

 LoopingOutline
General registers Organization – Control Word, Examples of micro operation,
Stack Organization – Register stack, Memory stack, Reverse Polish Notation,
Evaluation of Arithmetic Expressions

Instruction Formats – Three Address Instructions, Two Address Instructions
One Address Instructions, Zero Address Instructions,

Addressing Modes-Types
Data Transfer and Manipulation –
Data Transfer Instructions,
Data Manipulation Instructions – Arithmetic instructions,
Logical and bit manipulation instructions, shift instructions,
Program Control – Conditional Branch instructions, Subroutine Call and Return.

Major Components of CPU

 Storage Components: To store the data (Processors)

 Registers

 Flip-flops

 Execution (Processing) Components: Which performs calculations

 Arithmetic Logic Unit (ALU):

 Arithmetic calculations, Logical computations, Shifts/Rotates

 Transfer Components: to transfer data from ALU and Registers

 Bus

 Control Components:

 Control Unit

Section - 1

R1

R2

R3

R4

R5

R6

R7

MUX - A MUX - B

Arithmetic Logic Unit
(ALU)

3x8
decoder

Clock Input

Output

SEL BSEL A

SEL D OPR

Load
(7 lines)

A - bus B - bus

General Register Organization

 Example: R1 R2 + R3

 To perform the above operation, the control must provide binary selection variables to the following selector
inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.

2. MUX B selector (SELB): to place the content of R3 into bus B.

3. ALU operation selector (OPR): to provide the arithmetic addition A + B.

4. Decoder destination selector (SELD): to transfer the content of the output

bus into R1.

 Control Word:

SELA SELB SELD OPR

3 3 3 5

Binary
Code

SELA SELB SELD

000 Input Input None

001 R1 R1 R1

010 R2 R2 R2

011 R3 R3 R3

100 R4 R4 R4

101 R5 R5 R5

110 R6 R6 R6

111 R7 R7 R7

General Register Organization

OPR Select Operation Symbol

00000 Transfer A TSFA

00001 Increment A INCA

00010 A + B ADD

00101 A – B SUB

00110 Decrement A DECA

01000 A and B AND

01010 A or B OR

01100 A xor B XOR

01110 Complement A COMA

10000 Shift right A SHRA

11000 Shift left A SHLA

Encoding of ALU Operations

Section - 2

Stack Organization

 A stack is a storage device that stores information in such a manner that the item stored last is
the first item retrieved (LIFO).

 The register that holds the address for the stack is called a stack pointer (SP) because its value
always points at the top item in the stack.

 The physical registers of a stack are always available for reading or writing. It is the content of
the word that is inserted or deleted.

 There are two types of stack organization
1. Register stack – built using registers

2. Memory stack – logical part of memory allocated as stack

Register Stack

 PUSH Operation

C

B

A

DR

FULL EMTY

SP

63

3

2

1

0

4

Address

SP ← SP + 1

M[SP] ← DR

IF (SP= 0) then (FULL ← 1)

EMTY ← 0

DR ← M[SP]

SP ← SP - 1

IF (SP= 0) then (EMTY ← 1)

FULL ← 0

 POP Operation

Register Stack

 A stack can be placed in a portion of a large memory or it can be organized as a collection of a
finite number of memory words or registers. Figure shows the organization of a 64-word
register stack.

 The stack pointer register SP contains a binary number whose value is equal to the address of
the word that is currently on top of the stack.

 In a 64-word stack, the stack pointer contains 6 bits because 26 = 64.

 Since SP has only six bits, it cannot exceed a number greater than 63 (111111 in binary).

 The one-bit register FULL is set to 1 when the stack is full, and the one-bit register EMTY is set
to 1 when the stack is empty of items.

 DR is the data register that holds the binary data to be written into or read out of the stack.

Memory Stack

 PUSH Operation

SP ← SP - 1

M[SP] ← DR

DR ← M[SP]

SP ← SP + 1

 POP Operation

Program
(instructions)

Data
(operands)

Stack

DR

1000

Address

2000

3000

3997

3998

3999

4000

4001

PC

AR

SP

Memory Stack

 The implementation of a stack in the CPU is done by assigning a portion of memory
to a stack operation and using a processor register as a stack pointer.

 Figure shows a portion of computer memory partitioned into three segments:
program, data, and stack.

 The program counter PC points at the address of the next instruction in the program
which is used during the fetch phase to read an instruction.

 The address registers AR points at an array of data which is used during the execute
phase to read an operand.

 The stack pointer SP points at the top of the stack which is used to push or pop items
into or from the stack.

 We assume that the items in the stack communicate with a data register DR.

Reverse Polish Notation

 The common mathematical method of writing arithmetic expressions imposes difficulties when
evaluated by a computer.

 The Polish mathematician Lukasiewicz showed that arithmetic expressions can be represented
in prefix notation as well as postfix notation.

A + B + AB AB +

Infix Prefix or Polish Postfix or Reverse Polish

A * B + C * D AB * CD * +

Reverse Polish

Evaluation of Arithmetic Expression

(3 * 4) + (5 * 6) 3 4 * 5 6 * +

3

4

3 12

5

12

6

5

12

30

12 42

3 4 * 5 6 * +

42

Section - 3

INSTRUCTION FORMAT

 Instruction Fields

OP-code field - specifies the operation to be performed
Address field - designates memory address(s) or a processor register(s)-Address of the
 memory and Address of the registers
Mode field - specifies the way the operand or the effective address is determined

 The number of address fields in the instruction format depends on the internal
organization of CPU

 - The three most common CPU organizations
 Single accumulator organization:

ADD X /* AC  AC + M[X] */

General register organization:

ADD R1, R2, R3 /* R1  R2 + R3 */

 ADD R1, R2 /* R1  R1 + R2 */

MOV R1, R2 /* R1  R2 */

 ADD R1, X /* R1  R1 + M[X] */

Stack organization:

PUSH X /* TOS  M[X] */

 ADD

Instruction Formats

 Instructions are categorized into different formats with respect to the operand fields in the
instructions.

1. Three Address Instructions

2. Two Address Instruction

3. One Address Instruction

4. Zero Address Instruction

Three Address Instruction

 Computers with three-address instruction formats can use each address field to specify either a
processor register or a memory operand.

 The program in assembly language that evaluates X = (A + B) * (C + D) is shown below.

 The advantage of three-address format is that it results in short programs when evaluating
arithmetic expressions.

 The disadvantage is that the binary-coded instructions require too many bits to specify three
addresses.

ADD R1, A, B R1←AM[A]+ M[B]
ADD R2, C, D R2←AM[C]+ M[D]
MUL X, R1, R2 M[X]←AR1 * R2

Two Address Instruction

 Two address instructions are the most common in commercial computers. Here again each
address field can specify either a processor register or a memory word.

 The program to evaluate X = (A + B) * (C + D) is as follows:

MOV R1, A R1←AM[A]
ADD R1, B R1←AR1+ M[B]
MOV R2, C R2←AM[C]
ADD R2, D R2←AR2+ M[D]
MUL R1, R2 R1←AR1 * R2

M[X]←AR1MOV X, R1

One Address Instruction

 One address instructions use an implied accumulator (AC) register for all data manipulation.

 For multiplication and division these is a need for a second register.

 However, here we will neglect the second register and assume that the AC contains the result of
all operations.

 The program to evaluate X = (A + B) * (C + D) is

LOAD A AC←AM[A]
ADD B AC←AAC+M[B]
STORE T M[T]←AC
LOAD C AC←AM[C]
ADD D AC←AAC+M[D]
MUL T AC←AAC*M[T]
STORE X M[X]←AC

Zero Address Instruction

 A stack-organized computer does not use an address field for the instructions ADD and MUL.

 The PUSH and POP instructions, however, need an address field to specify the operand that
communicates with the stack.

 The program to evaluate X = (A + B) * (C + D) will be written for a stack-organized computer.

 To evaluate arithmetic expressions in a stack computer, it is necessary to convert the
expression into reverse polish notation.

PUSH A TOS←AM[A]
PUSH B TOS←AM[B]
ADD TOS←(A+B)
PUSH C TOS←AM[C]
PUSH D TOS←AM[D]
ADD TOS←(C+D)
MUL TOS←(C+D)*(A+B)
POP X M[X]A←ATOS

(3 + 4) [10 (2 + 6) + 8]

Section - 4

Addressing Modes

 The way of choosing operands during
program execution is dependent on
addressing modes of the instruction.

 Computers use addressing mode techniques
for the purpose of accommodating one or
both of the following provisions:

1. To give programming versatility to the user by
providing such facilities as pointers to memory,
counters for loop control, indexing of data, and
program relocation.

2. To reduce the number of bits in the addressing
field of the instruction.

 There are basic 10 addressing modes
supported by the computer.

1. Implied Mode
2. Immediate Mode
3. Register Mode
4. Register Indirect Mode
5. Autoincrement or Autodecrement Mode
6. Direct Address Mode
7. Indirect Address Mode
8. Relative Address Mode
9. Indexed Addressing Mode
10. Base Register Addressing Mode

1. Implied Mode & 2. Immediate Mode

 Operands are specified implicitly in the
definition of the instruction.

 For example, the instruction “complement
accumulator (CMA)” is an implied-mode
instruction because the operand in the
accumulator register is implied in the
definition of the instruction.

 In fact, all register reference instructions
that use an accumulator and zero address
instructions are implied mode instructions.

 Operand is specified in the instruction itself.

 In other words, an immediate-mode
instruction has an operand field rather than
an address field.

 The operand field contains the actual
operand to be used in conjunction with the
operation specified in the instruction.

 Immediate mode of instructions is useful for
initializing register to constant value.

 E.g. MOV R1, 05H

instruction copies immediate number 05H
to R1 register.

1. Implied Mode 2. Immediate Mode

3. Register Mode & 4. Register Indirect Mode

 Operands are in registers that reside within
the CPU.

 The particular register is selected from a
register field in the instruction.

 E.g. MOV AX, BX

move value from BX to AX register

 In this mode the instruction specifies a register
in the CPU whose contents give the address of
the operand in memory.

 Before using a register indirect mode instruction,
the programmer must ensure that the memory
address of the operand is placed in the
processor register with a previous instruction.

 The advantage of this mode is that address field
of the instruction uses fewer bits to select a
register than would have been required to
specify a memory address directly.

 E.g. MOV [R1], R2

value of R2 is moved to the memory location
specified in R1.

3. Register Mode 4. Register Indirect Mode

5. Autoincrement or Autodecrement Mode & 6. Direct Address Mode

 This is similar to the register indirect mode
expect that the register is incremented or
decremented after (or before) its value is
used to access memory.

 When the address stored in the register
refers to a table of data in memory, it is
necessary to increment or decrement the
register after every access to the table. This
can be achieved by using the increment or
decrement instruction.

 In this mode the effective address is equal
to the address part of the instruction.

 The operand resides in memory and its
address is given directly by the address field
of the instruction.

 E.g. ADD 457

5. Autoincrement or Autodecrement Mode 6. Direct Address Mode

7. Indirect Address Mode & 8. Relative Address Mode

 In this mode the address field of the
instruction gives the address where the
effective address is stored in memory.

 Control fetches the instruction from memory
and uses its address part to access memory
again to read the effective address.

 The effective address in this mode is
obtained from the following computational:

 In this mode the content of the program
counter is added to the address part of the
instruction in order to obtain the effective
address.

 The address part of the instruction is usually
a signed number which can be either
positive or negative.

Effective address = address part of instruction
+ content of PC

7. Indirect Address Mode 8. Relative Address Mode

9. Indexed Addressing Mode & 10. Base Register Addressing Mode

 In this mode the content of an index register
is added to the address part of the
instruction to obtain the effective address.

 The indexed register is a special CPU
register that contain an index value.

 The address field of the instruction defines
the beginning address of a data array in
memory.

 Each operand in the array is stored in
memory relative to the beginning address.

Effective address = address part of instruction
+ content of index register

 In this mode the content of a base register
is added to the address part of the
instruction to obtain the effective address.

 A base register is assumed to hold a base
address and the address field of the
instruction gives a displacement relative to
this base address.

 The base register addressing mode is used
in computers to facilitate the relocation of
programs in memory.

Effective address = address part of instruction
+ content of base register

9. Indexed Addressing Mode 10. Base Register Addressing Mode

Addressing Modes (Example)

Load to AC Mode

Address = 500

Next instruction

450

700

800

900

325

300

200

201

202

399

400

500

600

702

800

MemoryAddress

PC = 200

R1 = 400

XR = 100

AC

 LoopingOutline
• Addition and Subtraction

v Addition & Subtraction with signed-magnitude data.
v Addition & Subtraction with signed 2’s complement data.

• Multiplication Algorithms (Booth Multiplication Algorithm)

Section - 1

Addition and Subtraction

Operation
Add

Magnitudes

Subtract Magnitudes

When A > B When A < B When A = B

(+A) + (+B) + (A + B)

(+A) + (-B) + (A - B) - (B - A) + (A - B)

(-A) + (+B) - (A - B) + (B - A) + (A - B)

(-A) + (-B) - (A + B)

(+A) - (+B) + (A - B) - (B - A) + (A - B)

(+A) - (-B) + (A + B)

(-A) - (+B) - (A + B)

(-A) - (-B) - (A - B) + (B - A) + (A - B)

Hardware Implementation

Flowchart for Addition & Subtraction

Subtract operation Add operation

Minuend in A
Subtrahend in B

Augend in A
Addend in B

Asᵼ�Bs Asᵼ�Bs

EA ← A+B’+1
AVF ← 0

EA ← A+B

E
AVF ← E

A ← A’ A

A ← A+1
As ← As’

As ← 0

END
(result is in A and As)

= 0 = 1 = 1 = 0

As = BsAs = Bs As ≠ BsAs ≠ Bs

= 0 = 1
A < B A ≥ B

≠ 0 = 0

As = Sign bit of A

Bs = Sign bit of B

AVF = add overflow
flip-flop

E = Carry

2’S COMPLEMENT ADDITION

Addition and subtraction using signed 2’s complement data

+33=00100001

Algorithm for adding and subtracting numbers in signed 2's complement
representation.

 Perform the arithmetic operations below with binary numbers and with negative numbers In
slgned-2"s complement representation. Use seven bits to accommodate each number together
with its sign. In each case, determine if there is an overflow by checking the carries Into and out
of the sign bit position .

 (+35) + (+40)

 b. (-35) + (-40)

 c. (-35) - (+40)

Section - 2

Multiplication Traditional way of binary multiplication

23

19

10111

10011xx

10111
10111

00000

00000

10111

110110101437

Multiply operation

ᵼ�ᵼ� ← ᵼ�ᵼ� ᵼ� ᵼ�ᵼ�
ᵼ�ᵼ� ← ᵼ�ᵼ� ᵼ� ᵼ�ᵼ�
A ←0, E ←0
S C ←ᵼ�

ᵼ�ᵼ�

EA ←ᵼ� +ᵼ�

= 1

s hr EAQ

S C ←ᵼ�ᵼ� − 1

= 0

SC
= 0 ≠ 0

Multiplicand in B
Multiplier in Q

END
(PRODUCT is in AQ)

Hardware Implementation for signed magnitude data.

Perform 23 x 19

Multiplicand B = 10111 E A Q SC

Multiplier in Q 0 00000 10011 101

Qn = 1; add B 10111

First partial product 0 10111

Shift right EAQ 0 01011 11001 100

Qn = 1; add B 10111

Second partial product 1 00010

Shift right EAQ 0 10001 01100 011

Qn = 0; shift right EAQ 0 01000 10110 010

Qn = 0; shift right EAQ 0 00100 01011 001

Qn = 1; add B 10111

Fifth partial product 0 11011

Shift right EAQ 0 01101 10101 000

Final product in AQ =
0110110101

Booth Multiplication Hardware

Booth Multiplication Algorithm

Multiply operation

AC ←0
ᵼ�ᵼ� + 1 ←0
S C ←ᵼ�

ᵼ�ᵼ�ᵼ�ᵼ� + 1

A C ←ᵼ�ᵼ�+ᵼ�ᵼ�

= 01

a s hr AC QR)

S C ←ᵼ�ᵼ� − 1

= 10

SC
= 0 ≠ 0

Multiplicand in BR
Multiplier in QR

END

A C ←ᵼ�ᵼ�+ᵼ�ᵼ�+ 1
= 00
= 11

Multiply (-9) x (-13) using Booth Algorithm

ᵼ�ᵼ� ᵼ�ᵼ� +ᵼ�
ᵼ�ᵼ� = 10111

ᵼ�ᵼ�+ᵼ� = 01001
ᵼ�ᵼ� ᵼ�ᵼ� ᵼ�ᵼ� +ᵼ� ᵼ�ᵼ�

Initial 00000 10011 0 101

1 0 Subtract BR 01001

01001

ashr 00100 11001 1 100

1 1 ashr 00010 01100 1 011

0 1 Add BR 10111

11001

ashr 11100 10110 0 010

0 0 ashr 11110 01011 0 001

1 0 Subtract BR 01001

00111

ashr 00011 10101 1 000

 Show the step-by-step multiplication process using Booth algorithm when the following binary
numbers are multiplied. Assume 5-bit registers that hold signed numbers. The multiplicand in
both cases is + 15.

 a. (+15) x (+13) b. (+15) X (-13)

BCD Subtraction
• BCD Subtraction is
performed by adding
10’s complement of the
subtrahend.

• The 9’s Complement of a
decimal digit is
represented in BCD
may be obtained using
2 methods.

• Method1: Binary
1010(decimal 10) is
added to each
complemented digit and
the carry is
discarded after each
addition.

• Method2 : Binary 0110
(decimal 6) is added
before the digit is
complemented.

1.Parallel
Decimal Adder

• The parallel method
uses a decimal
athematic unit
composed of as many
BCD Adders as there
are digits in the
number. The sum is
formed in parallel
requires only one
micro-operation.

2. Digit –serial
bit-parallel

Adder

• The digits are
applied to a single
BCD Adder serially,
while the bits of each
coded digit are
transferred in
parallel. The Sum is
formed by shifting the
decimal numbers
through the BCD Adder
one at a time. For K
decimal digits, this
configuration requires
k micro-operations.

