
UNIT – IV 

Testing Strategies: 

 
A strategy for software testing provides a road map that describes the steps to be 

conducted as part of testing, when these steps are planned and then undertaken, and how 

much effort, time, and resources will be required. Therefore, any testing strategy must 

incorporate test planning, test-case design, test execution, and resultant data collection and 

evaluation. 

A software testing strategy should be flexible enough to promote a customized testing 

approach. At the same time, it must be rigid enough to encourage reasonable planning and 

management tracking as the project progresses. Shooman [Sho83] discusses these issues: 

 In many ways, testing is an individualistic process, and the number of different 

types of tests varies as much as the different development approaches. For many years, 

our only defense against programming errors was careful design and the native 

intelligence of the programmer.  We are now in an era in which modern design techniques 

[and technical reviews] are helping us to reduce the number of initial errors that are 

inherent in the code. Similarly, different test methods are beginning to cluster themselves 

into several distinct approaches and philosophies. 

These “approaches and philosophies” are what we call strategy—here the testing methods 

and techniques that implement the strategy are presented. 

A strategic approach to software testing: 

Testing is a set of activities that can be planned in advance and conducted systematically. 

For this reason a template for software testing—a set of steps into which we can place 

specific test-case design techniques and testing methods—should be defined for the software 

process. 

 A number of software testing strategies have been proposed in the literature. All  

provide you with a template for  testing and all have the following generic 

characteristics: 

 To perform effective testing, you should conduct effective technical re- views 

(Chapter 20). By doing this, many errors will be eliminated before testing 

commences. 

 Testing begins at the component level and works “outward” toward the integration 

of the entire computer-based system. 



 Different testing techniques are appropriate for different software engineering 

approaches and at different points in time. 

 Testing is conducted by the developer of the software and (for large projects) an 

independent test group. 

 Testing and debugging are different activities, but debugging must be accommodated 

in any testing strategy. 

   A strategy for software testing must accommodate low-level tests that are necessary to 

verify that a small source code segment has been correctly implemented as well as high-

level tests that validate major system functions against customer requirements. A 

strategy should provide guidance for the practitioner and a set of milestones for the 

manager. Because the steps of the test strategy occur at a time when deadline pressure 

begins to rise, progress must be measurable and problems should surface as early as 

possible. 

1. Verification and Validation  

Software testing is one element of a broader topic that is often referred to as ver- ification 

and validation (V&V). Verification refers to the set of tasks that ensure that software 

correctly implements a specific function. Validation refers to a dif- ferent set of tasks that 

ensure that the software that has been built is traceable to customer requirements. Boehm 

[Boe81] states this another way: 

 

Verification: “Are we building the product right?” 

Validation: “Are we building the right product?” 

The definition of V&V encompasses many software quality assurance activities 

Verification and validation includes a wide array of SQA activities: technical reviews, 

quality and configuration audits, performance monitoring, simulation, feasibility study, 

documentation review, database review, algorithm analysis, development testing, usability 

testing, qualification testing, acceptance testing, and installation testing. Although testing 

plays an extremely important role in V&V, many other activities are also necessary. 

Testing does provide the last bastion from which quality can be assessed and, more 

pragmatically, errors can be uncovered. But testing should not be viewed as a safety net. As 

they say, “You can’t test in quality. If it’s not there before you begin testing, it won’t be 

there when you’re finished testing.” Quality is incorporated into software throughout the 



process of software engineering. Proper application of methods and tools, effective technical 

reviews, and solid management and measurement all lead to quality that is confirmed during 

testing. 

Miller [Mil77] relates software testing to quality assurance by stating that “the underlying 

motivation of program testing is to affirm software quality with methods that can be 

economically and effectively applied to both large-scale and small-scale systems.” 

2. Organizing for Software Testing 

For every software project, there is an inherent conflict of interest that occurs as testing 

begins. The people who have built the software are now asked to test the software. This seems 

harmless in itself; after all, who knows the program better than its developers? Unfortunately, 

these same developers have a vested interest in demonstrating that the program is error-free, 

that it works according to customer requirements, and that it will be completed on schedule 

and within budget. Each of these interests mitigates against thorough testing. 

From a psychological point of view, software analysis and design (along with coding) are 

constructive tasks. The software engineer analyzes, models, and then creates a computer 

program and its documentation. Like any builder, the software engineer is proud of the edifice 

that has been built and looks askance at anyone who attempts to tear it down. When testing 

commences, there is a subtle, yet definite, attempt to “break” the thing that the software 

engineer has built. From the point of view of the builder, testing can be considered to be 

(psychologically) destructive.  So the builder treads lightly, designing and executing tests that 

will demonstrate that the program works, rather than to uncover errors. Unfortunately, errors 

will be nevertheless present. And, if the software engineer doesn’t find them, the customer 

will! 

There are often a number of misconceptions that you might infer from the preceding 

discussion:  

(1) That the developer of software should do no testing at all,   

(2) That the software should be “tossed over the wall” to strangers who will test it 

mercilessly,  

(3) That testers get involved with the project only when the testing steps are about to 

begin. Each of these statements is incorrect. 

The software developer is always responsible for testing the individual units (components) 

of the program, ensuring that each performs the function or exhibits the behavior for which 



it was designed. In many cases, the developer also conducts integration testing—a testing 

step that leads to the construction (and test) of the complete software architecture. Only after 

the software architecture is complete does an independent test group become involved 

 

The role of an independent test group (ITG) is to remove the inherent problems associated 

with letting the builder test the thing that has been built. Independent testing removes the 

conflict of interest that may otherwise be present. After all, ITG personnel are paid to find 

errors. 

However, you don’t turn the program over to ITG and walk away. The developer and the 

ITG work closely throughout a software project to ensure that thorough tests will be 

conducted. While testing is conducted, the developer must be available to correct errors that 

are uncovered. 

The ITG is part of the software development project team in the sense that it becomes 

involved during analysis and design and stays involved (planning and specifying test 

procedures) throughout a large project. However, in many cases the ITG reports to the software 

quality assurance organization, thereby achieving a degree of independence that might not be 

possible if it were a part of the software engineering team 

3. Software Testing Strategy  

The software process may be viewed as the spiral illustrated in the below Figure. Initially, 

system engineering defines the role of software and leads to software requirements analysis, 

where the information domain, function, behavior, performance, constraints, and validation 

criteria for software are established. Moving inward along the spiral, you come to design and 

finally to coding. To develop computer software, you spiral inward along streamlines that 

decrease the level of abstraction on each turn. 

 

Fig: Testing Strategy 



A strategy for software testing may also be viewed in the context of the spiral (Above 

Figure).  Unit testing begins at the vortex of the spiral and concentrates on each unit (e.g., 

component, class, or WebApp content object) of the software as implemented in source code. 

Testing progresses by moving outward along the spiral to integration testing, where the focus 

is on design and the construction of the software architecture. Taking another turn outward on 

the spiral, you encounter validation testing, where requirements established as part of 

requirements modeling are validated against the software that has been constructed. Finally, 

you arrive at system testing, where the software and other system elements are tested as a 

whole. To test computer software, you spiral out along streamlines that broaden the scope of 

testing with each turn. 

  Considering the process from a procedural point of view, testing within the context of 

software engineering is actually a series of four steps that are implemented sequentially. The 

steps are shown in the below Figure.  Initially, tests focus on each component individually, 

ensuring that it functions properly as a unit. Hence, the name unit testing. Unit testing makes 

heavy use of testing techniques that exercise specific paths in a component’s control structure 

to ensure complete coverage and maximum error detection. Next, components must be 

assembled or integrated to form the complete software package. Integration testing addresses 

the issues associated with the dual problems of verification and pro- gram construction. Test-

case design techniques that focus on inputs and out- puts are more prevalent during integration, 

although techniques that exercise specific program paths may be used to ensure coverage of 

major control paths. After the software has been integrated (constructed), a set of high-order 

tests is conducted. Validation criteria (established during requirements analysis) must be 

evaluated. Validation testing provides final assurance that software meets all functional, 

behavioral, and performance requirements. 

The last high-order testing step falls outside the boundary of software engineering and 

into the broader context of computer system engineering. Software, once validated, must be 

combined with other system elements (e.g., hardware, people, databases). System testing 

verifies that all elements mesh properly and that overall system function/performance is 

achieved 

 



 
 

4. Criteria for completion of testing 

A classic question arises every time software testing is discussed: “When are we done 

testing—how do we know that we’ve tested enough?” Sadly, there is no definitive answer 

to this question, but there are a few pragmatic responses and early attempts at empirical 

guidance. 

One response to the question is: “You're never done testing; the burden simply shifts from 

you (the software engineer) to the end user.” Every time the user exe- cutes a computer 

program, the program is being tested. This sobering fact underlines the importance of other 

software quality assurance activities. Another response (somewhat cynical but nonetheless 

accurate) is:  “You’re done testing when you run out of time or you run out of money.” 

Although few practitioners would argue with these responses, you need more rigorous 

criteria for determining when sufficient testing has been conducted. The cleanroom software 

engineering approach suggests statistical use techniques [Kel00] that execute a series of tests 

derived from a statistical sample of all possible program executions by all users from a 

targeted population. By collecting metrics during software testing and making use of existing 

statistical models, it is possible to develop meaningful guidelines for answering the question: 

“When are we done testing”. 

 

Test strategies for conventional software” 

Many strategies can be used to test software. At  one extreme, you can wait 

until the system is  fully constructed and then conduct tests on the overall 

system in the hope of finding errors. This approach, although appealing, 

simply does not work. It will  result in buggy software that disappoints all 

stakeholders. At  the other extreme, you could conduct tests on a daily basis, 

whenever any part of the system is constructed. 

A testing strategy that is chosen by many software teams falls between the 

two extremes. It takes an incremental view of testing, beginning with the 



testing of individual program units, moving to tests designed to facilitate the 

integration of the units (sometimes on a daily basis), and culminating with 

tests that exercise the constructed system. Each of these classes of tests is 

described in the sections that follow. 

 

 

 

1. Unit testing   
 

Unit testing focuses verification effort on the smallest unit of software design— the 

software component or module. Using the component-level design description as a guide, 

important control paths are tested to uncover errors within the boundary of the module. The 

relative complexity of tests and the errors those tests uncover is limited by the constrained 

scope established for unit testing. The unit test focuses on the internal processing logic and 

data structures within the boundaries of a component. This type of testing can be conducted 

in parallel for multiple components. 

Unit Test Considerations.   Unit tests are illustrated schematically in the below Figure. 

The module interface is tested to ensure that information properly flows into and out of the 

program unit under test. Local data structures are examined to ensure that data stored 

temporarily maintains its integrity during all steps in an algorithm’s execution. All 

independent paths through the control structure are exercised to ensure that all statements in 

a module have been executed at least once. Boundary conditions are tested to ensure that the 

module operates properly at boundaries established to limit or restrict processing. And 

finally, all error-handling paths are tested. 

Data flow across a component interface is tested before any other testing is initiated. If 

data do not enter and exit properly, all other tests are moot. In addition, local data structures 

should be exercised and the local impact on global data should be ascertained (if possible) 

during unit testing. 



 

Fig: UNIT TEST 

Selective testing of execution paths is an essential task during the unit test. Test cases 

should be designed to uncover errors due to erroneous computations, incorrect comparisons, 

or improper control flow. 

Boundary testing is one of the most important unit testing tasks. Software often fails at its 

boundaries. That is, errors often occur when the nth element of an n-dimensional array is 

processed, when the ith repetition of a loop with i passes is invoked, when the maximum or 

minimum allowable value is encountered. Test cases that exercise data structure, control 

flow, and data values just below, at, and just above maxima and minima are very likely to 

uncover errors. 

A good design anticipates error conditions and establishes error-handling paths to reroute 

or cleanly terminate processing when an error does occur. Your- don [You75] calls this 

approach anti bugging. Unfortunately, there is a tendency to incorporate error handling into 

software and then never test the error handling. If error-handling paths are implemented, 

they must be tested. 

Among the potential errors that should be tested when error handling is evaluated are: (1) 

error description is unintelligible, (2) error noted does not correspond to error encountered, 

(3) error condition causes system intervention prior to error handling, (4) exception-

condition processing is incorrect, or (5) error description does not provide enough 

information to assist in the location of the cause of the error. 

Unit-Test Procedures.  Unit testing is normally considered as an adjunct to the coding 

step. The design of unit tests can occur before coding begins or after source code has been 

generated. A review of design information provides guidance for establishing test cases that 

are likely to uncover errors in each of the categories discussed earlier. Each test case should be 

coupled with a set of expected results.  Because a component is not a stand-alone program, 



driver and/or stub software must often be developed for each unit test. The unit test 

environment is illustrated in the below Figure. In most applications a driver is nothing more 

than a “main program” that accepts test-case data, passes such data to the component (to be 

tested), and prints relevant results.  Stubs serve to replace modules that are subordinate 

(invoked by) the component to be tested. A stub or “dummy subprogram” uses the subordinate 

module’s interface, may do minimal data manipulation, prints verification of entry, and returns 

control to the module undergoing testing. 

Drivers and stubs represent testing “overhead.” That is, both are software that must be coded 

(formal design is not commonly applied) but that is not delivered with the final software  

 

FIG: Unit-test environment 

 

product. If drivers and stubs are kept simple, actual over- head is relatively low.  

Unfortunately, many components cannot be adequately unit tested with “simple” overhead 

software. In such cases, complete testing can be postponed until the integration test step 

(where drivers or stubs are also used). 

2. Integration testing 
 

A neophyte in the software world might ask a seemingly legitimate question once all 

modules have been unit tested: “If they all work individually, why do you doubt that they’ll 

work when we put them together?” The problem, of course, is “put- ting them together”—

interfacing. Data can be lost across an interface; one component can have an inadvertent, 

adverse effect on another; sub functions, when combined, may not produce the desired major 

function; individually acceptable imprecision may be magnified to unacceptable levels; 

global data structures can present problems. Sadly, the list goes on and on. 



Integration testing is a systematic technique for constructing the software architecture while 

at the same time conducting tests to uncover errors associated with interfacing. The objective 

is to take unit-tested components and build a pro- gram structure that has been dictated by 

design. 

There is often a tendency to attempt non incremental integration; that is, to construct the 

program using a “big bang” approach. All components are combined in advance and the 

entire program is tested as a whole. Chaos usually results! Errors are encountered, but 

correction is difficult because isolation of causes is complicated by the vast expanse of the 

entire program. 

Incremental integration is the antithesis of the big bang approach. The pro- gram is 

constructed and tested in small increments, where errors are easier to isolate and correct; 

interfaces are more likely to be tested completely; and a systematic test approach may be 

applied. In the paragraphs that follow, a number of different incremental integration 

strategies are discussed. 

Top-Down Integration.  Top-down integration testing is   an incremental approach to 

construction of the software architecture. Modules are integrated by moving downward 

through the control hierarchy, beginning with the main control module (main program). 

Modules subordinate (and ultimately subordinate) to the main control module are 

incorporated into the structure in either a depth- first or breadth-first manner. 

 

Fig: Top Down Integration 

Referring to above Figure, depth-first integration integrates all components on a major 

control path of the program structure. Selection of a major path is some- what arbitrary and 

depends on application-specific characteristics. For example, selecting the left-hand path, 

components M1, M2, M5 would be integrated first. Next, M8 or (if necessary for proper 

functioning of M2) M6 would be integrated. Then, the central and right-hand control paths 



are built. Breadth-first integration incorporates all components directly subordinate at each 

level, moving across the structure horizontally. From the figure, components M2, M3, and 

M4 would be integrated first. The next control level, M5, M6, and so on, follows. The 

integration process is performed in a series of five steps: 

1. The main control module is used as a test driver and stubs are 

substituted for all components directly subordinate to the main control 

module. 

2. Depending on the integration approach selected (i.e., depth or breadth 

first), subordinate stubs are replaced one at a time with actual 

components. 

3. Tests are conducted as each component is integrated. 

4. On completion of each set of tests, another stub is replaced with the 

real component 

5. Regression testing (discussed later in this section) may be conducted to 

ensure that new errors have not been introduced. 

The process continues from step 2 until the entire program structure is built. 

The top-down integration strategy verifies major control or decision points early in the 

test process. In a “well-factored” program structure, decision making occurs at upper 

levels in the hierarchy and is therefore encountered first. If major control problems do 

exist, early recognition is essential. If depth-first integration is selected, a complete 

function of the software may be implemented and demonstrated. Early demonstration 

of functional capability is a confidence builder for all stakeholders. 

Bottom-Up Integration:   Bottom-up integration testing, as its name implies, be- 

gins construction and testing with atomic modules (i.e., components at the lowest 

levels in the program structure). Because components are integrated from the bottom 

up, the functionality provided by components subordinate to a given level is always 

available and the need for stubs is eliminated. A bottom-up integration strategy may 

be implemented with the following steps: 

1. Low-level components are combined into clusters (sometimes called builds) 

that perform a specific software sub function 

2. A driver (a control program for testing) is written to coordinate test-case input 

and output. 

3. The cluster is tested. 

4. Drivers are removed and clusters are combined moving upward in the program 

structure. 



 

Fig: Bottom-Up Integration 

Integration follows the pattern illustrated in the above Figure. Components are 

combined to form clusters 1, 2, and 3. Each of the clusters is tested using a driver (shown as a 

dashed block). Components in clusters 1 and 2 are subordinate to M. Drivers D1 and D2 are 

removed and the clusters are interfaced directly to M. Similarly, driver D3 for cluster 3 is 

removed prior to integration with module Mb. Both Ma and Mb will ultimately be integrated 

with component Mc, and so forth. As integration moves upward, the need for separate test 

drivers lessens. In fact, if the top two levels of program structure are integrated top down, the 

number of drivers can be reduced substantially and integration of clusters is greatly simplified. 

Validation testing: 

Validation testing begins at the culmination of integration testing, when individual 

components have been exercised, the software is completely assembled as a package, and 

interfacing errors have been uncovered and corrected. At the validation or system level, the 

distinction between different software categories disappears. Testing focuses on user-visible 

actions and user-recognizable output from the system. 

Validation can be defined in many ways, but a simple (albeit harsh) definition is that 

validation succeeds when software functions in a manner that can be reasonably expected by 

the customer. At this point a battle-hardened software developer might protest:  “Who or what 

is the arbiter of reasonable expectations?” If a Software Requirements Specification has been 

developed, it describes all user-visible attributes of the software and contains a Validation 

Criteria section that forms the basis for a validation-testing approach. 

1. Validation Test Criteria 

Software validation is achieved through a series of tests that demonstrate conformity with 

requirements. A test plan outlines the classes of tests to be conducted, and a test procedure 

defines specific test cases that are designed to ensure that all functional requirements are 



satisfied, all behavioral characteristics are achieved, all content is accurate and properly 

presented, all performance requirements are attained, documentation is correct, and usability 

and other requirements are met (e.g., transportability, compatibility, error recovery, 

maintainability). If a deviation from specification is uncovered, a deficiency list is created. A 

method for resolving deficiencies (acceptable to stakeholders) must be established.  

2. Configuration Review  

An important element of the validation process is a configuration review. The 

intent of the review is to ensure that all elements of the software configuration have 

been properly developed, are cataloged, and have the necessary detail to bolster the 

support activities. The configuration review, sometimes called an audit. 

3. Alpha and Beta Testing 

It is virtually impossible for a software developer to foresee how the customer will really 

use a program. Instructions for use may be misinterpreted; strange combinations of data may 

be used; output that seemed clear to the tester may be unintelligible to a user in the field. 

When custom software is built for one customer, a series of acceptance tests are conducted 

to enable the customer to validate all requirements. Conducted by the end user rather than 

software engineers, an acceptance test can range from an informal “test drive” to a planned 

and systematically executed series of tests. In fact, acceptance testing can be conducted over 

a period of weeks or months, thereby uncovering cumulative errors that might degrade the 

system over time. 

If software is developed as a product to be used by many customers, it is impractical to 

perform formal acceptance tests with each one. Most software product builders use a process 

called alpha and beta testing to uncover errors that only the end user seems able to find. 

The alpha test is conducted at the developer’s site by a representative group of end users. 

The software is used in a natural setting with the developer “looking over the shoulder” of 

the users and recording errors and usage problems. Alpha tests are conducted in a controlled 

environment. 

The beta test is conducted at one or more end-user sites. Unlike alpha testing, the 

developer generally is not present. Therefore, the beta test is a “live” application of the 

software in an environment that cannot be controlled by the developer. The customer records 

all problems (real or imagined) that are encountered during beta testing and reports these to 

the developer at regular intervals. As a result of problems reported during beta tests, you 



make modifications and then prepare for release of the software product to the entire 

customer base. 

A variation on beta testing, called customer acceptance testing, is sometimes performed 

when custom software is delivered to a customer under contract. The customer performs a 

series of specific tests in an attempt to uncover errors before accepting the software from the 

developer. In some cases (e.g., a major corporate or governmental system) acceptance 

testing can be very formal and encompass many days or even weeks of testing. 

 System testing: 

At the beginning, we stressed the fact that software is only one element of a larger computer-

based system. Ultimately, software is incorporated with other system elements (e.g., 

hardware, people, information), and a series of system integration and validation tests are 

conducted. These tests fall out- side the scope of the software process and are not conducted 

solely by software engineers. However, steps taken during software design and testing can 

greatly improve the probability of successful software integration in the larger system. 

A classic system-testing problem is “finger pointing.” This occurs when an error is 

uncovered, and the developers of different system elements blame each other for the 

problem. Rather than indulging in such nonsense, you should anticipate potential interfacing 

problems and  

(1) Design error-handling paths that test all information coming from other elements of the 

system, 

 (2) conduct a series of tests that simulate bad data or other potential errors at the software 

interface,  

(3) Record the results of tests to use as “evidence” if finger pointing does occur, and  

(4) Participate in planning and design of system tests to ensure that software is adequately 

tested. 

1. Recovery Testing  

Many computer-based systems must recover from faults and resume processing with little 

or no downtime. In some cases, a system must be fault tolerant; that is, processing faults 

must not cause overall system function to cease. In other cases, a system failure must be 

corrected within a specified period of time or severe economic damage will occur. 



Recovery testing is a system test that forces the software to fail in a variety of ways and 

verifies that recovery is properly performed. If recovery is automatic (performed by the 

system itself), re initialization, check pointing mechanisms, data recovery, and restart are 

evaluated for correctness. If recovery requires human intervention, the mean-time-to-repair 

(MTTR) is evaluated to determine whether it is within acceptable limits. 

2. Security Testing  

    Any computer-based system that manages sensitive information or causes actions that can 

improperly harm (or benefit) individuals is a target for improper or illegal penetration. 

Penetration spans a broad range of activities: hackers who attempt to penetrate systems for 

sport, disgruntled employees who attempt to penetrate for revenge, dishonest individuals 

who attempt to penetrate for illicit personal gain. 

Security testing attempts to verify that protection mechanisms built into a sys- tem will, in 

fact, protect it from improper penetration. To quote Beizer [Bei84]: “The system’s security 

must, of course, be tested for invulnerability from frontal attack—but must also be tested for 

invulnerability from flank or rear attack.” 

3. Stress Testing  

Earlier software testing steps result in thorough evaluation of normal program functions 

and performance. Stress tests are designed to confront programs with abnormal situations. 

In essence, the tester who performs stress testing asks: “How high can we crank this up 

before it fails?” 

Stress testing executes a system in a manner that demands resources in abnormal quantity, 

frequency, or volume. For example, (1) special tests may be designed that generate 10 

interrupts per second, when one or two is  the average rate, (2) input data rates may be 

increased by an order of magnitude to determine how input functions will  respond, (3) test 

cases that require maximum memory or other re- sources are executed, (4) test cases that 

may cause thrashing in a virtual operating system are designed, (5) test cases that may cause 

excessive hunting for  disk-resident data are created. Essentially, the tester attempts to break 

the program. 

A variation of stress testing is a technique called sensitivity testing. In some situations (the 

most common occur in mathematical algorithms), a very small range of data contained within 

the bounds of valid data for  a program may cause extreme and even erroneous processing or 



profound performance degradation. Sensitivity testing attempts to uncover data combinations 

within valid input classes that may cause instability or improper processing. 

The art of Debugging: 

 Software testing is a process that can be systematically planned and specified. Test-

case design can be conducted, a strategy can be defined, and results can be evaluated against 

prescribed expectations. 

Debugging occurs as a consequence of successful testing. That is, when a test case 

uncovers an error, debugging is the process that results in the removal of the error.  Although 

debugging can and should be an orderly process, it is still very much an art. As a software 

engineer, you are often confronted with a “symptomatic” indication of a software problem as 

you evaluate the results of a test. That is, the external manifestation of the error and its internal 

cause may have no obvious relationship to one another.  The poorly understood mental process 

that connects a symptom to a cause is debugging. 

The Debugging Process: 

Debugging is not testing but often occurs as a consequence of testing. Referring to figure, ,  

the debugging process begins with the execution of  a test case. 

 

Fig: The Debugging Process 

 

Results are assessed and a lack of correspondence between expected and actual performance 

is encountered. In many cases, the non-corresponding data are a symptom of an underlying 

cause as yet hidden. The debugging process attempts to match symptom with cause, thereby 

leading to error correction. 



The debugging process will usually have one of two outcomes: (1) the cause will be found 

and corrected or (2) the cause will not be found. In the latter case, the person performing 

debugging may suspect a cause, design a test case to help validate that suspicion, and work 

toward error correction in an iterative fashion. 

However, a few characteristics of bugs provide some clues: 

1.   The symptom and the cause may be geographically remote. That is, the symptom may 

appear in one part of a program, while the cause may actually be located at a site that 

is far removed. Highly coupled components exacerbate this situation. 

2.   The symptom may disappear (temporarily) when another error is corrected. 

3.   The symptom may actually be caused by non-errors (e.g., round-off   

      inaccuracies). 

   4.   The symptom may be caused by human error that is not easily traced 

5.   The symptom may be a result of timing problems, rather than processing problems. 

6.   It may be difficult to accurately reproduce input conditions (e.g., a real-time 

application in which input ordering is indeterminate). 

7.   The symptom may be intermittent. This is particularly common in embedded systems 

that couple hardware and software inextricably. 

   8.   The symptom may be due to causes that are distributed across a number of tasks   

          running on different processors. 

During debugging, we encounter errors that range from mildly annoying (e.g., an incorrect 

output format) to catastrophic (e.g., the system fails, causing serious economic or physical 

damage). As the consequences of an error increase, the amount of pressure to find the cause 

also increases. Often, pressure forces a software developer to fix one error and at the same 

time introduce two more. 

Testing Conventional Applications:  

Testing presents an interesting dilemma for software engineers, who by their nature are 

constructive people. Testing requires that the developer discard preconceived notions of the 

“correctness” of software just developed and then work hard to design test cases to “break” the 

software. Beizer [Bei90] describes this situation effectively when he states: 



There’s a myth that if we were really good at programming, there would be no bugs to catch. 

If only we could really concentrate, if only everyone used structured programming, top-down 

design, then there would be no bugs. So goes the myth. There are bugs, the myth says, because 

we are bad at what we do; and if we are bad at it, we should feel guilty about it. Therefore, 

testing and test case design is an admission of failure, which instills a goodly dose of guilt. 

And the tedium of testing is just punishment for our errors. Punishment for what? For being 

human? Guilt for what? For failing to achieve inhuman perfection? For not distinguishing 

between what another programmer thinks and what he says? For failing to be telepathic?  For 

not solving human communications problems that have been kicked around . . . for forty 

centuries? 

Should testing instill guilt? Is  testing really destructive? The answer to these questions is 

“No!” 

 

Software testing fundamentals 

 

The goal of testing is to find errors, and a good test is one that has a high probability of finding 

an error.  Therefore, you should design and implement a computer-based system or a product 

with “testability” in mind. At the same time, the tests themselves must exhibit a set of 

characteristics that achieve the goal of finding the most errors with a minimum of effort. 

Testability.  

James Bach1 provides the following definition for testability: “Soft- ware testability is simply 

how easily [a computer program] can be tested.” The following characteristics lead to testable 

software. 

Operability. “The better it works, the more efficiently it can be tested.” If a system is 

designed and implemented with quality in mind, relatively few bugs will block the execution 

of tests, allowing testing to progress without fits and starts. 

Observability. “What you see is what you test.” Inputs provided as part of testing produce 

distinct outputs. System states and variables are visible or queriable during execution. Incorrect 

output is easily identified. Internal errors are automatically detected and reported. Source code 

is accessible. 



Controllability. “The better we can control the software, the more the test- ing can be 

automated and optimized.” All possible outputs can be generated through some combination 

of input, and I/O formats are consistent and structured. All code is executable through some 

combination of input. Software and hardware states and variables can be controlled directly by 

the test engineer. Tests can be conveniently specified, automated, and reproduced. 

Decomposability. “By controlling the scope of testing, we can more quickly isolate 

problems and perform smarter retesting.” The software system is built from independent 

modules that can be tested independently. 

Simplicity. “The less there is to test, the more quickly we can test it.” The program should 

exhibit functional simplicity (e.g., the feature set is the minimum necessary to meet 

requirements); structural simplicity (e.g., architecture is modularized to limit the propagation 

of faults), and code simplicity (e.g., a coding standard is adopted for ease of inspection and 

maintenance). 

Stability. “The fewer the changes, the fewer the disruptions to testing.” Changes to the 

software are infrequent, controlled when they do occur, and do not invalidate existing tests. 

The software recovers well from failures. 

Understandability. “The more information we have, the smarter we will test.” The 

architectural design and the dependencies between internal, external, and shared components 

are well understood. Technical documentation is instantly accessible, well organized, specific 

and detailed, and accurate. Changes to the design are communicated to testers. 

You can use the attributes suggested by Bach to develop software work products that are 

amenable to testing. 

Test Characteristics. And what about the tests themselves? Kaner, Falk, and 

Nguyen [Kan93] suggest the following attributes of a “good” test: 

A good test has a high probability of finding an error. To achieve this goal, the tester must 

understand the software and attempt to develop a mental picture of how the software might 

fail.  

A good test is not redundant. Testing time and resources are limited. There is no point in 

conducting a test that has the same purpose as another test. Every test should have a different 

purpose (even if it is subtly different). 



A good test should be “best of breed” [Kan93]. In a group of tests that have a similar intent, 

time and resource limitations may dictate the execution of only those tests that has the highest 

likelihood of uncovering a whole class of errors. 

A good test should be neither too simple nor too complex. Although it is some- times possible 

to combine a series of tests into one test case, the possible side effects associated with this 

approach may mask errors. In general, each test should be executed separately. 

White-Box testing: 

 

 White-box testing, sometimes called glass-box testing or structural testing, is a test-

case design philosophy that uses the control structure described as part of component-level 

design to derive test cases. Using white-box testing methods, you can derive test cases that 

(1) guarantee that all independent paths within a module have been exercised at least once, 

(2) exercise all logical decisions on their true and false sides, (3) execute all loops at their 

boundaries and within their operational bounds, and (4) exercise internal data structures to 

ensure their validity. 

Basis path testing: 

 

 Basis path testing is a white-box testing technique first proposed by Tom McCabe 

[McC76]. The basis path method enables the test-case designer to derive a logical complexity 

measure of a procedural design and use this measure as a guide for defining a basis set of 

execution paths. Test cases derived to exercise the basis set are guar- anteed to execute every 

statement in the program at least one time during testing. 

 

Flow Graph Notation  

 

 Before the basis path method can be introduced, a simple notation for the representation 

of control flow, called a flow graph (or   program graph) must be introduced. The flow graph 

depicts logical control flow using the notation illustrated in the below Figure.  Each structured 

construct has a corresponding flow graph symbol. 



 
 

To illustrate the use of a flow graph, consider the procedural design representation in the 

Figure.a. Here, a flowchart is used to depict program control structure. In the above Figure.b 

maps the flowchart into a corresponding flow graph (assuming that no compound conditions 

are contained in the decision diamonds of the flowchart). Referring to above Figure.b, each 

circle, called a flow graph node, represents one or more procedural statements. A sequence 

of process boxes and a decision diamond can map into a single node. The arrows on the flow 

graph, called edges or links, represent flow of control and are analogous to flowchart arrows. 

An edge must terminate at a node, even if the node does not represent any procedural 

statements (e.g., see the flow graph symbol for the if-then-else construct). Areas bounded by 

edges and nodes are called regions. When counting regions, we include the area outside the 

graph as a region. 

When compound conditions are encountered in a procedural design, the generation of a 

flow graph becomes slightly more complicated. A compound condition occurs when one or 

more Boolean operators (logical OR, AND, NAND, NOR) is present in a conditional 

statement. Referring to below Figure, the program design language (PDL) segment 

translates into the flow graph shown. Note that a separate node is created for each of the 

conditions a and b in the statement IF a OR b. Each node that contains a condition is called 

a predicate node and is characterized by two or more edges emanating from it. 



 

Fig. Compound Logic 

1. Independent Program Paths  

An independent path is any path through the program that introduces at least one new 

set of processing statements or a new condition. When stated in terms of a flow graph, an 

independent path must move along at least one edge that has not been traversed before the 

path is defined. For example, a set of independent paths for the flow graph illustrated in 

the above flow graph Figure b is 

Path 1: 1-11 

Path 2: 1-2-3-4-5-10-1-

11 Path 3: 1-2-3-6-8-9-10-

1-11 Path 4: 1-2-3-6-7-9-10-

1-11 Note that each new path introduces a new edge. The path 

1-2-3-4-5-10-1-2-3-6-8-9-10-1-11 

is not considered to be an independent path because it is simply a combination of already 

specified paths and does not traverse any new edges. 

Paths 1 through 4 constitute a basis set for the flow graph in the above Figure.b. That is, if you 

can design tests to force execution of these paths (a basis set), every statement in the program 

will have been guaranteed to be executed at least one time and every condition will have been 

executed on its true and false sides. It should be noted that the basis set is not unique. In fact, 

a number of different basis sets can be derived for a given procedural design. 

How do you know how many paths to look for? The computation of cyclomatic complexity 

provides the answer. Cyclomatic complexity is a software metric that provides a quantitative 

measure of the logical complexity of a program. When used in the context of the basis path 

testing method, the value computed for cyclomatic complexity defines the number of 



independent paths in the basis set of a program and provides you with an upper bound for the 

number of tests that must be conducted to ensure that all statements have been executed at least 

once. 

Cyclomatic complexity has a foundation in graph theory and provides you with an extremely 

useful software metric. Complexity is computed in one of three ways: 

1.   The number of regions of the flow graph corresponds to the cyclomatic complexity. 

2.   Cyclomatic complexity V(G) for  a flow graph G is defined as 

V(G) 5 E 2 N 1 2 

where E is the number of flow graph edges and N is the number of flow graph nodes. 

3.   Cyclomatic complexity V(G) for  a flow graph G is also defined as 

V(G) 5 P 1 1 

where P is the number of predicate nodes contained in the flow graph G 

Referring once more to the flow graph in above flow graph Figure.b, the cyclomatic 

complexity can be computed using each of the algorithms just noted: 

1. The flow graph has four regions 

2. V(G) 5 11 edges 2 9 nodes 1 2 5 4 

3. V(G) 5 3 predicate nodes 1 1 5 4 

4. Therefore, the cyclomatic complexity of the flow graph in the above flow graph Figure b  

is 4. 

More important, the value for V(G) provides you with an upper bound for  the number of  

independent paths that form the basis set and, by  implication, an upper bound on the 

number of tests that must be designed and executed to guarantee coverage of all program 

statements. 

 
2. Deriving Test Cases 

The basis path testing method can be applied to a procedural design or to source code. 

In this section, we present basis path testing as a series of steps. The procedure average, 

depicted in PDL in Figure 23.4, will be used as an example to illustrate each step in 

the test-case design method. Note that average, although an extremely simple 



algorithm, contains compound conditions and loops. The following steps can be 

applied to derive the basis set: 

1 Using the design or code as a foundation, draw a corresponding flow graph.  

A flow graph is created using the symbols and construction rules presented in Section 

23.4.1. Referring to the PDL for average in the below Figure 23.4, a flow graph is 

created by numbering those PDL statements that will be mapped into corresponding 

flow graph nodes. The corresponding flow graph is in the below flow graph Figure. 

 

 

Fig: The PDL with nodes identified. 

The corresponding flow graph is in the below Figure. 



 

Fig: Flow graph for the Procedure Average 

 

2.   Determine the cyclomatic complexity of the resultant flow graph. The cyclomatic 

complexity V (G) is determined by applying the algorithms described in Section 23.4.2. It 

should be noted that V (G) can be determined without developing a flow graph by counting 

all conditional statements in the PDL (for the procedure average, compound conditions 

count as two) and adding 1. Referring to the above Figure. 

V (G) 5 6 regions 

V (G) 5 17 edges 2 13 nodes 1 2 5 6 

V (G) 5 5 predicate nodes 1 1 5 6 

 

3.   Determine a basis set of linearly independent paths . The value of V (G) 

provides the number of linearly independent paths through the program control structure. In 

the case of procedure average, we expect to specify six paths: 

Path 1:   1-2-10-11-13 

Path 2:   1-2-10-12-13 

Path 3:   1-2-3-10-11-13 

Path 4:   1-2-3-4-5-8-9-2-. . .  



Path 5:   1-2-3-4-5-6-8-9-2-. . .  

Path 6:   1-2-3-4-5-6-7-8-9-2-. . . 

The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through the remainder 

of the control structure is acceptable. It is often worthwhile to identify predicate nodes as an 

aid in the derivation of test cases. In this case, nodes 2, 3, 5, 6, and 10 are predicate nodes. 

4.   Prepare test cases that will force execution of each path in the 

basis set. 

Data should be chosen so that conditions at the predicate nodes are appropriately set as each 

path is tested. Each test case is executed and compared to expected results. Once all test 

cases have been completed, the tester can be sure that all statements in the program have 

been executed at least once. 

It is important to note that some independent paths (e.g., path 1 in our ex- ample) cannot be 

tested in stand-alone fashion. That is, the combination of data required to traverse the path 

cannot be achieved in the normal flow of the pro- gram. In such cases, these paths are tested 

as part of another path test. 

Control structure testing: 

 The basis path testing technique described in Section 23.4 is one of a number of 

techniques for control structure testing. Although basis path testing is simple and highly 

effective, it is not sufficient in itself. In this section, other variations on control structure testing 

are discussed. These broaden testing coverage and improve the quality of white-box testing. 

 Condition testing [Tai89] is a test-case design method that exercises the logical 

conditions contained in a program module.  

Data flow testing [Fra93] selects test paths of a program according to the locations of 

definitions and uses of variables in the program. 

   Loop testing is a white-box testing technique that focuses exclusively on the validity 

of loop constructs. Four different classes of loops [Bei90] can be defined: simple loops, 

concatenated loops, nested loops, and unstructured loops (classes of loops Figure). 



 

Simple Loops.  The following set of tests can be applied to simple loops, where n 

is the maximum number of allowable passes through the loop. 

1.   Skip the loop entirely 

2.   Only one pass through the loop 

3.   Two passes through the loop  

4.   m passes through the loop where m , n 

5.   n 2 1, n, n 1 1 passes through the loop 

Nested Loops.  If we were to extend the test approach for simple loops to nested loops, the 

number of possible tests would grow geometrically as the level of nesting increases. This would 

result in an impractical number of tests. Beizer [Bei90] suggests an approach that will help to 

reduce the number of tests: 

1.   Start at the innermost loop. Set all other loops to minimum values 

2.   Conduct simple loop tests for the innermost loop while holding the outer loops at their 

minimum iteration parameter (e.g., loop counter) values. Add other tests for out-of-range or 

excluded values.  

3.   Work outward, conducting tests for the next loop, but keeping all other outer loops at 

minimum values and other nested loops to “typical” values.  

4.   Continue until all loops have been tested. 

Concatenated Loops.   Concatenated loops can be tested using the approach de- fined for 

simple loops, if each of the loops is independent of the other. However, if two loops are 

concatenated and the loop counter for loop 1 is used as the initial value for loop 2, then the 



loops are not independent. When the loops are not in- dependent, the approach applied to nested 

loops is recommended. 

Unstructured Loops.  Whenever possible, this class of loops should be redesigned to reflect 

the use of the structured programming constructs. 

Black-Box testing: 

 Black-box testing, also called behavioral testing or functional testing, focuses on the 

functional requirements of the software. That is, black-box testing techniques enable you to 

derive sets of input conditions that will fully exercise all functional requirements for a program. 

Black-box testing is not an alternative to white-box techniques. Rather, it is a complementary 

approach that is likely to uncover a different class of errors than white-box methods. 

 Black-box testing attempts to find errors in the following categories:  

(1) Incorrect or missing functions,  

(2) Interface errors,  

(3) Errors in data structures or external database access,  

(4) Behavior or performance errors, and  

(5) Initialization and termination errors. 

Unlike white-box testing, which is performed early in the testing process, black- box 

testing tends to be applied during later stages of testing. Because black-box testing purposely 

disregards control structure, attention is focused on the information domain. Tests are 

designed to answer the following questions: 

 How is functional validity tested? 

 How are system behavior and performance tested? 

 What classes of input will make good test cases? 

 Is the system particularly sensitive to certain input values? 

 How are the boundaries of a data class isolated? 

 What data rates and data volume can the system tolerate? 

 What effect will specific combinations of data have on system operation? 

By applying black-box techniques, you derive a set of test cases that satisfy the fol- 

lowing criteria [Mye79]: test cases that reduce, by a count that is greater than one, the 

number of additional test cases that must be designed to achieve reasonable testing, and 



test cases that tell you something about the presence or absence of classes of errors, rather 

than an error associated only with the specific test at hand. 

Graph-Based Testing Methods: 

The first step in black-box testing is to understand the objects5 that are modeled in 

software and the relationships that connect these objects. Once this has been 

accomplished, the next step is to define a series of tests that verify “all objects have the 

expected relationship to one another” [Bei95]. Stated in another way, software testing 

begins by creating a graph of important objects and their relationships and then devising 

a series of tests that will cover the graph so that each object and relationship is exercised 

and errors are uncovered. 

 

To accomplish these steps, you begin by creating a graph—a collection of nodes that 

represent objects, links that represent the relationships between objects, node weights that 

describe the properties of a node (e.g., a specific data value or state behavior), and link 

weights that describe some characteristic of a link. 

The symbolic representation of a graph is shown in the above Figure a. Nodes are 

represented as circles connected by links that take a number of different forms. A directed 

link (represented by an arrow) indicates that a relationship moves in only one direction. A 

bidirectional link, also called a symmetric link, implies that the relationship applies in both 



directions. Parallel links are used when a number of different relationships are established 

between graph nodes. 

As a simple example, consider a portion of a graph for a word-processing application 

(above Figure b) where  

Object #1 5 newFile (menu selection) 

Object #2 5 documentWindow 

Object #3 5 documentText 

Referring to the figure, a menu select on newFile  generates a document window. The node 

weight of document Window provides a list of the window attributes that are to be expected 

when the window is generated. The link weight indicates that the window must be generated 

in less than 1.0 second. An undirected link establishes a symmetric relationship between the  

newFile  menu selection and  documentText,  and parallel links indicate relationships between  

documentWindow  and  documentText.  In reality, a far more detailed graph would have to 

be generated as a precursor to test-case design. You can then derive test cases by traversing the 

graph and covering each of the relationships shown. These test cases are designed in an attempt 

to find errors in any of the relationships. Beizer [Bei95] describes a number of behavioral 

testing methods that can make use of graphs: 

Transaction flow modeling. The nodes represent steps in some transaction (e.g., the steps 

required to make an airline reservation using an online service), and the links represent the 

logical connection between steps. For example, a data object flightInformationInput is 

followed by the operation validationAvailabilityProcessing(). 

Finite state modeling. The nodes represent different user-observable states of the software 

(e.g., each of the “screens” that appear as an order entry clerk takes a phone order), and the 

links represent the transitions that occur to move from state to state (e.g., orderInformation 

is verified during inventoryAvailabilityLook-up() and is followed by customerBilling- 

Information input). The state diagram can be used to assist in creating graphs of this type.  

Data flow modeling. The nodes are data objects, and the links are the transformations that 

occur to translate one data object into another. For example, the node FICATaxWithheld 

(FTW) is computed from gross wages (GW) using the relationship, FTW 5 0.62 3 GW. 



Timing modeling. The nodes are program objects, and the links are the sequential connections 

between those objects. Link weights are used to specify the required execution times as the 

program executes. 

 
 
 

Equivalence Partitioning: 

 Equivalence partitioning is a black-box testing method that divides the input do- main 

of a program into classes of data from which test cases can be derived. An ideal test case single-

handedly uncovers a class of errors (e.g., incorrect processing of all character data) that might 

otherwise require many test cases to be executed before the general error is observed. 

Test-case design for   equivalence partitioning is based on an evaluation of equivalence 

classes for   an input condition. Using concepts introduced in the preceding section, if  a set 

of  objects can be linked by  relationships that are symmetric, transitive, and reflexive, an 

equivalence class is  present [Bei95]. An equivalence class represents a set of valid or invalid 

states for  input conditions. Typically, an input condition is either a specific numeric value, a 

range of values, a set of related values, or a Boolean condition. Equivalence classes may be 

de- fined according to the following guidelines: 

1.   If an input condition specifies a range, one valid and two invalid equivalence classes are 

defined. 

2.   If an input condition requires a specific value, one valid and two invalid equivalence classes 

are defined. 

3.   If an input condition specifies a member of a set, one valid and one invalid equivalence 

class are defined. 

4.   If an input condition is Boolean, one valid and one invalid class are defined. 

 

By applying the guidelines for the derivation of equivalence classes, test cases for each 

input domain data item can be developed and executed. Test cases are selected so that the 

largest number of attributes of an equivalence class are exercised at once. 

Boundary Value Analysis: 

 

A greater number of errors occurs at the boundaries of the input domain rather than in the 

“center.” It is for this reason that boundary value analysis (BVA) has been developed as a 



testing technique. Boundary value analysis leads to a selection of test cases that exercise 

bounding values. 

Boundary value analysis is a test-case design technique that complements equivalence 

partitioning. Rather than selecting any element of an equivalence class, BVA leads to the 

selection of test cases at the “edges” of the class. Rather than focusing solely on input 

conditions, BVA derives test cases from the output domain as well [Mye79]. 

Guidelines for BVA are similar in many respects to those provided for equivalence 

partitioning: 

1.   If an input condition specifies a range bounded by values a and b, test cases should 

be designed with values a and b and just above and just below a and b.  

2.   If an input condition specifies a number of values, test cases should be developed that 

exercise the minimum and maximum numbers. Values just above and below minimum and 

maximum are also tested. 

3.   Apply guidelines 1 and 2 to output conditions. For example, assume that a temperature 

versus pressure table is required as output from an engineering analysis program. Test cases 

should be designed to create an output report that produces the maximum (and minimum) 

allowable number of table entries. 

4.   If internal program data structures have prescribed boundaries (e.g., a table has a defined 

limit of 100 entries), be certain to design a test case to exercise the data structure at its 

boundary. 

Most software engineers intuitively perform BVA to some degree. By applying these 

guidelines, boundary testing will   be more complete, thereby having a higher likelihood for 

error detection. 

 


