 5002 07FF… 
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P24-12. In a connection, the value of cwnd is 3000 and the value of rwnd is 5000. The
host has sent 2000 bytes, which have not been acknowledged. How many
more bytes can be sent?

P24-13. A client uses TCP to send data to a server. The data consist of 16 bytes. Calcu-
late the efficiency of this transmission at the TCP level (ratio of useful bytes to
total bytes).

P24-14. TCP is sending data at 1 megabyte per second. If the sequence number starts
with 7000, how long does it take before the sequence number goes back to
zero? 

P24-15. An HTTP client opens a TCP connection using an initial sequence number
(ISN) of 14,534 and the ephemeral port number of 59,100. The server opens
the connection with an ISN of 21,732. Show the three TCP segments during
the connection establishment if the client defines the rwnd of 4000 and the
server defines the rwnd of 5000. Ignore the calculation of the checksum field.   

P24-16. Assume the HTTP client in the previous problem sends a request of 100 bytes.
The server responds with a segment of 1200 bytes. Show the contents of the
two segments exchanged between the client and the sender. Assume the
acknowledgment of the response will be done later by the client (ignore calcu-
lation of checksum field).   

P24-17. Assume the HTTP client in the previous problem closes the connection and, at
the same time, acknowledges the bytes received in the response from the
server. After receiving the FIN segment from the client, the server also closes
the connection in the other direction. Show the connection termination phase.    

P24-18. Distinguish between a time-out event and the three-duplicate-ACKs event.
Which one is a stronger sign of congestion in the network? Why? 

P24-19. Figure 24.15 shows the client and server in the transition diagram for the com-
mon scenario using a four-handshake closing. Change the diagram to show the
three-handshake closing. 

P24-20. Eve, the intruder, sends a SYN segment to Bob, the server, using Alice’s IP
address. Can Eve create a TCP connection with Bob by pretending that she is
Alice? Assume that Bob uses a different ISN for each connection. 

P24-21. Eve, the intruder, sends a user datagram to Bob, the server, using Alice’s IP
address. Can Eve, pretending to be Alice, receive a response from Bob? 

P24-22. Assume Alice, the client, creates a connection with Bob, the server. They
exchange data and close the connection. Now Alice starts a new connection
with Bob by sending a new SYN segment. Before Bob responds to this SYN
segment, a duplicate copy of the old SYN segment from Alice, which is wan-
dering in the network, arrives at Bob’s computer, initiating a SYN + ACK seg-
ment from Bob. Can this segment be mistaken by Alice’s computer as the
response to the new SYN segment? Explain.   

P24-23. Assume Alice, the client, creates a TCP connection with Bob, the server. They
exchange data and close the connection. Now Alice starts a new connection with
Bob by sending a new SYN segment. The server responds with the SYN + ACK
segment. However, before Bob receives the ACK for this connection from Alice,
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a duplicate old ACK segment from Alice arrives at Bob’s site. Can this old ACK
be confused with the ACK segment Bob is expecting from Alice?

P24-24. Using Figure 24.19, explain how flow control can be achieved at the sender site in
TCP (from the sending TCP to the sending application). Draw a representation.

P24-25. Using Figure 24.19, explain how flow control can be achieved at the receiver
site in TCP (from the receiving TCP to the receiving application). 

P24-26. In TCP, assume a client has 100 bytes to send. The client creates 10 bytes at a
time in each 10 ms and delivers them to the transport layer. The server
acknowledges each segment immediately or if a timer times out at 50 ms.
Show the segments and the bytes each segment carries if the implementation
uses Nagle’s algorithm with maximum segment size (MSS) of 30 bytes. The
round-trip time is 20 ms, but the sender timer is set to 100 ms. Does any seg-
ment carry the maximum segment size? Is Nagler’s algorithm really effective
here? Why?

P24-27. For a clearer view of Nagle’s algorithm, let us repeat the previous problem,
but let the server transport layer acknowledge a segment when there is a previ-
ous segment that has not been acknowledged (every other segment) or a timer
times out after 60 ms. Show the time line for this scenario. 

P24-28. As we have explained in the text, the TCP sliding window, when used without
new SACK options, is a combination of the Go-Back-N and the Selective-
Repeat protocols. Explain which aspects of the TCP sliding window are
close to the Go-Back-N and which aspects are close to the Selective-Repeat
protocol.

P24-29. Although new TCP implementations use the SACK option to report the out of
order and duplicate range of bytes, explain how old implementations can indi-
cate that the bytes in a received segment are out of order or duplicate. 

P24-30. We discuss the new option of SACKs for TCP on the book website, but for the
moment assume that we add an 8-byte NAK option to the end of the TCP seg-
ment, which can hold two 32-bit sequence numbers. Show how we can use
this 8-byte NAK to define an out-of-order or duplicate range of bytes
received.

P24-31. In a TCP connection, assume that maximum segment size (MSS) is 1000 bytes.
The client process has 5400 bytes to send to the server process, which has no
bytes to respond (unidirectional communication). The TCP server generates
ACKs according to the rules we discussed in the text. Show the time line for
the transactions during the slow start phase, indicating the value of cwnd at the
beginning, at the end, and after each change. Assume that each segment
header is only 20 bytes. 

P24-32. The ssthresh value for a Taho TCP station is set to 6 MSS. The station now is
in the slow-start state with cwnd = 4 MSS. Show the values of cwnd, sstresh,
and the state of the station before and after each of following events: four con-
secutive nonduplicate ACKs arrived followed by a time-out, and followed by
three nonduplicate ACKs. 
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P24-33. The ssthresh value for a Reno TCP station is set to 8 MSS. The station is now in
the slow-start state with cwnd = 5 MSS and ssthresh = 8 MSS. Show the values of
cwnd, ssthresh, and the current and the next state of the station after the following
events: three consecutive nonduplicate ACKs arrived, followed by five duplicate
ACKs, followed by two nonduplicate ACKs, and followed by a time-out. 

P24-34. In a TCP connection, the window size fluctuates between 60,000 bytes and
30,000 bytes. If the average RTT is 30 ms, what is the throughput of the
connection?   

P24-35. If originally RTTS = 14 ms and α is set to 0.2, calculate the new RTTS after
the following events (times are relative to event 1): 

P24-36. An SCTP association is in the ESTABLISHED state. It receives a SHUT-
DOWN chunk. If the host does not have any outstanding or pending data,
what does it need to do?

P24-37. An SCTP association is in the COOKIE-WAIT state. It receives an INIT
chunk; what does it need to do?

P24-38. In SCTP, the following is a dump of a DATA chunk in hexadecimal format. 

a. Is this an ordered or unordered chunk?

b. Is this the first, the last, the middle, or the only fragment?

c. How many bytes of padding are carried by the chunk?

d. What is the TSN?

e. What is the SI?

f. What is the SSN?

g. What is the message?

P24-39. The following is a dump of an SCTP general header in hexadecimal format. 

a. What is the source port number?

b. What is the destination port number?

c. What is the value of the verification tag?

d. What is the value of the checksum?

P24-40. In SCTP, the state of a receiver is as follows:

a. The receiving queue has chunks 1 to 8, 11 to 14, and 16 to 20.

b. There are 1800 bytes of space in the queue.

c. The value of lastAck is 4. 

Event 1: 00 ms Segment 1 was sent. 
Event 2: 06 ms Segment 2 was sent. 
Event 3: 16 ms Segment 1 was timed-out and resent.
Event 4: 21 ms Segment 1 was acknowledged.
Event 5: 23 ms Segment 2 was acknowledged.

00000015 00000005 0003000A 00000000 48656C6C 6F000000

04320017 00000001 00000000 
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d. No duplicate chunk has been received. 

e. The value of cumTSN is 5.

Show the contents of the receiving queue and the variables. Show the contents
of the SACK message sent by the receiver.

P24-41. In SCTP, the state of a sender is as follows:

a. The sending queue has chunks 18 to 23.

b. The value of curTSN is 20.

c. The value of the window size is 2000 bytes.

d. The value of inTransit is 200.

If each data chunk contains 100 bytes of data, how many DATA chunks can be
sent now? What is the next data chunk to be sent?

P24-42. An SCTP client opens an association using an initial tag of 806, an initial TSN
of 14534, and a window size of 20,000. The server responds with an initial tag
of 2000, an initial TSN of 670, and a window size of 14,000. Show the con-
tents of all four packets exchanged during association establishment. Ignore
the value of the cookie. 

P24-43. If the client in the previous exercise sends 7600 data chunks and the server
sends 570 data chunks, show the contents of the three packets exchanged dur-
ing association termination. 


