Code: 23BS1305

PVP-23

PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

II B.Tech- II Semester- Regular Examinations- DECEMBER 2024

DISCRETE MATHEMATICS AND GRAPH THEORY

Duration: 3 Hours

Ma

Max. Marks : 70

PART-A

1.a) Define Proposition. [CO1-L1] [2M]

Ans: A proposition is a declarative sentence that can be either true or false.

1.b) What is Difference between CNF and PCNF? [CO1-L1][2M]

Ans:

CNF	PCNF						
CNF- Conjunctive Normal Form	PCNF- Principal Conjunctive Normal Form						
An equivalent formula consisting of	An equivalent formula consisting of						
conjunctions (product) of elementary	conjunctions(product) of maxterms only is called the						
sums.	principle conjunctive normal form of the formula						
Ex: (~ PVQ) ∧ (QVR)	Ex: $(PV \sim QV \sim R) \wedge (PV \sim QVR) \wedge (\sim PV \sim QV \sim R)$.						

1.c) Let Q(x) be the statement " x<2." What is the truth value of the quantification $\forall x Q(x)$, where the domain consists of all real numbers? [CO2-L1][2M]

Ans: Q(x) is not true for every real number x, because, for instance, Q(3) " $3 \le 2$ " is false. That is, x = 3 is a counterexample for the statement $\forall x \ Q(x)$.

Thus $\forall x Q(x)$ is false.

1.d) Explain existential quantifier. [CO2-L1][2M]

Ans: an existential quantifier is a logical constant that indicates "there exists", "there is at least one", or "for some".

It is denoted by the symbol : \exists

1 e) Define non-homogeneous recurrence relation of order three. [CO3-L2][2M]

Ans: A non-homogeneous linear recurrence relation is an equation that relates a sequence of numbers where each term is a linear combination of previous terms, plus a function of the index (particular solution).

$$a_{n} + a_{n-1} + a_{n-2} + a_{n-3} = f(n)$$

where $f(n) \neq 0$.

 (on)
 $a_{n} = a_{n}^{(b)} + a_{n}^{(p)}$.

1.f) Solve $a_n + 4a_{n-1} = 2$. [CO3-L2][2M]

$$a_n = a_n^{(h)} + d_n^{(p)}$$

$$a_{21}^{(h)} \Rightarrow a_{21} + 4a_{21} = 0$$

$$a_n^{(h)} = c_1 (+4)^n$$
 (3)

$$d+4d=2.$$

$$+4d = 2$$
.
 $5d = 2 = 0$ $d = 2/5$.
 (4)

$$C(2) = 2/5$$
.

Final solution is

1.g) Write Warshalls Algorithm. [CO4-L2][2M]

Given the adjacency matrix A of a simple digraph, then the following steps produce the path $P(\text{or}A^+)$:

Step 1:
$$P^{[0]} = A$$

Step 2:
$$K = 1$$

Step 3:
$$i = 1$$

Step 4:
$$p_{ij}^{[K]} = p_{ij}^{[K-1]} \lor (p_{ik}^{[K-1]} \land p_{kj}^{[K-1]}) \forall j = 1 \text{ to } n$$

Step 5:
$$i = i + 1$$
. If $i \le n$, go to step4

Step 6: K = K + 1 If $K \le n$, go to step3; otherwise, stop.

1.h) Define a Directed Graph. . [CO4-L1][2M]

Ans: A directed graph, also known as a digraph, is a graph where the edges have a direction, usually indicated by an arrow.

1.i) Define minimal spanning tree. [CO4-L1][2M]

Ans: A minimum spanning tree (MST) is defined as a spanning tree that has the minimum weight among all the possible spanning trees.

1.j)Define Hamiltonian Graph. [CO4-L1][2M]

Ans: A Hamiltonian graph is a graph that contains a Hamiltonian cycle/circuit. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle in a graph that visits every vertex exactly once except starting vertex and ending vertex.

Las (UNIT-E) PART-B

Proposition (PUNQ) 1 (NOVNQ) vq Ma

tautology.

Ans!

			· . O	0	2)	010	302	
	P	2	~9	PUNQ	$\sim p$	Npo 12		T
	F	F	T	T	T	T	T	, ,
	F	T	E	F	T	T	F	T
	T	F	T	T	F	T	T	T
	T	, T	F	T	F	F	F	T
		,	,					

.. 2+ 1x a tantology.

26): For any three Propositions P.R.Y, Prove that $\begin{bmatrix} PVQ \\ Y \end{bmatrix} \Rightarrow Y \end{bmatrix} \Leftrightarrow \begin{bmatrix} PYQ \\ PVQ \end{bmatrix} \land PYY \end{bmatrix}$ $\begin{bmatrix} PYQ \\ Y \end{bmatrix} \Rightarrow Y \begin{bmatrix} PVQ \\ PVQ \end{bmatrix} \Rightarrow Y \end{bmatrix}$ $\begin{bmatrix} PYQ \\ Y \end{bmatrix} \Rightarrow Y \begin{bmatrix} PYQ \\ PYQ \end{bmatrix} \Rightarrow Y \end{bmatrix}$ $\begin{bmatrix} PYQ \\ PYQ \end{bmatrix}$ $\begin{bmatrix} PYQ \\ PYQ \end{bmatrix} \Rightarrow Y \end{bmatrix}$ $\begin{bmatrix} PYQ \\ PYQ \end{bmatrix}$ $\begin{bmatrix}$

! L:H-S + R.H-S.

((PUR) >r) = [(PAR) 1(PAY)]

 $\frac{3(q)}{(punq)}$ construct the truth table of the compound proposition $(punq) \rightarrow (pnq)$.

Ans:

						1
5 -	P	9	~Q	PUNQ	PA9	(PV~2) -1(P12).
	F	F	T	T	F	F
	F	T	F	F	F	
	T	F	T	T	F	
	T	T	F	T	T	
- 1	- 1		 			

.. The last column gruet the result of Compound proposition.

3(b) Obtain the PDNF of the following.
P>((P+a), ~(~a v~p))

Ans: PDNF - principal Disjunctive Normal form.

PA((P+0)1 N(NQUNP)).

 $P \to \left(\left(\sim P \vee Q \right) \wedge \left(Q \wedge P \right) \right)$ $P \to \left(\left(\sim P \wedge \left(Q \wedge P \right) \right) \vee \left(Q \wedge \left(Q \wedge P \right) \right) \right)$

P-) ((P1~P)10) V ((O10)1P))

P -> [(Fna) V (Pna)]

PA [FV (Pra)]

P7 (P10)

NPV (Pro).

· PANP=F

: . ' O1 Q = Q.

: F1@= F.

FUP = P

(~PAT) V (PAQ)
[~Pr (ovna)] v (pra)
(NPAQ) V (NPANO) V (PAQ).
: Required PDNF form is.
PDNF (NPNO) V (NPNNO) V(PNO)
UNITED DOF: [NPU(PAO)]
4 (a) Anst All liows are fierce
Some Irons do not drink coffee
some fierce creatures do not drink offee
proj: ris a lion
Q(n): xis a B'evic.
RMI: n'drinks coffee.
Ans! O All lions are fierce: H(n) (P(n) -) Q(n))
Ø some lions do not drink coffee:
$\left[\int (P) \left(P \cdot (N) \wedge R(N) \right) \right]$
(3) some fierce creatures do not drink coffee!
For (o(n) ~ R(n))

4(6): Assume that "For all positive integers n",
ic is then how is less
h use Universal
Show that 100 × 2100.
Ans: let p(n) denote "n>4"
I (1) for all positive integers
greater than 4) in
Of Can be represented of
$\int \mathcal{L}(n) \mathcal{L}(n) \mathcal{L}(n)$
a will all post the integer
where the domain consists of car , where the domain that the (Kn)-10(n) is true. We are assuming that the (Kn)-10(n) is true.
office 1 1x tive below 1100
an Collaws by universal Moders Porter
$\frac{1}{2}$
0(100) (1) (100 L 2100) - True!

5(a): HiA student in tais class has not seed the book.
Hg: Everyone in this class pasted the first exem.
(: Someone who passed the first exam has not
read the book.
Ansi Casi x is in this class.
BOW: x has read the book.
P(n): n passed the first enam.
The gruen psenises are:
H1: F(n) (((64) 1 ~ B(n)).
Hz: Hmi(con -> pm).
$C: \exists m(P(n) \land n \land B(n))$

1. I (m) (c(n) 1 ~ B(n)) rule p. - sule EG git 8. (a) 1 ~ B(a) - rule T, (24 3. C(a) Simplification conjunction. 4. + (m) (((m) -) P(m)) - rule p. 54) 5. C(a) -> P(a) _ rule UG - WIET, MP. 53,5} 6. P(a) Modus ponens. 123 y. NB(0) - rule T, (anjunction.
Siny is kicken) (6,7) 8. Pas 1 ~ B(a) WIET, conjunction (8) 9. JM (PMINNAM) - WIET, ES.

: Et Marelid Conclusion

5 (b) Use contrapositive show that if x and yare integers and both xy and x+y are even then both x and y are even.

Ans:

Proof of the Contrapositive

Assume that at least one of \boldsymbol{x} or \boldsymbol{y} is odd.

We need to show that either x+y or xy is odd.

Case 1: \boldsymbol{x} is odd and \boldsymbol{y} is even

- ullet Let $oldsymbol{x}=2m+1$ (odd) and $oldsymbol{y}=2n$ (even), where m,n are integers.
- 1. Sum x + y:

$$x + y = (2m + 1) + 2n = 2m + 2n + 1 = 2(m + n) + 1$$

Since x+y is of the form 2k+1, it is odd.

2. Product xy:

$$xy = (2m+1)(2n) = 2(2mn+n)$$

Since xy is divisible by 2, it is even.

Thus, when x is odd and y is even, x + y is odd.

Case 2: $oldsymbol{x}$ is even and $oldsymbol{y}$ is odd

- Let x=2m (even) and y=2n+1 (odd), where m,n are integers.
- 1. Sum x + y:

$$x + y = 2m + (2n + 1) = 2(m + n) + 1$$

Since x+y is of the form 2k+1, it is **odd**.

2. Product xy:

$$xy=(2m)(2n+1)=2(2mn+m)$$

Since xy is divisible by 2, it is **even**.

Thus, when $oldsymbol{x}$ is even and $oldsymbol{y}$ is odd, $oldsymbol{x}+oldsymbol{y}$ is odd.

Case 3: Both \boldsymbol{x} and \boldsymbol{y} are odd

- ullet Let x=2m+1 (odd) and y=2n+1 (odd), where m,n are integers.
- 1. Sum x + y:

$$x+y=(2m+1)+(2n+1)=2m+2n+2=2(m+n+1)$$

Since x+y is of the form 2k, it is **even**.

2. Product xy:

$$xy = (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1$$

Since xy is of the form 2k+1, it is odd.

Thus, when both x and y are odd, xy is odd.

Conclusion of Contrapositive

We have shown that:

• If at least one of x or y is odd, then either x + y or xy is odd.

This proves the contrapositive of the original statement. Therefore, the original statement is true:

"If both xy and x+y are even, then both x and y must be even."

6 a) $a_n = 7a_{n-1} - 10a_{n-2}$ with $a_0 = 2$ and $a_1 = 3$

Sol: Given,

an = 7an-1-10an-2

 $\Rightarrow a_n - 7a_{n-1} + 10a_{n-2} = 0 \longrightarrow \bigcirc$

It is a II order homogeneous recurrence relation.

Characteristic equation is,

$$(x-2)(x-5)=0$$

Characteristic roots are real and distinct

General solution is,

$$a_n = \alpha_1(2)^n + \alpha_2(5)^n \longrightarrow 2$$

Put n=0 in (2)

Given,
$$a_0 = 2$$
 => $\alpha_1(2) + \alpha_2(3) = \alpha_0$

$$\alpha_2 = 2 - \alpha_1$$

Put n=1 in 2

(2)
$$\Rightarrow \alpha_1(2)^1 + \alpha_2(5)^1 = \alpha_1$$

Given,
$$\alpha_1 = 3 \Rightarrow 2\alpha_1 + 5\alpha_2 = 3$$

$$2\alpha_1 + 5(2-\alpha_1) = 3$$

$$2\alpha_{1} + 10 - 5\alpha_{1} = 3$$

 $+ 5\alpha_{2} = 3$ $= \frac{6-7}{3}$ $+ 10 - 5\alpha_{1} = 3$ $3\alpha_{1} = -7$ $\alpha_{1} = \frac{7}{3}$ $\alpha_{2} = \frac{-1}{3}$ in (2) $\alpha_{n} = \frac{7}{3}(2)^{n} - \frac{1}{3}(5)^{n}$

6 b) Solve the recurrence relation of Fibonacci sequence of numbers
$$F_{n+2} = F_{n+1} + F_n$$
 for $n \ge 0$ given that $F_0 = 0$, $F_1 = 1$

Sol: Given,
$$f_{n+2} = f_{n+1} + f_n$$

$$\Rightarrow f_{n+2} - f_{n+1} - f_n = 0 \implies 0$$

It is a II order homogeneous recurrence relation Characteristic equation is:

$$\gamma = \frac{\gamma^{2} - \gamma - 1 = 0}{2(1)}$$

$$\gamma = \frac{1 \pm \sqrt{5}}{2} = \frac{1 + \sqrt{5}}{2}, \frac{1 - \sqrt{5}}{2}$$

The characteristic roots are real and distinct General solution is:

$$f_n = \alpha_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n \longrightarrow 2$$

Put
$$\alpha_1$$
, α_2 in $2 \Rightarrow \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$

(OR) 7 a) Solve the following recurrence relation using characteristic roots

$$a_n + 4a_{n-1} + 6a_{n-2} = 0$$
 and $a_0 = 2$, $a_1 = 7$

Sol: Given,

$$a_n + 4a_{n-1} + 6a_{n-2} = 0 \longrightarrow 0$$

1 is I order homogeneous recurrence relation

Characteristic Equation is,

$$\gamma^{2} + 47 + 6 = 0$$

$$\gamma = \frac{-4 \pm \sqrt{16 - 4(1)(6)}}{2(1)} = \frac{-4 \pm \sqrt{16 - 24}}{2}$$

$$\gamma = \frac{-4 \pm \sqrt{-8}}{2} = 2 \cdot (-2 \pm \sqrt{2}i)$$

$$\gamma = -2 \pm \sqrt{2}i$$

The characteristic roots are complex

General solution is

$$a_n = \alpha_1(\gamma_1)^n + \alpha_2(\gamma_2)^n$$

-2-J2i

$$-2+\sqrt{2}i \qquad x+iy = 7\left(\cos\theta + i\sin\theta\right)$$

$$x = -2 \qquad \gamma = \sqrt{x^2 + y^2} = \sqrt{4+2}$$

$$y = \sqrt{2}$$

$$+\sin^2\theta = \frac{\sqrt{2}}{2} = -35.2^{\circ}$$

$$x + iy = 7 (\cos \theta + i \sin \theta)$$

$$7 = \sqrt{x^2 + y^2} = \sqrt{4 + 2}$$

$$= \sqrt{6}$$

$$= \sqrt{6}$$

$$\tan^{2} \theta = \frac{\sqrt{2}}{-2} = -35$$

$$\theta = -35$$

$$T_{1} := -2 + J2i := J2 \left(\cos(-35^{\circ}) + i \sin(-35^{\circ}) \right)$$

$$T_{2} := -2 - I2i := J2 \left(\cos(35^{\circ}) + i \sin(35^{\circ}) \right)$$

$$a_{n} := \alpha_{1} \left(\pi_{1} \right)^{n} + \alpha_{2} \left(\pi_{3} \right)^{n}$$

$$= \alpha_{1} \left[J2 \left(\cos(-35^{\circ}) \right) + i \sin(-35^{\circ}) \right]^{n}$$

$$+ \alpha_{2} \left[J2 \left(\cos 35^{\circ} + i \sin 35^{\circ} \right) \right]^{n}$$

$$+ \alpha_{2} \left[J2 \left(\cos 35^{\circ} + i \sin 35^{\circ} \right) \right]^{n}$$

$$+ \alpha_{2} \left[J2 \left(\cos 35^{\circ} + i \sin 35^{\circ} \right) \right]$$

$$+ \alpha_{3} \left[J2 \right]^{n} \left(\cos n \cdot 35^{\circ} + i \sin n \cdot 35^{\circ} \right)$$

$$\text{Let } \cos \text{ff } \text{ of } \cos \text{ be } \text{ k}_{1} := \sqrt{\frac{1}{2}} \left(\alpha_{1} - \alpha_{2} \right) i$$

$$a_{n} := \left(J2 \right)^{n} \left(\text{ k}_{1} \left(\cos n \cdot 35^{\circ} \right) + \text{ k}_{2} \left(\sin n \cdot 35^{\circ} \right) \right)$$

$$\sigma_{1} := \sigma_{2} := \sigma_{2} \left(\pi_{1} - \sigma_{2} \right) i$$

$$\sigma_{2} := \sigma_{3} := \sigma_{4} := \sigma_{3} := \sigma_{4} := \sigma_{3} := \sigma_{4} := \sigma_{3} := \sigma_{4} := \sigma_{4} := \sigma_{3} := \sigma_{4} := \sigma_{$$

$$a_n = (\sqrt{2})^n \left[2 \cdot \cos(n.35^\circ) + \frac{7}{2} \cdot \sin(n.35^\circ) \right]$$

7 b) Solve
$$a_{n} - 9a_{n-1} + 26a_{n-2} - 24a_{n-3} = 0$$
 for $n \ge 3$

Sol: Given,

$$a_{n} - 9a_{n-1} + 26a_{n-2} - 24a_{n-3} = 0 \longrightarrow \bigcirc$$

1 is a III order homogeneous recurrence relation

Characteristic Equation is

$$\gamma^3 - 9\gamma^2 + 26\gamma - 24 = 0$$

2 is one root

$$(\gamma - 2) (\gamma^2 - 7\gamma + 12) = 0$$

$$(\gamma-2)(\gamma-3)(\gamma-4)=0$$

$$\gamma = \frac{7 \pm \sqrt{49-4(12)}}{2}$$

The characteristic roots are real & distinct

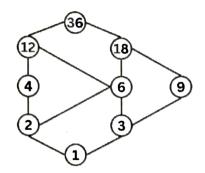
$$\gamma = \frac{7 \pm 1}{2}$$

General solution is:

$$a_n = \alpha_1(2)^n + \alpha_2(3)^n + \alpha_3(4)^n$$

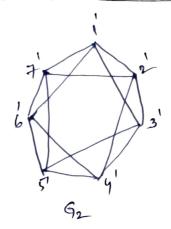
8 (a) Dra	w the Hear	J.			
(1) 214	w the masse	diagram	representing	the nositive	divisors of 36.

D₃₆ = { 1,2,3,4,6,9,12,18,36 }



8.b, Show that the following graphs are isomorphic.





Ans)

- 1. Number of vertices in 61 = 7Number of vertices in 62 = 7
- 2. Humber of edges in G1 = 14 Number of edges in G2 = 14
- 3. Degree Sequence of G1 = 4,4,4,4,4,4,4,4.4. Degree Sequence of G2 = 4,4,4,4,4,4,4,4,4.
- 4. Adjacency materices of 9, 8 92.

Using one-to-one correspondence.

$$f(1)=1'$$
, $f(2)=5'$ $f(3)=2'$ $f(4)=6'$ $f(5)=3'$ $f(6)=7'$
 $f(7)=4'$

The new adjacency matrices of 91 & 92 efter row & column transformations;

				91							92				
	1	5	2	6	3	7	4		1	2	3	4	5	6	7
1	0	l	1	0	0	1	1	11	0	1	1	O	0	1	1
5	1	0	1	1	0	0	1	2'	1	D	1	1	0	0	1
2	1	1	6)	1	0	0	3		1	b	l	1	0	0
G	0	1	1	0	1	1	0	41	0	ì	l	O	l	1	0
3	0	O	1	1	0	1	1	5'	0			1	0	1	1
7	1	0	0	1	1	Ø	1	6	1		₂ c) (t	0	1
4.	1	1	0	\mathcal{O}	1	1	0	7'				9 0	,	1	0
									(

The adjacency materies of the given two graphs are same.

So the given 2 geophs are isomorphic.

9 (a) Show that congruence modulo m is an equivalence relation on integers.

We know that the relation "congruence modulo m", say R, is defined as

xRy⇔x-y is divisible by m.

For reflexive: Clearly x-x is divisible by m

 $\Rightarrow xRx$

So, R is reflexive.

For symmetric:

Let $(x,y) \in \mathbb{R}$

 \Rightarrow xRy \Rightarrow x-y is divisible by m

 \Rightarrow y-x is divisible by m

 \Rightarrow yRx

So, R is symmetric.

For transitive:

Let $(x,y) \in R$ and $(y,z) \in R$

 \Rightarrow xRy and yRz

 \Rightarrow x-y=k1m and y-z=k2m

 $\therefore x-z=(k1+k2)m$

 \Rightarrow x-z is divisible by m

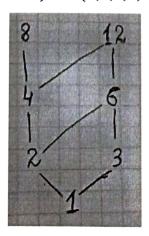
 $\Rightarrow (x,z) \in \mathbb{R}$

So, R is transitive.

Hence, R is an equivalence relation.

9 (b) Draw the Hasse diagram representing the partial ordering {(a, b)/a divides b}on {1,2,3,4,6,8,12}.

Ans: Partial ordering $\{(a, b)/a \text{ divides } b\}$. on $\{1,2,3,4,6,8,12\}$.



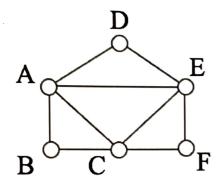
10 (a) Write about Euler's circuit and Hamiltonian cycle with suitable examples.

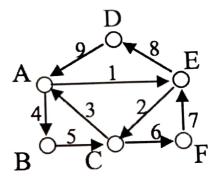
Euler's circuit: An Euler circuit in a graph is a circuit which includes each edge exactly once.

Note: A connected graph has an Euler circuit if and only if every vertex has an even degree.

Examples of Euler Circuit

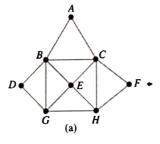
The graph below has several possible Euler circuits. Here's a couple, starting and ending at vertex A: ADEACEFCBA and AECABCFEDA. The second is shown in arrows.



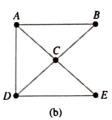


Hamiltonian cycle/circuit: A Hamilton cycle is a cycle in a graph which contains each vertex exactly once.

Example: Hamilton Circuit



- Graph (a) shown has Hamilton circuit
- A, B, D, G, E, H, F, C, A.
- Graph (b) shown has Hamilton circuit A, B, C, E, D, A.

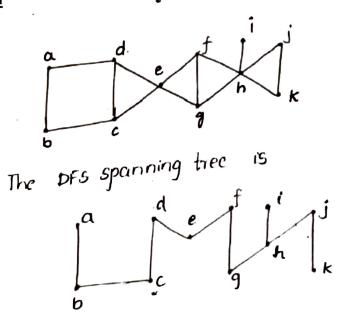


10 (b) Explain DFS algorithm to find spanning tree of a graph with suitable example.

Steps of the DFS Algorithm to Find a Spanning Tree

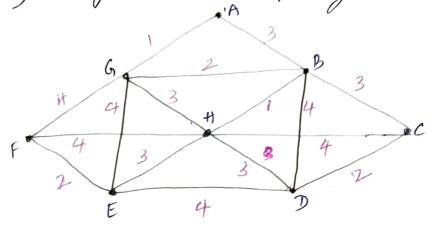
- 1. Start from an arbitrary vertex \boldsymbol{v} (root of the spanning tree).
- 2. Mark v as visited.
- 3. Explore all adjacent vertices of v.
 - If an adjacent vertex u has not been visited, include edge (v,u) in the spanning tree and perform DFS recursively on u.
- 4. Continue this process until all vertices are visited.
- 5. Stop when all vertices have been explored. The edges visited during the traversal form the **spanning tree**.

Example: Graph



(OR)

11. Show Step by Step kruskals algricum on the following connected weighted graph and also calculate sum of the weights of the ninimal spanning tree?



A B E B E Weight! 1 12223 3 3 3 3 4 4 4 4 4 Edge: AG BH BG EF CD AB BC DH HG HE GF FH GE DE CH BD. select: yes yes yes yes yes no yes no no yes

select n-1 edges, i 7 edges. Graph Contains Various spanning trees but Minimum Weight 13 unique.

weight M: 1+1+2+2+2+3+3.