7/31/2023

Outcomes
Stack Allocation of Space
Activation Trees
Activation Records

STACK ALLOCATION OF
SPACE

>Whenever a procedure is called,

Jspace for its local variables is pushed onto the stack

>When the procedure terminates,
Jspace is popped off

> Almost all compilers for languages that use procedures,
functions, or methods manage their run-time memory as a
stack.

ACTIVATION TREES

7/31/2023

7/31/2023

Activation:
The sequence in which the procedure executes

Activation Tree:
Procedures execute sequentially
This sequence is easily represented by a tree

Example: Recursive Quicksort Algorithm

int al E s
void readarrav () {
Ikt I3

3
int partition(imt m, imt n) {

¥
void guicksort(int m, int n) {
St 93
n m)
m & partitiond(m, n);
quicksort(m, i-1)
quicksort (i L, mn)
o
¥
maind() {
readarrav () s
alf=2] =3=R=1=
af1e]

quicksort (1, <

7/31/2023

Possible Activations: Activation Tree:

enter main()
enter readArray()
leave readArray()

enter quicksort(1,9) r q(Lg)
enter partition(1,9) :
leave partition(1,9) ,////// ‘
enter quicksort(1,3) ’
(L.9) i(L,3) 5,9)

leave quicksort(1,3)
enter quicksort(5,9)

leave quicksort(5,9)
leave quicksort(1,9)
leave main()

In general, procedure activations are nested in
time.

If the activation of procedure p calls procedure q,
then that activation of q must end before the

activation of p can end.

7/31/2023

3 COMMON CASES:

Case 1: Activation of functionA terminates
normally.

Case 2: Activation of functionA aborts.

Case 3: Main handles the exception of
functionA

Program Flow

A ddresses Main Memory

T —
3 - void functionB() { T o | Main l
: . » 4100 CALL Procl |
4 std: : cout "Inside function B\n"; 4101 | ———— | Program ik
5 } .
4500 [———— o
7 - void functionA() { — J,
std: :cout "Inside function A\n"; profll | s e
. Procedure
: functionB(); 4650 CALL Proc2 Procl 1
10 } 4651 | o e
RETURN l//
12 - int main() {
std::cout "Inside main function\n"; s =—— _—
functionA(); P o2
2 RETURN /

(a) Calls and returmns (b} Execution sequence

7/31/2023

Use of Run-Time Stack

Sequence of Procedure calls 2> PreOrder Traversal

Sequence of Returns = PostOrder Traversal
ok Allocation of Space Part-1 (Run-time Environments) | Compiler Design
The live Activations of node N
and its ancestors are in the order
of their appearance along the pat
to N from the root, and they will
return in Reverse Order.

Activation Records

7/31/2023

e Procedure calls and returns are
usually managed by a run-time stack Actual parameters
called the control stack.

» Each live activation has an activation
record(sometimes called a frame) on
the control stack

« The contents of activation records vary
with the language being implemented.
Here is a list of the kinds of data that
might appear in an activation record:

Temporaries

Temporaries
Values that arise from the evaluation of expression

Local Data
Procedure data is stored locally.

Saved Machine Status
The machine status(register, program counter) before
the procedure call is saved

Access Link
Non-local data information is stored

Control Link

Points to the caller's activation record.

Returned Values

Stores the return value of the function, if any.

Actual Parameter

7/31/2023

Stores the actual parameters of the calling procedure.

p(1,9) q(1,3) q(5,9)
2(1,3) q(1,0) ¢(2,3) p(5,9) a(5,5) ¢(7,9)
o | 21N

»(2,3) ¢(2,1) 4(3,3) 2(7,9) o(7,7) 4(9,9)

Figure 7.4: Activation tree representing calls during an execution of quicksort

integer a[11)

maein

(a) Frame for main

integer a[11]

main main
' ’ | integer m, 1
T 9(1,9) q(1,9)
| integer i _

(¢) r has been popped and ¢(1,9) pushed

(b) ris

main
.

ra,9)

p(1,9)

v

p(1,3)

‘1/(1: 3)

7

q(1,0)

(d) Control returns to ¢(1,3)

integer a[11]

integer 1

activated

integer a[l11]

main

integer 1

