
JAVA

JAVA HISTORY

JDK Builds from Oracle (java.net)

DESIGN FEATURES OF JAVA

FEATURES OF JAVA
Simple

• Simple to learn and use.

• Java syntax is based on C++.

• Java has removed many complicated and rarely-used features, for
example, explicit pointers, operator overloading, etc.

• There is no need to remove unreferenced objects because there is an
Automatic Garbage Collection in Java.

• Another aspect of being simple is being small.

FEATURES OF JAVA
Object-oriented

Java is an object-oriented programming language.

• Everything in Java is an object.

• No freefunctions.

• All code belong to someclass.

• Classes are in turn arranged in a hierarchy or package structure.

FEATURES OF JAVA

Platform Independent

• Languages like C, C++, etc. which are
compiled into platform specific machines.

• Java is Write Once and Run Anywhere
(WORA).

• Java code is compiled by the compiler and
converted into bytecode.

• Java Virtual Machine executes the bytecode.

FEATURES OF JAVA

Secured

Java is best known for its security.

• No explicit pointer

• Java Programs run inside a virtual
machine sandbox

• Classloader

• Bytecode Verifier

• Security Manager

FEATURES OF JAVA

Robust

• It uses strong memory management.

• There is a lack of pointers that avoids security problems.

• Java provides automatic garbage collection which runs on the
Java Virtual Machine to get rid of objects which are not being used
by a Java application anymore.

• There are exception handling and the type checking mechanism in
Java.

FEATURES OF JAVA
Architecture-neutral

Java is architecture neutral because there are no implementation
dependent features, for example, the size of primitive types is fixed.

Portable

Java is portable because it facilitates you to carry the Java bytecode
to any platform. It doesn't require any implementation.

Multi-threaded

We can write Java programs that deal with many tasks at once by
defining multiple threads.

FEATURES OF JAVA

Dynamic

Java is a dynamic language. It supports the dynamic loading of classes.
It means classes are loaded on demand.

Interpreted

• The program are compiled into Java Virtual Machine (JVM) code
called bytecode

• Each bytecode instruction is translated into machine code at the
time of execution

FEATURES OF JAVA

Distributed

• Java is distributed because it facilitates users to create distributed
applications in Java.

• Fully supports IPv4, with structures to support IPv6

• Includes support for Applets: small programs embedded in HTML
documents

• RMI and EJB are used for creating distributed applications.

• This feature of Java makes us able to access files by calling the
methods from any machine on the internet.

POPULARITY OF JAVA

JAVA PLATFORMS

Used for developing
Desktop based
application and
networking
applications

Used for developing
large-scale, distributed
networking applications
and Web-based
applications

Used for developing
applications for small
memory-constrained
devices, such as cell
phones, pagers and PDAs

JAVA ARCHITECTURE

14

Source
Code

(.java)

COMPILER

Java
Bytecode
(.class>

Compile-time
Environment

Class LoaderClass Loader

Bytecode
Verifier

Bytecode
Verifier

Java Class
Libraries
Java Class
Libraries

Java Virtual Machine
(JVM)

Java Virtual Machine
(JVM)

Operating
System

Operating
System

HardwareHardware

Java Bytecodes
move locally or

through network

Phase 1: Edit

Phase 2:

Compile

Phase 3: Load

Phase 4: Verify

Phase 5:Execute

Quiz

1. Write the correct order of the Java program execution

A. Class Loader

B. Interpretation

C. Compilation

D. Byte Code Verification

E. Java Source Code

F. Execution

Quiz

2. Which of the following is used to load a .class file?

A. Class Loader

B. Byte Code Verifier

C. JIT Compiler

D. Interpreter

Quiz

3. When a java program is compiled, it creates a

A. an obj file

B. an exe file

C. a .class file

D. a .sh file

First Program

class FirstProgram

{

public static void main(String args[])

{

System.out.println(“This is my First Java Program”);

}

}

Understand First Program

• A Java source file can contain multiple classes, but only one class
can be a public class.

• The source file name must match the name of the public class
defined in the file with the .java extension.

• A public class is accessible across packages.

• Body of every member function of a class (called method in Java)
must be written when the method is declared.

Understand First Program
public static void main(String[] args)

• main is the starting point of every Java application

• public is used to make the method accessible by all

• static is used to make main a static method of class.

• Static methods can be called by JVM without using any object; just using
the class name.

• void means main does not return anything

• String args[] represents an array of String objects that holds the
command line arguments passed to the application.

Understand First Program

System.out.println()

– Used to print a line of text followed by a new line

– System is a class inside the Java API

– out is a public static member of class System

– out represents the standard output (similar to stdout or cout)

– println is a public method of the class of which out is an object

We can use the plus operator (+) to concatenate multiple String
objects and create a new String object.

How to Execute a Java Program

1. Using Java Online Compiler

2. Using JDK and Notepad

3. Using Editors and JRE

PATH

• PATH is an environmental variable in DOS(Disk Operating System),
Windows and other operating systems like Unix.

• PATH tells the operating system which directories(folders) to
search for executable files, in response to commands issued by a
user .

• It is a convenient way of executing files without bothering about
providing the absolute path to the folder, where the file is located.

CLASSPATH

• CLASSPATH is a parameter which tells the JVM or the Compiler,
where to locate classes that are not part of Java Development
ToolKit(JDK).

• CLASSPATH is set either on command-line or through
environment variable.

• CLASSPATH set on command-line is temporary in nature, while the
environment variable is permanent.

Naming Conventions

Class Names

Class names should be nouns, in mixed case with the first letter
of each internal word capitalized

Class names should be simple and descriptive

Eg: class Student, class TestStudent

Method Names

Methods should be verbs, in mixed case with the first letter
lowercase, with the first letter of each internal word capitalized

Eg: void run(), void getColor()

Try it and Tell me
Sample.java

class A {

void m1() { }

}

class B {

void m2() { }

}

class C {

void m3() { }

}

Try it and Tell me
class A {

void m1() { }

}

public class B {

void m2() { }

}

class C {

void m3() { }

}

What should be the Source File Name

Try it and Tell me
Sample.java

class Sample {

public static void main() {

System.out.println(“Welcome”);

}

}

• Compilation Error

• Runtime Error

• The program compiles and executes successfully but prints
nothing.

• It will print “Welcome”

JVM Architecture

There are mainly three sub
systems in the JVM as shown in
the above diagram,

1.ClassLoader

2.Runtime Memory/Data Areas

3.Execution Engine

JVM Classloader

Bootstrap ClassLoader: It loads the rt.jar file which contains all
class files of Java Standard Edition.

Extension ClassLoader: It loads the jar files located
inside $JAVA_HOME/jre/lib/ext directory.

System/Application ClassLoader: It loads the classfiles from
classpath.

You can change the classpath using "-cp" or "-classpath" switch.

JVM Classloader

The four main principles in JVM, Class Loader

1. Visibility Principle: ClassLoader of a child can see the class
loaded by Parent but not vice versa.

2. Uniqueness Principle: A class loaded by the parent ClassLoader
shouldn’t be loaded by the child again.

3. Delegation Hierarchy Principle: JVM follows a hierarchy of
delegation to choose the class loader for each class loading
request.

4. No Unloading Principle: class cannot be unloaded by the
Classloader

JVM Classloader

Linking

1. Verification: Whether it is coming from a valid compiler or not
and code has a correct structure and format.

2. Preparation: Static variables memory will be allocated and
assigned with default values based on the data types.

3. Resolution: JVM will assign memory location for those objects by
replacing their symbolic links with direct links.

JVM Memory Areas

Class(Method) Area

Class(Method) Area stores per-class structures such as the runtime
constant pool, field and method data, the code for methods.

Heap

It is the runtime data area in which objects are allocated.

Stack

Java Stack stores frames. It holds local variables and partial results
and plays a part in method invocation and return.

JVM Memory Areas

Program Counter Register

PC (program counter) register contains the address of the Java virtual
machine instruction currently being executed.

Native Method Stack

It contains all the native methods used in the application.

JVM Execution
Execution Engine:

1.Interpreter: Read bytecode stream then execute the instructions.

2. Just-In-Time(JIT) compiler: It is used to improve the performance.

3.Garbage Collector: Mark and Sweep Phases.

Java Native Interface

Java Native Interface (JNI) is a framework which provides an interface
to communicate with another application written in another language
like C, C++, Assembly etc.

Command line arguments

While executing a java program, command line arguments can be
passed by

java Simple <argument1> <argument2>….<argument-n>

You can access these arguments in your program, using the String
array that you have passed as an argument to the main method.

String[] args

args[0] args[1] args[2]

Command line arguments

class Argument {

public static void main(String[] args) {

System.out.println(args[0]);

}

}

If we run java Argument Welcome

What will be the output

Do It Yourself

Write a Program to accept a String as a Command line argument and

the program should print a Welcome message.

Example :

C:\> java Message John

O/P Expected : Welcome John

Command line arguments

class Arguments {

public static void main(String[] args) {

System.out.println(args[0]);

System.out.println(args[1]);

}

}

If we run java Arguments Welcome Sai

What will be the output

Do It Yourself
Write a Program that accepts two Strings as command line arguments

and generate the output in a specific way as given below.

Example:

If the two command line arguments are Wipro and Bangalore then the

output generated should be Wipro Technologies, Bangalore, India.

If the command line arguments are ABC and Mumbai then the output

generated should be ABC Technologies, Mumbai, India

[Note: It is mandatory to pass two arguments in command line]

Finding length of an Array

To find the number of command line arguments that a user may pass
while executing a java program.

args.length

where args is the String array that we pass to the main method and
length is the property of the Array Object

Try it and Tell me
class FindLength{

public static void main(String[] args) {

int len = args.length;

System.out.println(len);

}

}

What will be the output of following Executions

java FindLength 1 2 3 4 5 6 7

java FindLength Tom John Lee

Primitive Data Types
Data
Type

Size
(in bits)

Minimum Range Maximum Range
Default Value

(for fields)

byte 8 -128 +127 0

short 16 -32768 +32767 0

int 32 -2147483648 +2147483647 0

long 64 -9223372036854775808 +9223372036854775807 0L

float 32 1.40E-45 3.40282346638528860e+38 0.0f

double 64
4.94065645841246544e-

324d
1.79769313486231570e+308d 0.0d

char 16 0 to 65,535 '\u0000'

boolean 1 NA NA false

Try it and Tell me
What will be the result, if we try to compile and execute the
following code?

class Test {

public static void main(String args[]) {

byte b=128;

System.out.println(b);

}

}

Try it and Tell me
What will be the result, if we try to compile and execute the
following code?

class Test {

public static void main(String ar[]) {

double f=1.2;

boolean b=1;

System.out.println(f);

System.out.println(b);

}

}

Try it and Tell me

class Test {

public static void main(String ar[]) {

float f=1;

float b=1.2;

float c=1.2323f;

System.out.println(f);

System.out.println(b);

System.out.println(c);

}

}

Try it and Tell me
class FloatExample

{

public static void main(String args[])

{

float d=987654321.1234567f;

float c=6.123456789f;

System.out.println(d);

System.out.println(c);

}

}

Try it and Tell me
class Test {

public static void main(String [] ar) {

int a=10,b=017,c=0X3A;

System.out.println(a+","+b+","+c);

}

}

Basically if an assigned integer value begins with 0,it is considered to be an octal value.
If the assigned integer value begins with 0x it is taken as hexadecimal value.

double -> float -> long -> int -> char -> short -> byte

Type Casting

byte -> short -> char -> int -> long -> float -> double

Type casting is when you assign a value of one primitive data type to
another type.

Widening Casting (automatically) - converting a smaller type to a larger
type size

Narrowing Casting (manually) - converting a larger type to a smaller
size type

Try it and Tell me
class WideType {

public static void main(String[] args) {

int myInt = 9;

double myDouble = myInt;

System.out.println(myInt);

System.out.println(myDouble);

}

}

Try it and Tell me
class NarrowCast{

public static void main(String[] args) {

double myDouble = 9.78d;

int myInt = (int) myDouble;

System.out.println(myDouble);

System.out.println(myInt);

}

}

WRAPPER CLASSES
• For all the primitive data types available in Java, there is a

corresponding Object representation available which is known as
Wrapper Classes

• Need for Wrapper Classes

• All Collection classes in Java can store only Objects

• Primitive data types cannot be stored directly in these classes and
hence the primitive values needs to be converted to objects

• We have to wrap the primitive data types in a corresponding object,
and give them an object representation

WRAPPER CLASSES
• Definition: The process of converting the primitive data types

into objects is called wrapping

• To declare an integer ‘i’ holding the value 10, you write

int i = 10;

• The object representation of integer ‘i’ holding the value 10 will be:

Integer iref = new Integer(i);

• Here, class Integer is the wrapper class wrapping a primitive data type
i

WRAPPER CLASSES
• For all the primitive data types, there are corresponding wrapper

classes.

• Representing an integer via a wrapper takes about 12-16 bytes,
compared to 4 in an actual integer. Also, retrieving the value of an
integer uses the method Integer.intValue().

• For example, you can take the integer input from the user in the form
of a String, and convert it into integer type using the following
statements:

String str = “100”;

int j = Integer.parseInt(str);

WRAPPER CLASSES
• Class Integer is a wrapper for values of type int

• The constructors for Integer are shown here:

• Integer(int num)

• Integer(String str) throws NumberFormatException

• Some methods of the Integer class:

• static int parseInt(String str) throws NumberFormatException

• int intValue() returns the value of the invoking object as a int value

WRAPPER CLASSES
• Class Integer is a wrapper for values of type int

• The constructors for Integer are shown here:

• Integer(int num)

• Integer(String str) throws NumberFormatException

• Some methods of the Integer class:

• static int parseInt(String str) throws NumberFormatException

• int intValue() returns the value of the invoking object as a int value

https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

WRAPPER CLASSES
• Few more method of Integer class (These methods also available in

Long, Short, Byte, Float, Double wrapper class)

• byteValue() Returns the value of the invoking object as a byte.

• doubleValue() Returns the value of the invoking object as a double.

• floatValue() Returns the value of the invoking object as a float.

• longValue() Returns the value of the invoking object as a long.

• shortValue() Returns the value of the invoking object as a short.

• Integer i1=new Integer(20);

• double d1=i1.doubleValue();

WRAPPER CLASSES
ObjectObject

ByteByte ShortShort IntegerInteger LongLong FloatFloat

NumberNumber CharacterCharacter BooleanBoolean

DoubleDouble

WRAPPER CLASSES
Primitive Data Type Wrapper Class

byte Byte

short Short

int Integer

long Long

float Float

double Double

boolean Boolean

char Character

WRAPPER CLASSES

public class Main {

public static void main(String[] args) {

Integer myInt = 5;

Double myDouble = 5.99;

Character myChar = 'A';

System.out.println(myInt);

System.out.println(myDouble);

System.out.println(myChar);

}

}

public class Main {

public static void main(String[] args) {

Integer myInt = 5;

Double myDouble = 5.99;

Character myChar = 'A';

System.out.println(myInt.intValue());

System.out.println(myDouble.doubleValue());

System.out.println(myChar.charValue());

}

}

AUTOBOXING & UNBOXING
• During assignment , the automatic transformation of the primitive type

to corresponding wrapper type is known as autoboxing

• Primitive types wrapper type (autoboxing)

E. g. Integer i1=10;

• During assignment , the automatic transformation of wrapper type into
their primitive equivalent is known as Unboxing

• wrapper type primitive type (unboxing)

int i=0;

i=new Integer(10);

AUTOBOXING & UNBOXING
Boxing conversion converts values of primitive type to
corresponding values of reference type. But the primitive types can
not be widened/ Narrowed to the Wrapper classes and vice versa.

Try it and Tell me
What is the output of the following code?

class Test {

public static void main(String ar[])

{

int x = 10;

Integer y = new Integer(10);

System.out.println(x == y);

}

}

Try it and Tell me
Which of the following is not a Wrapper Class?

Byte

Short

Integer

Long

String

Float

Double

Character

Boolean

READ INPUT IN JAVA

• In Java, apart from Command Line arguments, there are Three
different ways for reading input from the user in the command line
environment(console).

• Using Buffered Reader Class

• Using Scanner Class

• Using Console Class

Using Buffered Reader Class

• This is the Java classical method to take input, Introduced in JDK1.0.

• This method is used by wrapping the

• System.in (standard input stream)

• in an InputStreamReader

• which is wrapped in a BufferedReader,

• we can read input from the user in the command line.

•The input is buffered for efficient reading.

•The wrapping code is hard to remember.

Using Buffered Reader Class

// Enter data using BufferReader

BufferedReader reader = new BufferedReader(

new InputStreamReader(System.in));

// Reading data using readLine

String name = reader.readLine();

Using Buffered Reader Class

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

public class Test {

public static void main(String[] args)

throws IOException

Using Buffered Reader Class

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

public class Test {

public static void main(String[] args) throws IOException

{

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

String name = reader.readLine();

System.out.println(name);

}

}

Using Scanner Class

This is probably the most preferred method to take input. The main
purpose of the Scanner class is to parse primitive types and strings using
regular expressions.

import java.util.Scanner;

Scanner myObj = new Scanner(System.in);

String userName = myObj.nextLine();

Using Scanner Class

Method Description

nextBoolean() Reads a boolean value from the user

nextByte() Reads a byte value from the user

nextDouble() Reads a double value from the user

nextFloat() Reads a float value from the user

nextInt()int Reads a int value from the user

nextLine() Reads a String value from the user

nextLong() Reads a long value from the user

nextShort() Reads a short value from the user

Using Scanner Class

Scanner myObj = new Scanner(System.in);

System.out.println("Enter name, age and salary:");

// String input
String name = myObj.nextLine();

// Numerical input
int age = myObj.nextInt();
double salary = myObj.nextDouble();

Using Scanner Class
import java.util.Scanner;

class Main {

public static void main(String[] args) {

Scanner myObj = new Scanner(System.in);

System.out.println("Enter name, age and salary:");

String name = myObj.nextLine();

int age = myObj.nextInt();

double salary = myObj.nextDouble();

System.out.println("Name: " + name);

System.out.println("Age: " + age);

System.out.println("Salary: " + salary);

}

}

Using Console Class

It has been becoming a preferred way for reading user’s input from the
command line.

In addition, it can be used for reading password-like input without
echoing the characters entered by the user

String name = System.console().readLine();

char[] name = System.console().readPassword()

Using Console Class

class Test

{

public static void main(String args[])

{

char[] name=System.console().readPassword();

System.out.println(name);

}

}

Do It Yourself
Write a program to enter Name of the Student,

Registration Number and marks of five subjects

and calculate total, average and percentage.

Do It Yourself
Write a program to read and print elements of

array

Do It Yourself
Write a program to delete all duplicate elements

from an array.

Do It Yourself
Write a program to delete all duplicate elements

from an array.

Tokens in JAVA

public class HelloWorld
{

public static void main(String[] args)
{

System.out.println("Hello, World!");
}

}

Keywords
abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

Try it and Tell me
What will be the result, if we try to compile and execute the
following code?

class Test {

public static void main(String [] ar) {

int for=2;

System.out.println(for);

}

}

Operators

• Java provides a set of operators to manipulate operations.

• Types of operators in java are,

– Arithmetic Operators

– Unary Operator

– Relational Operators

– Logical Operators

– Simple Assignment Operator

– Bitwise Operators

Arithmetic Operators

Operator Description Example

+ Addition A + B

- Subtraction A - B

* Multiplication A * B

/ Division A/B

% Modulus A%B

Do It Yourself
Write a program to accept two arguments of integer type and perform all
the arithmetic operations and display the outputs.

Example: java Calc 20 5

Output:

The value of A is 20 and B is 5

The result of A + B is 25

The result of A - B is 15

The result of A * B is 100

The result of A / B is 4

The result of A%B is 0

Unary Operators

Operator Description Example

+ Unary plus operator +A

- Unary minus operator -A

++ Increment operator ++A or A++

-- Decrement operator --A or A--

Try it and Tell me
class Sample
{

public static void main(String args[])
{

int a = 10;
System.out.println("a value is "+a);
int b=++a;
System.out.println("b value is "+b);
int c=a++;
System.out.println("c value is "+c);
System.out.println("Final a value is "+a);

}
}

Relational Operators
Operator Description Example

== Two values are checked, and if equal, then the condition becomes true (A == B)

!= Two values are checked to determine whether they are equal or not, and if not
equal, then the condition becomes true

(A != B)

> Two values are checked and if the value on the left is greater than the value
on the right, then the condition becomes true.

(A > B)

< Two values are checked and if the value on the left is less than the value on the
right, then the condition becomes true

(A < B)

>= Two values are checked and if the value on the left is greater than equal to the
value on the right, then the condition becomes true

(A >= B)

<= Two values are checked and if the value on the left is less than equal to the value
on the right, then the condition becomes true

(A <= B)

Try it and Tell me
class Sample{

public static void main(String[] args){

int a = 10;

int b = 20;
System.out.println("a == b = " + (a == b));

System.out.println("a != b = " + (a != b));

System.out.println("a > b = " + (a > b));

System.out.println("a < b = " + (a < b));

System.out.println("b >= a = " + (b >= a));

System.out.println("b <= a = " + (b <= a));

}

}

Logical Operators

Operator Description Example

&& This is known as Logical AND & it combines two variables or
expressions and if and only if both the operands are true, then
it will return true

(A && B) is false

|| This is known as Logical OR & it combines two variables or
expressions and if either one is true or both the operands are
true, then it will return true

(A || B) is true

! Called Logical NOT Operator. It reverses the value of a
Boolean expression

!(A && B) is true

Try it and Tell me
class Sample{

public static void main(String[] args){

boolean a = true;

boolean b = false;

System.out.println("a && b = " + (a&&b));

System.out.println("a || b = " + (a||b));

System.out.println("!(a && b) = " + !(a && b));

}

}

Shift Operators <<and >>

• The shift operators(<< and >>) shift the bits of a number to the
left or right, resulting in a new number.

• They are used only on integral numbers(and not on floating point
numbers, i.e. decimals).

• The right shift operator(>>) is used to divide a number in the
multiples of 2.

• The left shift operator(<<) is used to multiply a number in the
multiples of 2.

Right Shift Operator >>

• When we apply the right shift operator >>, the value gets divided
by 2 to the power of number specified after the operator.

• int x = 16;

• x = x >> 3;

• 16 will be divided by the value 2 to the power of 3, which is 8.

• The result is 2.

0 1 0 0 0 0

0 1 0

Left Shift Operator <<

• When we apply the left shift operator <<, the value gets multiplied
by 2 to the power of number specified after the operator.

int x = 8;

x = x << 4;

• 8 will be multiplied by the value 2 to the power of 4, which is 16.

• The result is 128.

0 1 0 0 0

0 1 0 0 0 0 0 0 0

Do It Yourself
Write a program to accept two numbers.

Perform the following operations

1. Left shift the First number by second number
of times

2. Right Shift the first number by second number
of times

Bitwise Operators

The bitwise operators take two bit numbers, use OR/AND to determine
the result on a bit by bit basis.

The 3 bitwise operators are :

• & (which is the bitwise AND)

• | (which is the bitwise inclusive OR)

• ^ (which is the bitwise exclusive OR)

Bitwise & Operators

class BitwiseExample1 {

public static void main(String[] args) {

int x = 7;

int y = 9;

int z = x & y;

System.out.println("z = "+z);

}

}

7 - > 0 1 1 1

9 - > 1 0 0 1

0 0 0 1

Bitwise | Operators

class BitwiseExample2 {

public static void main(String[] args) {

int x = 5;

int y = 9;

int z = x | y;

System.out.println("z = "+z);

}

}

5 - > 0 1 0 1

9 - > 1 0 0 1

1 1 0 1

Bitwise ^ Operators

class BitwiseExample3 {

public static void main(String[] args) {

int x = 5;

int y = 9;

int z = x ^ y;

System.out.println("z = "+z);

}

}

5 - > 0 1 0 1

9 - > 1 0 0 1

1 1 0 0

Do It Yourself
Write a program to accept two numbers.

Perform the following operations

1. Bitwise AND operation on a and b

2. Bitwise OR operation on a and b

3. Bitwise EXOR operation on a and b

Do It Yourself
Write a program to print all the arguments passed to a FindArguments.java
program.

Input: Number of arguments can be 0 to 12

Output Format:

The Number of Arguments are :

The Following are the Arguments:
Example: java FindArguments Hi Sai Kiran

Output:

The Number of Arguments are : 3

The Following are the Arguments:

1 Hi

2 Sai

3 Kiran

THANK YOU

OOP Through Java

CONTROL STATEMENTS
• Control statements are statements which alter the normal execution

flow of a program

• There are three types of Control Statements in java

Selection statement

if
if – else
switch

Iteration Statement

while
for

do – while

Jumping Statement
break

continue
return

SELECTION STATEMENT
• In java, the selection statements are also known as decision making

statements or branching statements or conditional control statements.

Class Vote
{
public static void main(String args[])
{
int age=Integer.parseInt(args[0]);
if(age<18)
{

System.out.println(“You are Not Eligible to Vote”);
}

}
}

SELECTION STATEMENT

Class Vote
{
public static void main(String args[])
{
int age=Integer.parseInt(args[0]);
if(age>=18)
{

System.out.println(“You are Welcome to Vote”);
}

else
{

System.out.println(“You are Not Eligible to Vote”);
}

}
}

SELECTION STATEMENT
/* program to print seasons for a month input using if & else if */

class ElseIfDemo {

public static void main(String[] args) {

int month = Integer.parseInt(args[0]);

if(month == 12 || month == 1 || month == 2)

System.out.println("Winter");

else if(month == 3 || month == 4 || month == 5)

System.out.println("Spring");

else if(month == 6 || month == 7 || month == 8)

System.out.println("Summer");

else if(month == 9 || month == 10 || month == 11)

System.out.println("Autumn");

else

System.out.println("invalid month");
}

}

SELECTION STATEMENT

SELECTION STATEMENT
class SwitchDemo {

public static void main(String[] args) {
int weekday = Integer.parseInt(args[0]);
switch(weekday) {
case 1: System.out.println(“Sunday");

break;
case 2: System.out.println(“Monday ");

break;
case 3: System.out.println(“Tuesday");

break;
case 4: System.out.println(“Wednesday");

break;
case 5: System.out.println(“Thursday");

break;
case 6: System.out.println(“Friday");

break;
case 7: System.out.println(“Saturday");

break;
default: System.out.println(“Invalid day");

Do It Yourself
Write a program to check if a given number is odd
or even.

Input: As Argument

Example

Java EvenOdd 24

The Given Number 24 is Even

Do It Yourself
Write a program to check if a given number is
Positive, Negative, or Zero.

Input: As Argument

Example

Java PNZ 24

The Given Number 24 is Positive

Do It Yourself
Write a program to accept gender ("Male" or "Female"), Amount (1 to

10,00,000) and age (1-120) from command line arguments and print the

percentage of interest based on the given conditions.

Interest = 8.2%

Gender => Female Age =>1 to 58

Interest = 7.6%

Gender => Female Age =>59 -120

Interest = 9.2%

Gender => Male Age =>1-60

Interest = 8.3%

Gender => Male Age =>61-120

Do It Yourself
Initialize two-character variables in a program and

display the characters in alphabetical order.

Eg 1)char c1=‘e’,c2=‘s’

O/P: e,s

1)char c1=‘a’,c2=‘s’

O/P: a,s

1)char c1=‘B’,c2=‘a’

O/P: a,B

1)char c1=‘b’,c2=‘A’

O/P: A,b

Do It Yourself
Intialize a character variable in a program and if

the value is alphabet then print "Alphabet" if it’s a

number then print "Digit" and for other

characters print "Special Character“

Char ch=‘@’

Output: Special Character

Do It Yourself

Write a program to convert from upper case to lower case and vice

versa of an alphabet and print the old character and new character as

shown in example

(Ex: a->A, M->m).

Do It Yourself

Write a program to print the color name, based on color code.

If color code in not valid then print "Invalid Code".

R->Red, B->Blue, G->Green, O->Orange, Y->Yellow, W->White.

The Color code is not Case Sensitive.

Do It Yourself
Write a program to print month in words, based on input month in

numbers

Example 1:

C:\>java Sample 12

O/P Expected : December

Example 2:

C:\>java Sample

O/P Expected : Please enter the month in numbers

Example 3:

C:\>java Sample 15

O/P Expected : Invalid month

ITERATIVE STATEMENT

/* This is an example for a while loop */

class Sample{

public static void main(String[] args)
{

int i = 0;

while (i < 5)

{

System.out.println("i: "+i);

i = i + 1;

}

}

}

ITERATIVE STATEMENT

/* This is an example of a do-while loop */

class Sample

{

public static void main(String[] args)

{

int i =5;

do {

System.out.println("i: "+i);

i = i + 1;

} while (i < 5);

}

}

ITERATIVE STATEMENT
class Sample

{

public static void main(String[] args)

{

for (int i=1; i<=5; i++)

{

System.out.println("i: "+i);

}

}

}

ITERATIVE STATEMENT
class Sample {

public static void main(String[] args)

{

int [] numbers = {10, 20, 30, 40, 50};

for(int i : numbers)

{

System.out.println("i: "+i);

}

}

}

Do It Yourself
Write a program to check if the program has received command line arguments

or not. If the program has not received the values, then print "No Values", else

print all the values in a single line separated by ,(comma).

Eg 1) java Example

O/P: No values

Eg 2) java Example Mumbai Bangalore

O/P: Mumbai, Bangalore

Do It Yourself
Write a program to print even numbers between two number, where two
numbers are given as command line arguments.

Each number should be printed in a separate row.

Example: java Even 10 14

10

12

14

Do It Yourself
Write a Java program to find if the given number is prime or not.

Example1: C:\>java Sample

O/P Expected : Please enter an integer number

Example2: C:\>java Sample 1

O/P Expected : 1 is neither prime nor composite

Example3: C:\>java Sample 0

O/P Expected : 0 is neither prime nor composite

Example4: C:\>java Sample 10

O/P Expected : 10 is not a prime number

Example5: C:\>java Sample 7

O/P Expected : 7 is a prime number

Do It Yourself
Write a program to print prime numbers between
1 and 99.

Do It Yourself

Write a program to add all the values in a given
number and print.

Ex: 1234->10

Do It Yourself
Write a program to reverse a given number and print

Eg 1)

I/P: 1234

O/P:4321

Eg 2)

I/P:1004

O/P:4001

Do It Yourself
Write a Java program to find if the given number is palindrome or

not

Example1:

C:\>java Sample 110011

O/P Expected : 110011 is a palindrome

Example2:

C:\>java Sample 1234

O/P Expected : 1234 is not a palindrome

JUMPING STATEMENT
• While the execution of program, the

break statement will terminate the
iteration or switch case block

• When a break statement is
encountered in a loop, the loop is
exited, and the program continues
with the statements immediately
following the loop

• When the loops are nested, the
break will only terminate the
corresponding loop body

Try it and Tell me
public class Sample{

public static void main(String[] args)
{

for (int i=1; i<=5; i++)

{

if(i==2)

{

break;
}

System.out.println("i: "+i);
}

}
}

JUMPING STATEMENT

• The continue statement skips the
current iteration of a loop

• In while and do loops, continue
causes the control to go directly to
the test-condition and then continue
the iteration process

• In case of for loop, the increment
section of the loop is executed before
the test-condition is evaluated

Try it and Tell me
public class Sample {

public static void main(String[] args) {

int [] numbers = {1, 2, 3, 4, 5};

for(int i : numbers) {

if(i == 3) {

continue;

}

System.out.println("i: "+i);

}

}

}

THANK YOU

