Main memory and the registers are the general-purpose storage that the CPU can access
directly. machine instructions take memory addresses as arguments, but not disk addresses.
Therefore, any instructions in execution, and any data being used by the instructions, must be in
one of these direct-access storage devices. If the data are not in memory, they must be moved
there before the CPU can operate on them.
Registers that are built into each CPU core are generally accessible within one cycle of the cPU
clock. Some cPU cores can decode instructions and perform simple operations on register
contents at the rate of one or more operations per clock tick. The same cannot be said
ofmainmemory, which is accessed via a transaction on the memory bus. Completing a memory
access may take many cycles of the CPU clock. In such cases, the processor normally needs to

, since it does not have the data required to complete the instruction that it is executing. This
situation is intolerable because of the frequency of memory accesses. The remedy is to add fast
memory between the cPU and main memory, typically on the CPU chip for fast access. Such is

each process has a separate memory space. Separate per-process memory space protects the
processes fromeach other and is fundamental to having multiple processes loaded in memory for
concurrent execution. To separate memory spaces, we need the ability to determine the

range of legal addresses that the process may access and to ensure that the process can access
only these legal addresses. We can provide this protection by using two registers, usually a base
and a limit, as illustrated in Figure 9.1.

The holds the smallest legal physical memory address; the specifies
the size of the range. For example, if the base register holds 300040 and the limit register is
120900, then the program can legally access all addresses from 300040 through 420939
(inclusive). Protection of memory space is accomplished by having the CPU hardware compare
every address generated in user modewith the registers. Any attempt by a program executing in
user mode to access operating-system memory or other users’ memory results in a trap to the
operating system, which treats the attempt as a fatal error (Figure 9.2). This scheme prevents a
user program from (accidentally or deliberately) modifying the code or data structures of either
the operating system or other users.

The base and limit registers can be loaded only by the operating system, which uses a special
privileged instruction. Since privileged instructions can be executed only in kernel mode, and
since only the operating system executes in kernel mode, only the operating system can load the
base and limit registers. This scheme allows the operating system to change the value of the
registers but prevents user programs from changing the registers’ contents. The operating
system, executing in kernel mode, is given unrestricted access to both operating-system memory
and users’ memory. This provision allows the operating system to load users’ programs into
users’ memory, to dump out those programs in case of errors, to access and modify parameters
of system calls, to perform 1/0 to and from user memory, and to provide many other services.
Consider, for example, that an operating system for a multiprocessing system must execute
context switches, storing the state of one process from the registers into main memory before
loading the next process’s context from main memory into the registers.

9.1.2 Address Binding

Usually, a program resides on a disk as a binary executable file. To run, the program must be
brought into memory and placed within the context of a process where it becomes eligible for
execution on an available CPU. As the process executes, it accesses instructions and data

from memory. Eventually, the process terminates, and its memory is reclaimed for use by other
processes.Most systems allow a user process to reside in any part of the physical memory.

A compiler typically these symbolic addresses to relocatable addresses (such as “14 bytes
from the beginning of this module”). The linker or loader in turn binds the relocatable addresses
to absolute addresses (such as 74014). Each binding is a mapping from one address space to
another.

Compile time. If you know at compile time where the process will reside in memory, then
can be generated. For example, if you know that a user process will reside
starting at location R, then the generated compiler code will start at that location and extend up
from there. If, at some later time, the starting location changes, then it will be necessary to
recompile this code.
Load time. If it is not kn



own at compile time where the process will reside in memory, then the compiler must generate
. In this case, final binding is delayed until load time. If the starting address
changes, we need only reload the user code to incorporate this changed value.

Execution time. If the process can be moved during its execution from one memory segment
to another, then binding must be delayed until run time. Special hardware must be available for
this scheme to work, as will be discussed in Section 9.1.3. Most operating systems use this
method.

Binding Type When It Occurs Key Features Example

During Fixed addresses; no

Compile-Time ' ilation  flexibility

Assembly code variables

Relocatable code; some

Load-Time  Program loading Loading .exe files

flexibility
Execution- During Fully dynamic; most Virtual memory systems,
Time execution flexible shared libraries

9.1.3 Logical Versus Physical Address Space
An address generated by the CPU is commonly referred to as a , Whereas an
address seen by the memory unit—that is, the one loaded into the of
the memory—is commonly referred to as a
Binding addresses at either compile or load time generates identical logical and physical
addresses. However, the execution-time address-binding scheme results in differing logical and
physical addresses. In this case,we usually refer to the logical address as a . The
set of all logical addresses generated by a program is a . The set of all
physical addresses corresponding to these logical addresses is a
Thus, in the execution-time address-binding scheme, the logical and physical address spaces
differ.
The run-time mapping from virtual to physical addresses is done by a hardware device called the
( ) . a simple MMU scheme that is a generalization of the

baseregister scheme The base register is now called a . The value in the
relocation register is added to every address generated by a user process at the time the
address is sent to memory (see Figure 9.5). For example, if the base is at 14000, then an
attempt by the user to address location 0 is dynamically relocated The user program never
accesses the real physical addresses. The program can create a pointer to location 346, store it
in memory, manipulate it, and compare it with other addresse8s—all as the number 346. Only
when it is used as a memory address (in an indirect load or store, perhaps) is it relocated relative
to the base register. The user program deals with logical addresses. The memorymapping
hardware converts logical addresses into physical addresses. This form of execution-time
binding was discussed in Section 9.1.2. The final location of a referenced memory address is not
determined until the reference is
made.
We now have two different types of addresses: logical addresses (in the range 0 to max) and
physical addresses (in the range R + 0 to R + max for a base value R). The user program
generates only logical addresses and thinks that the process runs in memory locations from 0 to
max. However, these logical addresses must be mapped to physical addresses before they are
used. The concept of a logical address space that is bound to a separate physical address space
is central to proper memory management.
9.1.4 Dynamic Loading
In our discussion so far, it has been necessary for the entire program and all data of a process to
be in physical memory for the process to execute. The size of a process has thus been limited to
the size of physical memory. To obtain better memory-space utilization, we can use

. With dynamic loading, a routine is not loaded until it is called. All routines are kept on
disk in a relocatable load format. The main program is loaded into memory and is executed.



When a routine needs to call another routine, the calling routine first checks to see whether the
other routine has been loaded. If it has not, the relocatable linking loader is called to load the
desired routine into memory and to update the program’s address tables to reflect this change.
Then control is passed to the newly loaded routine. The advantage of dynamic loading is that a
routine is loaded only when it is needed. This method is particularly useful when large amounts
of code are needed to handle infrequently occurring cases, such as error routines. In such a
situation, although the total program size may be large, the portion that is used (and hence
loaded) may be much smaller. Dynamic loading does not require special support from the
operating system. It is the responsibility of the users to design their programs to take advantage
of such a method. Operating systems may help the programmer, however, by providing library
routines to implement dynamic loading.
9.1.5 Dynamic Linking and Shared Libraries
( ) are system libraries that are linked to user programswhen

the programs are run (refer back to Figure 9.3). Some operating systems support only

, in which system libraries are treated like any other object module and are combined by
the loader into the binary program image. Dynamic linking, in contrast, is similar to dynamic
loading. Here, though, linking, rather than loading, is postponed until execution time. This feature
is usually used with system libraries, such as the standard C language library.Without this facility,
each program on a system must include a copy of its language library (or at least the routines
referenced by the program) in the executable image. This requirement not only increases the
size of an executable image but also may waste main memory. A second advantage of DLLs is
that these libraries can be shared among multiple processes, so that only one instance of the DLL
in main memory. For this reason, DLLs are also known as , and are used
extensively in Windows and Linux systems. When a program references a routine that is in a
dynamic library, the loader locates the DLL, loading it into memory if necessary. It then adjusts
addresses that reference functions in the dynamic library to the location in memorywhere the DLL
is stored. Dynamically linked libraries can be extended to library updates (such as bug fixes). In
addition, a library may be replaced by a new version, and all programs that reference the library
will automatically use the new version. Without dynamic linking, all such programs would need to
be relinked to gain access to the new library. So that programs will not accidentally execute new,
incompatible versions of libraries, version information is included in both the program and the
library. More than one version of a library may be loaded into memory, and each program uses
its version information to decide which copy of the library to use. Versions with minor changes
retain the same version number, whereas versions with major changes increment the number.
Thus, only programs that are compiled with the new library version are affected by any
incompatible changes incorporated in it. Other programs linked before the new library was
installed will continue using the older library. Unlike dynamic loading, dynamic linking and shared
libraries generally require help from the operating system. If the processes in memory are
protected from one another, then the operating system is the only entity that can check to see
whether the needed routine is in another process’s memory space or that can allow multiple
processes to access the same memory addresses. We elaborate on this concept, as well as how
DLLs can be shared by multiple processes, when we discuss paging in Section 9.3.4.



