Priority Queue

Heap

- A heap(binary) is a nearly complete binary tree.
- An Array A that represents a heap is an object with two attributes
 - A. *length*: gives the number of element in the array.
 - A.heap-size: the number elements that can be stored within array A.
 - $0 \le A.heapsize \le A.length$.

There are two kinds of heap

- Max-heap
- Min-heap
- A heap is said to be **max-heap**, if every node *i* other than root **A[parent(i)]** ≥ **A[i]** i.e., the value of a node is at most the value of its parent. i.e., the largest element in a max-heap is stored at the root, and the subtree rooted at a node contains values no larger than that contained at the node itself.
- A heap is said to be min-heap, if every node i other than root A[parent(i)] ≤ A[i] i.e., the smallest element is at the root.

Heaps are used to implement Priority Queue

Parent (i) is stored at index *floor(i/2)*

Left child (i) is stored at index 2*i

Right child (i) is stored at index 2 * i + 1

Yes, it is a max-heap

Yes, it is a min-heap

Not a heap, because it is not complete binary tree.

No, it is not a min-heap, because it not a complete binary tree

MAX-HEAPIFY(A,i)

```
l = LEFT(i)
```

- 2 r = RIGHT(i)
- 3 if $l \le A$.heap-size and A[l] > A[i]
- 4 largest = l
- 5 else largest = i
- 6 if $r \le A$.heap-size and A[r] > A[largest]
- 7 largest = r
- 8 if largest \neq i
- 9 exchange A[i] with A[largest]
- 10 MAX-HEAPIFY(A, largest)

BUILD-MAX-HEAP(A)

- 1. A.heapsize = A.length
- 2. for i = floor(A.length/2) downto 1
- 3. MAX-HEAPIFY(A,i)

$$i = 10/2 = 5$$

MAX-HEAPIFY(A, 5) Heap property is satisfied

										10
Α	4	1	3	2	16	9	10	14	8	7

$$i = 10/2 = 5$$

MAX-HEAPIFY(A, 5)

$$i = i - 1 = 4$$

MAX-HEAPIFY(A, 4)

MAX-HEAPIFY(A, 8)

$$i = 10/2 = 5$$

MAX-HEAPIFY(A, 5)

$$i = i - 1 = 4$$

MAX-HEAPIFY(A, 4)

MAX-HEAPIFY(A, 8)

$$i = i - 1 = 3$$

MAX-HEAPIFY(A, 3)

MAX-HEAPIFY(A, 7)

										10	
Α	4	1	3	2	16	9	10	14	8	7	

Max- heap

Example: Max-Heap

• Illustrate the operation of Build-Max-Heap on the array A = { 5, 3, 17, 10, 84, 19, 6, 22, 9}

HEAP operations

Heap Operation	Description	Time complexity
MAX-HEAPIFY(A)	used to maintain the max-heap property.	O(log n)
MAX-HEAP-INSERT(A,k)	used to insert an element in to heap	O(log n)
HEAP-EXTRACT-MAX(A)	removes and returns the largest key.	O(log n)
HEAP-INCREASE-KEY(A, x, k)	Increases the value at index x to k. if k>A[x]	O(log n)
HEAP-MAXIMUM(A)	returns the largest key in heap	O(1)
BUILD-MAX-HEAP(A,n)	Used to construct max heap	O(n)

The above procedures run in *O(log n)* time, so heap data structure is used to implement priority queue.

HEAP-EXTRACT-MAX(A)

- 1 if A.heapsize < 1
- 2 error "heap underflow"
- $3 \quad \max = A[1]$
- $4 \quad A[1] = A[A.heapsize]$
- 5 A.heapsize = A.heapsize 1
- 6 MAX-HEAPIFY(A, 1)
- 7 return max

Max-Heap Insert

Max-Heap-Insert(A, key)

- 1. A.heapSize = A.heapsize + 1
- 2. i = A.heapSize
- 3. A[i] = key
- 4. while i >1 and A[Parent(i)] < A[i]
- 5. exchange A[i] and A[Parent(i)]
- 6. $i \leftarrow Parent(i)$

Heap-Increase-Key

Heap-Increase-Key (A, 3, key=20)

Heap-Increase-Key(A,i,key)

```
1 if key <A[i]
```

2 error("New key must be larger than current key")

 $3 A[i] \leftarrow key$

4 while i >1 and A[Parent(i)] < A[i]

5 exchange A[i] and A[Parent(i)]

6 $i \leftarrow Parent(i)$

Priority Queue: Definition

- A **Priority Queue** is a data structure for maintaining a set S of elements, each with an associated value called a key. They can be in two forms: max-priority queues and min-priority queues.
- A max-priority queue supports the following operations:
 - Insert (S,x) inserts the element x into the set S, which is equivalent to the operation $S = S \cup \{x\}$.
 - Maximum(S) returns the maximum element of S.
 - Extract-Max(S) removes and returns the maximum element of S.
 - Increase-Key(S, x, k) increases the value of element x's key to the new value k, which is assumed to be at least as large as x's current key value.
- A min-priority queue supports Insert(S,x), Minimum(S), Extract-Min(S), Decrease-Key(S,x,k).

Applications of Priority Queues

Max-Priority Queue Applications:

Used to schedule jobs on a shared computer. The max-priority queue keeps track of the jobs to be performed and their relative priorities. When a job is finished or interrupted the scheduler selects the highest priority job from among the pending jobs by calling **Extract-Max**. The scheduler can add a new job to the queue at any time by calling **Insert**.

Min-Priority Queue Application:

Used in a event-driven simulator. The items in the queue are events to be simulated with an associated time of occurrence that can be used as key. The simulation program calls **Extract-Min** at each step to choose the next event to simulate. The simulator program calls **Insert** method when a new events are produced.

STL – Priority Queue

	Without STL	Priority Queue	
Package	User-defined class	Available #include <queue></queue>	
Creation	PriorityQueue pq;	PriorityQueue <int> pq;</int>	
Insert	pq.insert(x)	pq.push(x)	
Delete(Extract Maximum)	pq.extractMaximum()	pq.pop()	
Increase key	pq.increasekey(x,k)	No operation	
Maximum element	pq.maximum()	pq.top()	
size	pq.size()	pq.size()	
Checking empty	pq. isEmpty()	pq.empty()	

Heap

- A heap(binary) is a nearly complete binary tree.
- An Array A that represents a heap is an object with two attributes
 - A. length: gives the number of element in the array.
 - A.heap-size: the number elements that can be stored within array A.
 - $0 \le A$.heapsize $\le A$.length.

There are two kinds of heaps

- Max-heaps
- Min-heaps
- Depends on the type heap-property, a heap is categorized as max-heap or min-heap.
- A heap is said to be max-heap, if every node i other than root A[parent(i)] ≥ A[i] i.e., the
 value of a node is at most the value of its parent. i.e., the largest element in a max-heap is
 stored at the root, and the subtree rooted at a node contains values no larger than that
 contained at the node itself.
- A heap is said to be **min-heap**, if every node i other than root A[parent(i)] ≤ A[i] i.e., the smallest element is at the root.

HEAP operations

Max-Heap Operations

- MAX-HEAPIFY used to maintain the max-heap property.
- ❖MAX-HEAP-INSERT used to insert an element in to heap.
- HEAP-EXTRACT-MAX removes and returns the largest key.
- ❖ HEAP-INCREASE-KEY Increases the value to k.
- + HEAP-MAXIMUM returns the largest key in heap (O(1))
- The above procedures run in *O(log n)* time, so heap data structure is used to implement priority queue.
- **BUILD-MAX-HEAP** runs in linear time O(n), produces a maxheap from an unordered input array of size n.

Heap-Increase-Key

```
Heap-Increase-Key(A,i,key)
// Input: A: an array representing a heap, i: an array index, key: a new key greater than A[i]
// Output: A still representing a heap where the key of A[i] was increased to key
// Running Time: O(logn) where n =heap-size[A]
1 if key <A[i]
          error("New key must be larger than current key")
3 A[i] \leftarrow key
4 while i >1 and A[Parent(i)] < A[i]
        exchange A[i] and A[Parent(i)]
        i ←Parent(i)
6
Max-Heap-Insert(A, key)
// Input: A: an array representing a heap, key: a key to insert
// Output: A modified to include key
// Running Time: O(logn) where n =heap-size[A]
1 A.heapsize \leftarrow A.heapsize + 1
2 A[A.heapsize] \leftarrow -\infty
3 Heap-Increase-Key(A,A[A.heapsize],key)
```