UNIT-2

Syntax Analysis:

Introduction: The Role of the parser — Representative
Grammars - Syntax Error Handling - Error Recovery
Strategies.

Context Free Grammars: The formal definition of a CFG -
Notational Conventions - Derivations - Parse trees and
derivations — Ambiguity

Writing Grammar: Lexical Versus Syntax Analysis -
Eliminating Ambiguity — Elimination of Left Recursion — Left
Factoring

Top Down Parsing: Recursive Descent Parsing-FIRST and
FOLLOW - LL(1) Grammars - Non recursive Predictive
Parsing- Error Recovery in Predictive Parsing.

The Role of the parser

Xproisiem ETrrors
lexical — token ken rest of | intermediate
_source parser |RATH, e
program analyzer ‘et nex tree | [ront end
bty C |||u1hnm
. 0 mn
table information
Perform type checking
Intermediate code
generation

7/31/2023

7/31/2023

The Role of the parser

*+ The parser obtains a string of tokens from lexical
analyzer.

+ It then verifies whether the input string can be
generated from the grammar of the source language.

+ It has to report any syntactical errors and recover from
commonly occurring error to continue the processing
the remainder of the program

+ The parser constructs a parse tree and passes it to the
rest of the compiler for further processing.

* It should also report syntactical errors in an easily
understandable way to the user.

Parser:

————

A parser is a program that generates a parse tree for the given
string, if the string is generated from the underlying grammar.

id = id + id * id ; »[:]»

| S—=id=E;

Categorization of parsers

» There are 03 general types of parsers for grammars: universal, top-
down, and bottom-up.

» Universal parsing methods such as the Cocke-Younger-Kasami

algorithm and Earley's algorithm can parse any grammar. These

general methods are, however, too inefficient to use in production
compilers.

» The methods commonly used in compilers is either top-down or
bottom-up.

» Top-down methods build parse trees from the top (root) to the

bottom (leaves), while bottom-up methods start from the leaves and
work their way up to the root.

Parsers
[| e
[ONWERSAL | P ———— :
| PRRSERS | P DOIN paRsers TTOM UP PARSE Rs
g Goe (BUP)
cvk] [Fartyparser
TOP With

TP withoue

fott bamtromin? backtraeks g

Broteforce
method

7/31/2023

Representative Grammars

E = E+T|T

T - T« F | F UsefulforBottomup

F = (E)|id parsing. Belongs to LR grammar Class.
ﬁ, 2 i‘;E [e After removing left recursion used

g FT .

sl e [for top down parsing

F = (E) | id

useful for illustrating
i handling ambiguities
during parsing

B4 D48 E4E| (D)

Syntax Error Handling

6 . iff | |
Lexical errors include misspellings of identiers, keywords, or
operators.

Tvpes of Errors

o e.g., the use of an identier elipseSize instead of ellipseSize

1) Lexical . .)
o missing quotes around text intended as a string

2) Syntactic . . :
L Syntactic errors include misplaced semicolons or extra or

3) Semanti i S
) Semantic missing braces; that is, “{"or *}’
4) Logical :
i o Example: In C or Java, the appearance of a case statement without
an enclosing swirch is a syntactic error

7/31/2023

Syntax Error Handling

= Semantic errors include type mismatches between operators and
operands,

Tvpes of Errors

o e.g., the return of a value in a Java method with result type void.

1) Lexical

N - Logical errors occur when executed code does not produce the
S expected result.
3) Semantic : ;
e o incorrect reasoning on the part of the programmer

4) Logieal . : .
A Logien 0 The use in a C program of the assignment operator = instead of the

comparison operator = =

Syntax Error Handling
I

o The error handler in a parser has goals that are simple to state but
challenging to realize:

o Report the presence of errors clearly and accurately.
o Recover from each error quickly enough to detect subsequent errors.

o Add minimal overhead to the processing of correct programs.

7/31/2023

Error-Recovery Strategies
|
| Panic-Mode Recovery

Z. Phrase-Level Recovery

3. Error Productions

I

. Global Correction

Panic-Mode Recovery
|

= Once an error is found, the parser intends to find designated
set of synchronizing tokens by discarding input symbols one
at a time.

o Synchronizing tokens are delimiters, semicolon or | whose
role in source program is clear.

= When parser finds an error in the statement, it ignores the rest
of the statement by not processing the input.

0 Advantage:

= Simplicity

» Never get into mfinite loop
0 Disadvantage:

» Additional errors cannot be checked as some of the input
symbols will be skipped.

7/31/2023

7/31/2023

Phrase-Level Recovery

When a parser finds an error, it tries to take corrective
measures so that the rest of inputs of statement allow the
parser to parse ahead. The corrections may be
Replacing a prefix by some string,
Replacing comma by semicolon.
Deleting extraneous semicolon,
Inserting missing semicolon.
we must be careful to choose replacements that do not lead to infinite loops, as

would be the case, for example, if we always inserted sornething on the input
ahead of the current input symbol.

Advantage:
® [t can correct any input string.
Disadvantage:
® It is difficult to cope up with actual error if it has occurred before the
point of detection.

Error Productions

The use of the error production method can be incorporated if
the user is aware of common mistakes that are encountered in
grammar in conjunction with errors that produce erroneous
constructs.

Example: write 5x instead of 5%*x

Advantage:
= [f this 1s used then, during parsing appropriate error messages can be
generated and parsing can be continued.

Disadvantage:

= The disadvantage is that it’s difficult to maintain.

Global Correction

The parser considers the program in hand as a whole and tries
to figure out what the program is intended to do and tries to
find out a closest match for it, which 1s error-free.
When an erroneous input statement X is fed, it creates a parse
tree for some closest error-free statement Y.
Advantage:
= This may allow the parser to make minimal changes in the source
code.
Disadvantage:
® Due to the complexity (time and space) of this strategy, it has not
been implemented in practice yet.

Lexical analysis Vs syntax analysis

1. Separating the syntactic structure of a language into lexical and non-
lexical parts provides a convenient way of modularizing the front end of
a compiler into two manageable-sized components.

2. The lexical rules of a language are frequently quite simple, and to describe
them we do not need a notation as powerful as grammars.

3. Regular expressions generally provide a more concise and easier-to-under-
stand notation for tokens than grammars.

4. More efficient lexical analyzers can be constructed automatically from
regular expressions than from arbitrary grammars.

7/31/2023

Lexical Vs Syntactic analysis

Lexical analysis Syntax analysis

Process of analyzing a string of

It is respansible for converting a symbols either in natural
sequence of charactersintoa language or computer languages
pattern of tokens, that satisfies the rules of a formal

Reads the program one

character at a time, the output is

meaningful lexemes.

It is the first phase of the
compilation process.

grammar.

Tokens are taken as input and a

parse tree is generated as
output,

It is the second phase of the
compilation process.

Lexical analysis

It can also be referred to as
lexing and tokenization.

A lexical analyser is a pattern

matcher.

Less complex approaches are

often used for lexical analysis.

Syntax analysis

It can also be referred to as
syntactic analysis and parsing.

A syntax analysis involves
forming a tree to identify

deformities in the syntax of the
program.

Syntax analysis requires a much

more complex approach.

7/31/2023

Context Free Grammars

The formal definition of a CFG
Notational Conventions
Derivations

Parse trees and derivations
Ambiguity

The formal definition of a CFG

Context-free granmumars are named as such because any of the production
rules in the grammar can be applied regardless of context—it does not
depend on any other symbaols that may or may not be around a given symbol
that is having a rule applied to it
A context free grammar G is defined by four tuple format as

G=(V.T.PS)

where.

O — Grammar

WV = Set of variables

T — Set of terminals

P — Set of productions

S — Start symbol

7/31/2023

10

7/31/2023

A Context Free Grammar

» A context-free grammar has four components:
> Aset of terminal symbols, sometimes referred to as "tokens.”
P Aset of nonterminals, sometimes called "syntactic variables."

> A sct of productions, where each production consists of a nonterminal,called thehead or
left side of the production, an arrow, and a sequence of terminals and/or nontermnals |
called the body or right side of the production

B A designation of one of the nonterminals as the start symbol.

Examp|e 1: erpression — erpression + term
erpression —» expression — term
erpression — term
term — term * factor
term — term [/ factor
term — factor
factor — (expression)
factor — id
the terminal symbols are id + — = / C D

The nonterminal symbols are ezpression, term and factor,

expression is the start symbol

Example 2:
stmt — if (expr) stmt else stmit

11

Notational Conventions

1. These symbols are terminals:

(a) Lowercase letters early in the alphabet, such as a, b, c.
(b) Operator symbols such as +, ¥, and so on.

(
(d) The digits 0,1,... ,9.

(¢) Boldface strmgs such as id or if, each of which represents a single
terminal symbol.

)
)
¢) Punctuation ‘;ymbol&. such as parentheses, comma, and so on.
)
)

9. These symbols are nonterminals:

(a) Uppercase letters early in the alphabet, such as A B, C.
(b) The letter S, which, when it appears, is usually the start gymbol.
(c) Lowercase, italic names such as expr or stml.

(d) When discussing programming constructs, uppercase letters may be
used to represent nonterminals for the constructs. For example, non-
terminals for expressions, terms, and factors are often represented by
E, T, and F, respectively.

7/31/2023

12

. Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar
symbols; that is, either nonterminals or terminals.

. Lowercase letters late in the alphabet, chiefly u,v,..., z, represent (pos-
sibly empty) strings of terminals.

. Lowercase Greek letters, a, 3, v for example, represent (possibly empty)
strings of grammar symbols. Thus, a generic production can be written
as A = a, where A is the head and a the body.

. A set of productions A = a;, A = as,..., A = a with a common head
A (call them A-productions), may be written A = ay | ag | -+ | ay. Call
aq,Qs,... 0 the alternatives for A.

. Unless stated otherwise, the head of the first production is the start sym-
bol.

Example
E—-E+T | E-T | T
T >T «F | T/ F |F
F — (E) | id

v={E, T, F}

T EM, R I €) d)

S ={E}

P :
E — E+T T T f F
E — E-T T— F
E —T F— (E)
T - T*F F— id

7/31/2023

13

Derivations
» E=E+E: E+E derives from E

» E= E+E = idtE=Nida

» A sequence of replacements of non-terminal symbols is called a derivatior
of id+id from E.

» aAB = ayp if there is a production rule A—y in our grammar and @ and

B are arbitrary strings of terminal and non-terminal symbols
o => O, = ... = C(ETE R RO O, derives o,)

: derives in one step
: derives in zero or more steps

: derives in one or more steps

CFG - Terminology

L(G) is the language of G (the language generated by G) which is a set of
sentences.

A sentence of L(G) is a string of terminal symbols of G.
If S is the start symbol of G then

 is a sentence of L(G) iff S = @ where o is a string of terminals of G
*

If G is a context-free grammar, L(G) is a context-free language.

» Two grammars are equivalent if they produce the same language.

» S= 0 -If o contains non-terminals, it is called as a sentential form of G.
%

- If a0 does not contain non-terminals, 1t 18 called as a sentence of G.

7/31/2023

14

Derivations
Parse Tree-

« The process of deriving a string is called as derivation.

« The geometrical representation of a derivation is called as a parse
tree or derivation tree.

Types of derivation

! |

Leftmost derivation Rightmost derivation

LEFT MOST DERIVATION

At each and every step the leftmost non-terminal is expanded by substituting its
corresponding production to derive a string.

E—-E+E|E #E | id

w=1d +id * id

E—E+E

Im

E—id+E E — id]
Im

E—id + E+E [E —~ExE]
Im

E—id+id+E [E — id]

Im

E—id + id+id [E—id]
lm

7/31/2023

15

RIGHT MOST DERIVATION

At each and every step the rightmost non-terminal is expanded by substituting its
corresponding production to derive a string.

E—E+E|E «E| id

w=id+1id = 1d

E— E+E

E-E+E+E [E— E+E]
m

E—E+E-id E - id]
E—E+ id+id E — id]

m

E—id +id«id [E— id]

EXAMPLE

o Leftmost o Rightmost

S—>SS+|SSx|a S—>SS+|SS+«|a
w = aa + ax* w = aa+ a*
S S8 S — S8
s;ss+s-- [S—SS+] S :"Sa, S — d]
S —aS+S+ [S—aq] S—SS+as 5 —SS+]
S-aa+Ss [S— dq] S"j Satas 5—0]
Scaatar [S—d B iaber -

rm

7/31/2023

16

7/31/2023

Parse Tree

- Parse tree is a hierarchical structure
which represents the derivation of the
grammar to yield input strings.

- Root node of parse tree has the start
symbol of the given grammar from
where the derivation proceeds.

- Leaves of parse tree represent terminals.
- Each interior node represents

productions of grammar. = + E
. fG:E—>E+E|E*E|(E)|-E|idis I |
the grammar, then Parse tree for the
input string - (id + id) is shown. a o
E = E = E
& N 7 N
= E - E
VRN
(E)
= E = E E
P g \E v \E i \E
P e Pl Y Z 1%
(E_) (E_) E)
| 71 % 71N
E + E El' : E il? + EJ:
id id id

17

7/31/2023

.
Ambiguity !
P a grammar that produces more than one parse tree for some sentence 15 ¢

to be ambiguous

E+ E ExE

id+ E E+ExE
id+ExE id+ ExFE
id+id x E id+idx E
id +id = id id + id * id

E
P
E x B
ra k™ |
P

id id

Assignment 1

Exercise 4.2.1: Consider the context-free grammar:
§ + S5+ |SS+|a
and the string aa + ax.
a) Give a leftmost derivation for the string.
b) Give a rightmost derivation for the string.
c¢) Give a parse tree for the string.
! d) Is the grammar ambiguous or unambiguous? Justify your answer.

! e) Describe the language generated by this grammar.

18

7/31/2023

ive a leftmost derivation for the string.

ive a rightmost derivation for the string.
ive a parse tree for the string.

[s the grammar ambiguous or unambiguous?

0S 1|01 with string 000111.

+ §S5| * §S | a with string + * aaa.

S (S) S| e with string (()()).

S+ S|58|(8)|8 * | a with string (a + a) *a.

(L)|aand L = L, §| S with string ((a,a), a, (a)).

chou:u:tntn
I 4 1 4 4l

aSbhbS|bSas|ewith string aabbab.

Writing a Grammar

» Grammars are capable of describing most, of the syntax of programming
languages .

Grammar should be unambiguous.

Left-recursion elimination and left factoring - are useful for rewriting
grammars .

From the resulting grammar we can create top down parsers without
backtracking.

Such parsers are called predictive parsers or recursive-descent parser

19

7/31/2023

Eliminating Ambiguity

» ambiguous grammar can be rewritten to eliminate the ambiguity.
» stmt ->if expr then stmt

|if expr then stmt else stmt

|other
» is ambiguous since the string

» if El then if E2 then S1 else S2 has the two parse trees

Two parse trees for an ambiguous sen

stmt

//\\

&J:p'r then stmt

/\\\

.-,'rpr stmt else stmt

20

7/31/2023

Eliminating Ambiguity

» The general rule 1s, "Match each else with the closest unmatched then."

stmt — matched_stmt
| open_stmt
matched_stmt — if expr then matched_stmt else matched_stmt
| other

open_stmt — if expr then stmt
| if expr then matched_stmt else open_stmt

Left Recursion

» Agrammaris left recursive if it has a non-terminal A such that there is a
dertvation.

A = Aa, for some string o
» Top-down parsing techniques cannot handle left-recursive grammars.

» The left-recursion may appear in a single step of the derivation (immediate left-
recursion), or may appear in more than one step of the derivation.

21

7/31/2023

Immediate Left-Recursion

A—>Aa| B where B does not start with A

U eliminate immediate left recursion

A—>BA
A>aA |e

In general,

AoAo|...|Aay|B; |- |By where f3; ... B, do not start with A

U' eliminate immediate left recursion
A->BA|..|BA

A->oAl.la,A |e an equivalent grammar

» Here is an example of a (directly) left-recursive grammar:
E>E+T|T
TS T*F|F
F =2 (E i

» This grammar can be re-written as the following non left-

recursive grammar:
E->TE E'=>¢TE e
T 2> T > "Ee

F->(E)|id

22

7/31/2023

Left Factoring

Left factoring is a grammar transformation that is useful for
producing a grammar suitable for predictive, or top-down,
parsing.

Stmt -> if expr then stmt else stmt
|if expr then stmt
> A->a P, |aB,
» So it should be left factored as

A= ad
A" = B, | B2

.4—}0:,31]Q,S;] | Ja'ﬁ(nl‘?

S»iEtS |iEtSeS | a
E—=b

S—>i1EtSS | a
S'">eS | €
E—=b

23

7/31/2023

Left-Factoring -- Algorithm

» For each non-terminal A with two or more alternatives (production rules
with a common non-empty prefix

A— G‘-ﬁl | | U—Bn | .I"I | |.F:|1

convert it into

A— O‘-A‘l 11 | |'IFm

KBy |2l

Left-Factoring — Examplel

A — abB | aB | cdg | cdeB | cdfB

U

A — aA | cdg | cdeB | cdfB
A —>bB|B

U

A — aA'| cdA”
A —>bB|B
A" —>gl|eB|fB

24

7/31/2023

Lett-Factoring — Example2

A—ad|a|ab|abc|b

U

A—aA’|b
A'—>d|e |b]|bc

U

A—aA’|b
A’—> d|e | bA”

A"—>sg |c

[Left-Recursion -- Problem

* A grammar cannot be immediately left-recursive, but it still can
be left-recursive.

S—>Aa|b
A—>Sc|d

S = Aa= el
A = Sc = Aac causes to a left-recursion

25

Removing left recursion: Example 1

e S->Sca/b/da
* A->Aac/d/bc

S->bS’/da¥s’
S’->caS’/€

A->dA’/bcA’
A'->acA’/€

Example 2

* E->EZM/M/2M
* M->MUF/F

* E->ME’'/2MFE’
s E'->ZME’/€

* M->FM’
s M'->UFM’/€

7/31/2023

26

Example 3

e 5->5;S/id:=E/print(L)
* S->id:=ES’/print(L)S’
* §'->:SS'/€
e E->E+E/id/num/(S,E)
E->idE’/numE’/(S,E)E’
E’->+EE’/€
o L->E/L,E
L->El’
U'->,EL'/€

Remove left factoring/left recursion

e D->X/X,D

* X->id/id[c]

e S->T/T:S

* A->id=E/id(E)=E
* F->C/id/id[E]

* C->G/GC

e S->iEtS/iEtSeS

7/31/2023

27

Types of parsing techniques

* Top down parsing and bottom up parsing

* Top down parsing:
— Recursive Descent parsing(or) brute force method

— Predictive parsing(or) non recursive descent
parsing

Top-Down Parsing

The parse tree is created top to bottom.
Top-down parser
» Recursive-descent parsing
» Backtracking is needed
» It is a general parsing technigue, but not widely used.
» Not efficient
» Predictive parsing
» No backtrac
» Efficient
» Needs a special form of grammars - (LL(1) grammars).

» Recursive predictive parsing is a special form of recursive descent parsing without
backtracking.

» Non-recursive (table driven) predictive parser is also known as LL{1) parser.

7/31/2023

28

Recursive Descent parsing : string
Ilcadll

S = cAd
A = ab| a

Examples for recursive descent parsing

S->abA derive string “ab”
A->cd/c/€

S->abA
A->bc/b derive string”abb”

7/31/2023

29

Predictive parsing

* This is also called as recursive predictive parsing
* No need of backtracking

* To construct predictive parsing, we need to compute
the First and Follow for all Non terminals

» Predictive parsing
» No backtracking
» Efficient
» Needs a special form of grammars - (LL(1) grammars).

» Recursive predictive parsing is a special form of recursive descent parsing without
backtracking.

» Non-recursive (table driven) predictive parser is also known as LL(1) parser.

RULES FOR FIRST SET

1. 1 X1s terminal, then FIRST(X) is iX,
2, 1fX=>€isa production, then add € to FIRST(X),

3. 1f X 18 nontermmal and X =>Y1 Y2 ... Yk 18 a production, then place a1n FIRST(X) 1f for
some 7, a1s in FIRST(Y4, and € is in all of FIRST(Y1), .., FIRST(Y#1): that s, Y1, ... Y#1
=> £ If€isin FIRST(Y) for all j=1,2, ..., k then add € to FIRST(X),

For example, everything in FIRST(Y1) 18 surely in FIRST(X). If Y1 does not derive €,

then we add nothing more to FIRST(X), butif Y1=>€, then we add FIRST(Y2) and so on,

7/31/2023

30

RULES FOR FOLLOW SET

Place § in FOLLOW(S), where S is the start symbol and § is the input

nnn'kur.

. If there is a production A => B, then everything in F

placed in FOLLOW(B),

ght end

RST(p), except for €, 1s

3, Ifthereis a production A=>u B, or a production A => o Bf where FIRST(p)
contains € (1.e., =>€), then everything in FOLLOW(A) 1s in FOLLOW(B).

E=>TE
E=>+TE| €
T=>FT

P=> *FT | ¢
F=> ()| id

EXAMPLES
FIRST(E) = FIRST(T) =
FIRST(E) = i+, €}
FIRST(T) = {*, €]

FIRST(F) =

FOLLOW(E) = FOLLOW(E

FOLLOW(T) = FOLLOW(T") =
FOLLOW(F) = {+, *,),

$i

), $

1, 1d}

i+,), $

7/31/2023

31

S=>Aa

A=>BD
B=>Dh3iE
D=>d| €

EXAMPLE

First(S

) lb d a;

First(A) = {b, d, €}
First(B) = ib, €}

First(D)

=l 4o

Follow(S) = {$}
Follow(A) = {aj
Follow(B) = {d, a}
Follow(D) = {a

1.C=>PFclass1id XY

2. P=>public

BIR ==

4. F => final

0. F=>¢

6. X => extends id
7.X=>¢

8.Y =>implements I
9.Y=>¢

10.1=>id J
11.d=>,1

12.d=>¢

First(C

classy

First(P) = {public, € |

First(F) = {final, € }

First(X) = {extends, € |

First(Y) = {implements, € |

First(I) = lid}
First) ={" €}

Follow(C) = 1§,

= {public, final,

Follow(P) = ifinal, class;
Follow(F) = {class}
Follow(X) = {implements, $
Follow(Y) = {$;

Follow(D) = {$}

Follow(J) = {$}

7/31/2023

32

7/31/2023

Construction of a predictive par
table.

INPUT: Grammar G.
OUTPUT: Parsing table M.

METHOD: For each production A = a of the grammar, do the following:

1. For each terminal a in FIRST(A), add A = a to M[4,d].

2 If € is in FIRST(a), then for each terminal b in FOLLOW(A), add A = a
to M[A,b]. If € is in FIRST(a) and § is in FOLLOW(A), add A = a to
M[A,$] as well

If, after performing the above, there is no production at all in M[4, a, then
set M[A,a} to error (which we normally represent by an empty entry in the
table). O

FOLLOW

E->TE {(.id} {$.)}

E’-> +TE'|e {+.€} {$.)}
TABLE:

e {(.id) {+.$.0) FIRST & FOLLOW

L AL {*. ¢} {+.85.))
F -> (E)lid {(,id} {"+*.%)}

E
E ,
T
T
E

TABLE:
PARSING
TABLE

id + " () $
E->TE

33

SYMBOL FIRST FOLLOW

S IEtSS’ | a i $.e TABLE:
S$'>eSe . $.¢e FAST & FOLLOW

E=2b b t

Non

TABLE: ’ LI I

PARSING TABLE i
S'>eS
S'3¢

LL(1) grammars have distinct properties.

- No ambiguous grammar or left recursive grammar
can be LL(1).
Thus , the given grammar is not LL(1).

7/31/2023

34

O An LL parser is called an LL(k) parser if
it uses k tokens of look ahead when
parsing a sentence.

grammars, as parsers are easy to
construct, and many computer
languages are designed to be LL(1) for

this reason. LEﬁ mOSt derlvallon

O The 1 stands for using one input symbol

LU
OLL grammars, particularly LL(1) Leﬁ tO ngm ‘//

of look ahead at each step to make klOOkahead Symb(]l

parsing action decision.

K

|

Properties of LL(1)

* No ambiguous or left recursive grammar can be
LL(2).

e Grammar Gis LL(1) 1£f whenever A>a/[3 are two
distinct productions of G and:

— For no terminal a do both o and 3 derive strings beginning
with a.
FIRST(c)NFIRST(B)=T
— At most one of a and 3 can derive the empty string.
— If B=¢, the o does not derive any string beginning with a
termirial in FOLLOW(A).
FIRST(otFOLLOW(A))FIRST(BFOLLOW(A))=Q

7/31/2023

35

7/31/2023

Nonrecursive Predictive
Parsing

= |t is possible to build a

nonrecursive predictive
parser

* This is done by maintaining
an explicit stack

Table-driven Parsers

= The nonrecursive LL(1)
parser looks up the
production to apply by
looking up a parsing table

36

7/31/2023

Table-driven Parsers

LL(1) table:

= One dimension for current
non-terminal to expand

= One dimension for next token

= Table entry contains one
production

Consider the expression grammar

37

7/31/2023

Predictive Parsing Table

Columns for next token

Blank entries are errors

Predictive Parsers

* The predictive parser uses
an explicit stack to keep
track of pending non-
terminals

= |t can thus be implemented
without recursion.

38

Predictive Parsers

Predictive
parser

Parsing table M

LL(1) Parsing Algorithm

= The input buffer contains
the string to be parsed; $ is
the end-of-input marker

» The stack contains a
seqguence of grammar
symbols

= |nitially, the stack contains
the start symbol of the
grammar on the top of $.

7/31/2023

39

7/31/2023

The parser is controlled by a
program that behaves as

follows:

= The program considers X,
the symbol on top of the
stack, and a, the current
input symbol.

= These two symbols, Xand a
determine the action of the
parser.

= There are three possibilities.

. X=a=23$,

the parser halts and
annouces successful
completion.

2. X=a=$
the parser pops X off the
stack and advances input
pointer to next input
symbol
If Xis a nonterminal, the
program consults entry
M[.X,a] of parsing table M.

40

If the entry is a production

M[X a] = {X— UVW}
the parser replaces X on
top of the stack by Wwvv/
(with ¢/ on top).

If M[X,a] =error, the parser
calls an error recovery
routine

Example:
Let’'s parse the input string
id+id+*id

using the nonrecursive
LL(1) parser

G + id = id $

Parsing
Table M

7/31/2023

41

7/31/2023

5
o
%
o
+
T

42

(id) + id = id $

Parsing
Table M

7/31/2023

43

7/31/2023

Parding
Table M

44

7/31/2023

45

7/31/2023

Error Recovery in Predictive Parsing

+ An error is detected during the predictive parsing
when the terminal on top of the stack does not
match the next input symbol, or when
nonterminal A on top of the stack, a is the next
input symbol, and parsing table entry M[A,a] is
empty.

* The parser design should be able to provide an
error message (an error message which depicts as
much possible information as it can).

* It should be recovering from that error case, and it

should be able to continue parsing with the rest of
the input.

46

4 Types of error recovery strategies

|, Panic-Mode Recovery
Phrase-Level Recovery
Error Productions
Global Correction

Panic mode error recovery

* Panic-mode error recovery says that all the
input symbols are skipped until a
synchronizing token is found from the string.

* What is the synchronizing token?

* The terminal symbols which lie in follow set of
non-terminal they can be wused as a
synchronizing token set for that non-terminal

7/31/2023

47

How to select synchronizing set?

* Place all symbols in FOLLOW(A) into the
synchronizing set for non terminal A. If we skip
tokens until an element of FOLLOW(A) is seen and
pop A from the stack, it likely that parsing can
continue.

* We might add keywords that begins statements to
the synchronizing sets for the non terminals
generating expressions.

If a non terminal can generate the empty string, then
the production deriving € can be used as a default. This
may postpone some error detection, but cannot cause
an error to be missed. This approach reduces the
number of non terminals that have to be considered
during error recovery.

If a terminal on top of stack cannot be matched, a

simple idea is to , issue a message
saying that the terminal was inserted.

7/31/2023

48

Example:

“synch” indicating synchronizing tokens
obtained from FOLLOW set of the
nonterminal in question.

If the parser looks up entry
M[A,a] and finds that it is blank, the input
symbol a is skipped.

If the entry is synch, the the

error recovery

FIRST(E) = FIRST(T) = FIRST(F) = {(, id}.

FIRST(E') = {+, €}
FIRST(T’) = {*, €}

nonterminal on top of the stack is popped. FOLLOW(E) = FOLLOW(E") = {), $}
If a token on top of the stack = N —

does not match the input symbol, then we FOLLOW(T) FOLLOW(T") {+.), %

pop the token from the stack. FOLLOW(F) = {+, %,), $}

NONTER- INPUT SYMBOL HonET

MINAL id + * () $

E E-TE' E-TE' synch synch
E’ E'-»+TE' E'—e E'-e
T T-FT' synch T-FT' synch synch
T T'—¢ T —»%FT’ T —e T —e
F F-id synch synch F—(E) synch synch

Fig. 4.18. Synchronizing tokens added to parsing table of Fig. 4.15.

Example: error recovery (Il)

STACK INPUT REMARK
$SE Yid* +id$ error, skip)
SE idx+id$ id is in FIRST(E)
SE'T idx+id$
SE'T'F id«+id$
SE'T'id idx+id$
SE'T *+id$
$E'T'Fx* *+id$
SE'T'F +id$ | error, M[F, +] = synch
SE'T' +id$ F has been popped
$SE’ +id$
SE'T + +id$
SE'T id$
SE'T'F id$
$SE'T'id id$
SE'T’ $
$SE’ $
$ $

Fig. 4.19. Parsing and error recovery moves made by predictive parser.

7/31/2023

49

Example 2
Mg | o | b | ¢ | d |

o B--
FOJ::?:)(s){b d} ﬂm-- -

stack input outpit [oulput
" o Py o stack et
$50A aab$ A->a s o+ rfogie
§508 aab§ oo croas .
g $SbdAc 2ad§

ssp ans Emor: missing b, insened $ShdA 2adh§ Ermor: unexpecied
55 a0s § = AbS :

(Wegal A)
e - —— (Remawe all npul tokens until frst b of @ pop A)
$5ba a3 -y vy
- - 5Sb Bs
) s gt 55 § i
3 : i : s ACCapt

Phrase-level recovery

* Phrase level recovery is implemented by filling in the
blank entries in the predictive parsing table with pointers
to error routines.

* At each unfilled entry in the parsing table, it is filled by a
pointer to a special error routine that will take care of that
error case specifically.

* These error routines can be of different types like :

— change, insert, or delete input symbols.
— issue appropriate error messages.
— pop items from the stack.

* We should be careful while we design these error
routines because we may put the parser into an infinite loop

7/31/2023

50

Error productions

* If a user has knowledge of common errors that can be
encountered then, these errors can be incorporated by
augmenting the grammar with error productions that
generate erroneous constructs.

* |If this is used then, during parsing appropriate error messages
can be generated and parsing can be continued.

Example: Suppose the input string is abcd.
Grammar: S->A
A->aAlbAlalb
B->cd
The input string is not obtainable by the above grammar, so we need to add Augmented Grammar.
Grammar: E->SB ST AUGMEMNT THE GRAMMAR
S-> A
A->aAlbAlalb
B->cd

Mow, string abed is possible to obtain.

Global corrections

* The parser examines the whole program and tries to
find out the closest match for it which is error-free.

* The closest match program has less number of
insertions, deletions, and changes of tokens to
recover from erroneous input.

* Due to high time and space complexity, this method
is not implemented practically.

7/31/2023

51

1. Universal parsers:-

— These parsers perform parsing. Cocke - Kalami -
Younger (CKY) algorithm. It uses the Chomsky
Normal Form (CNF) of the CFG.

— It is in efficient and not used in Commercial
Compilers.

2. Top down parsers: -

These parsers build parse trees starting from the root
node and work up to the Leaves.

These parsers Satisfy LL grammars.

These Scanners scan from left to right and use left-most
derivation.

These parsers are Categorized into
— back track parsing.
— Predictive parsing

— In back track parsing, if a sequence of erroneous
expansions are made and a mismatch is discovered,
the input pointer rolled back to the initial position
and all effects of parsing are undone.

— In predictive parsing, using current non terminal to
be expanded and the next input symbol, the parser
makes a decision of which production needs to be
expanded.

— Two ways of implementing predictive parsers:

— Recursive descent parsing have Procedure for Parsing
each non-terminal using the recursive nature of The
procedures.

— Table driven parsing. determines the next production
to be applied by using a parsing table. Indexed by the
Current non-terminal and the next input symbol.

7/31/2023

52

7/31/2023

3. Bottom up Parsers:

* There Parsers build parse trees starting from the leaves
and work up to the root node.

* They satisfy LR grammars.

* They scan from left to right and use right most
derivation.

* Here the input is reduced to the start symbol.
+ These parsers are implemented using stacks.
* Here the next input symbol is shifted onto the stack

* Then the top few elements are popped out of the stack if
a match occurs to right side of the production. It is then
reduced to the left side of the production.

* Bottom up parsing is also called as shift reduce parsing.
* These passers are categorized into
— Operator precedence parsers

— LR parsers

* In operator precedence parsers, the choice of
whether to shift the next symbol. Or reduce the
processed input is decided using a precedence
relation table.

* In LR Parsers, passing table derived out of grammar
is used for deciding whether to shift the next input
Symbol or reduce the processed input.

These parsers are categorized as
— Simple LR (SLR)
— Canonical LR (CLR) and

— Look Ahead LR (LALR) based on the way the
parser tables are derived.

53

7/31/2023

54

