Priority Queue

Heap

* A heap(binary) is a nearly complete binary tree.

* An Array A that represents a heap is an object with two attributes
* A.length : gives the number of element in the array.

* A.heap-size : the number elements that can be stored within array A.
* 0L A.heapsize £ A.length.

There are two kinds of heap
* Max-heap
* Min-heap

* A heapis said to be max-heap, if every node i other than root A[parent(i)] 2 Ali]
i.e., the value of a node is at most the value of its parent. i.e., the largest
element in a max-heap is stored at the root , and the subtree rooted at a node
contains values no larger than that contained at the node itself.

* A heap is said to be min-heap, if every node i other than root A[parent(i)] < A[i]
i.e., the smallest element is at the root.

Heaps are used to implement Priority Queue

Data(key)

16 (14|10 8 | 7|19 |3 |2 |4 |1

Parent (i) is stored at index floor(i/2)

Left child (i) is stored at index 2*i

Right child (i) is stored at index 2 *i+ 1

Examples

Not a max-heap, because Node 8

) Not a heap, because it is not
violates the heap property

complete binary tree.

Yes, it is @ min-heap No, it is not a min-heap, because it not a complete binary tree

Node 2 violates the max-

MAX-HEAPIFY (A,I) heap property
| = LEFT(i)
r = RIGHT(i)
If I < A.heap-size and A[l] > A[i]

largest = |

1

2

3

4

5 else largest=1
6 ifr < A.heap-size and A[r] > A[largest]
7 largest =r

8 iflargest#1

9 exchange A[i] with A[largest]

10 MAX-HEAPIFY (A, largest)

MAX-HEAPIFY(A, 2)

BUILD-MAX-HEAP(A)

1. A.heapsize = A.length

2. fori = floor(A.length/2) downto 1
3. MAX-HEAPIFY (A1)

i=10/2 =5
MAX-HEAPIFY(A, 5) Heap property is satisfied

10

14

i=10/2 =5
MAX-HEAPIFY(A, 5)

izi—1=4

C MAX-HEAPIFY(A, 4))
MAX-HEAPIFY(A, 8)

i=10/2 =5
MAX-HEAPIFY(A, 5)
izi—1=4

C MAX-HEAPIFY(A, 4))
MAX-HEAPIFY(A, 8)
i=i—1=3

C MAX-HEAPIFY(A, 3) >
MAX-HEAPIFY(A, 7)

i=10/2 =5
MAX-HEAPIFY(A, 5)

izi-1=4
MAX-HEAPIEY(A, 4)

C MAX-HEAPIFY(A, 8))

i=i-1=3
MAX-HEAPIFY(A, 3)

C MAX-HEAPIFY(A, 7) >
i=i-1=2
MAX-HEAPIFY(A, 2)

g MAX-HEAPIFY(A, 5))

MAX-HEAPIFY(A, 10)>

2 NN

Y W 2"

i=10/2 =5
MAX-HEAPIFY(A, 5)

izi-1=4
MAX-HEAPIFY(A, 4)
MAX-HEAPIFY(A, 8)

i=i-1=3
MAX-HEAPIFY(A, 3)

MAX-HEAPIFY(A, 7)
izi—1=2
MAX-HEAPIFY(A, 2) >

MAX-HEAPIFY(A, 5)

MAX-HEAPIFY(A, 10)
i=i-1=1
MAX-HEAPIFY(A, 1) >
MAX-HEAPIFY(A, 2)
MAX-HEAPIFY(A, 4)
MAX-HEAPIFY(A, 9)

10
7

10|14 | 8

9

16

Max- heap

Example : Max-Heap

* |llustrate the operation of Build-Max-Heap on the array A ={ 5, 3, 17,
10, 84, 19, 6, 22, 9}

HEAP operations

Heap Operation Description Time
complexity

MAX-HEAPIFY(A) used to maintain the max-heap O(log n)
property.

MAX-HEAP-INSERT(A, k) used to insert an element in to heap O(log n)
HEAP-EXTRACT-MAX(A) removes and returns the largest key. O(log n)

HEAP-INCREASE-KEY(A, x, Increases the value atindex xto k.if Of(logn)
k) k>A[X]

HEAP-MAXIMUM(A) returns the largest key in heap O(1)
BUILD-MAX-HEAP(A,n) Used to construct max heap O(n)

The above procedures run in Oflog n) time, so heap data structure is used to
implement priority queue.

HEAP-EXTRACT-MAX(A)

1 1fAheapsize<1

2 error “heap underflow™

3 max =A[l]

4 A[1l] = A[A.heapsize]

5 A.heapsize = A.heapsize — 1

6 MAX-HEAPIFY(A,1)

7/ return max
max = 16
Assign A[1] with A[10]
reduce A.heapsize by 1

MAX-HEAPIFY (A, 1)

max = 16

Exchange A[1] with A[10]
reduce A.heapsize by 1
MAX-HEAPIFY(A, 1)

MAX-HEAPIFY(A, 2)
MAX-HEAPIFY(A, 4)
MAX-HEAPIFY(A, 9)

return max

Max-Heap Insert

Max-Heap-Insert(A, key)

. A.heapSize = A.heapsize + 1

. i = A.heapSize

. Ali] = key

while i >1 and A[Parent(i)] < A[i]
exchange A[i] and A[Parent(i)]
i <Parent(i)

1
2
3
4.
5
6

H ed p— | Ncreagse- Key Heap-Increase-Key (A, 3, key=20)

Heap-Increase-Key(A,i, key)

1 if key <A[i]

2 error(“New key must be larger than current key”)
3 Afi] <key

4 while i >1 and A[Parent(i)] < A[i]

5 exchange A[i] and A[Parent(i)]

6 i &<Parent(i)

«——— parent

Priority Queue: Definition

* A Priority Queue is a data structure for maintaining a set S of elements,
each with an associated value called a key. They can be in two forms:
max-priority queues and min-priority queues.

* A max-priority queue supports the following operations:

* Insert (S,x) inserts the element x into the set S, which is equivalent to the
operation S =S U {x}.

* Maximum(S) returns the maximum element of S.
» Extract-Max(S) removes and returns the maximum element of S.

* Increase-Key(S, x, k) increases the value of element x’s key to the new value k,
which is assumed to be at least as large as x’s current key value.

* A min-priority queue supports Insert(S,x), Minimum(S), Extract-Min(S),
Decrease-Key(S,x,k).

Applications of Priority Queues

Max-Priority Queue Applications:
Used to schedule jobs on a shared computer. The max-priority queue keeps track of

the jobs to be performed and their relative priorities. When a job is finished or
interrupted the scheduler selects the highest priority job from among the pending
jobs by calling Extract-Max. The scheduler can add a new job to the queue at any

time by calling Insert.

Min-Priority Queue Application:
Used in a event-driven simulator. The items in the queue are events to be simulated

with an associated time of occurrence that can be used as key. The simulation
program calls Extract-Min at each step to choose the next event to simulate. The
simulator program calls Insert method when a new events are produced.

STL—Priority Queue

Package User-defined class Available
#finclude<queue>

Creation PriorityQueue pq; PriorityQueue<int> pq;
Insert pg.insert(x) pg.push(x)
Delete(Extract pg.extractMaximum() pg.pop()

Maximum)

Increase key pg.increasekey(x,k) No operation
Maximum element pg.maximum() pg.top()

Size pg.size() pg.size()

Checking empty pg. iIsEmpty() pg.empty()

Heap

* A heap(binary) is a nearly complete binary tree.

* An Array A that represents a heap is an object with two attributes
* A.length : gives the number of element in the array.

* A.heap-size : the number elements that can be stored within array A.
* 0 < A.heapsize < A.length.

Example : Max-heap

1

1 2 5 6 8 10
161141101 8 | 7 9 (3|24 |1

w /
Parent (i)

return floor(i/2)

left (i)

return 2¥i

right (i)
return2 *i+1

There are two kinds of heaps
* Max-heaps
* Min-heaps

 Depends on the type heap-property, a heap is categorized as max-heap or min-heap.

* A heap is said to be max-heap, if every node i other than root A[parent(i)] > A[i] i.e., the
value of a node is at most the value of its parent. i.e., the largest element in a max-heap is
stored at the root, and the subtree rooted at a node contains values no larger than that
contained at the node itself.

A heap is said to be min-heap, if every node i other than root A[parent(i)] < A[i] i.e., the
smallest element is at the root.

HEAP operations

Max-Heap Operations
** MAX-HEAPIFY - used to maintain the max-heap property.
**MAX-HEAP-INSERT - used to insert an element in to heap.
**HEAP-EXTRACT-MAX - removes and returns the largest key.
**HEAP-INCREASE-KEY - Increases the value to k.
*HEAP-MAXIMUM - returns the largest key in heap (O(1))

* The above procedures run in Oflog n) time, so heap data
structure is used to implement priority queue.

* BUILD-MAX-HEAP runs in linear time O(n), produces a max-
heap from an unordered input array of size n.

Heap-Increase-Key

Heap-Increase-Key(A,i, key)

// Input: A: an array representing a heap, i: an array index, key: a new key greater than A[i]
// Output: A still representing a heap where the key of A[i] was increased to key

// Running Time: O(logn) where n =heap-size[A]

1 if key <A[i]

2 error(“New key must be larger than current key”)

3 Afi] <key

4 while i >1 and A[Parent(i)] < A[i]

5 exchange A[i] and A[Parent(i)]

6 i &Parent(i)

Max-Heap-Insert(A, key)

// Input: A: an array representing a heap, key: a key to insert
// Output: A modified to include key

// Running Time: O(logn) where n =heap-size[A]

1 A.heapsize < A.heapsize + 1

2 A[A.heapsize] & —oo

3 Heap-Increase-Key(A,A[A.heapsize],key)

	Slide 1: Priority Queue
	Slide 2: Heap
	Slide 3
	Slide 4: Examples
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Example : Max-Heap
	Slide 14: HEAP operations
	Slide 15
	Slide 16
	Slide 17: Max-Heap Insert
	Slide 18: Heap-Increase-Key
	Slide 19: Priority Queue: Definition
	Slide 20: Applications of Priority Queues
	Slide 21: STL – Priority Queue
	Slide 22: Heap
	Slide 23
	Slide 24: HEAP operations
	Slide 25: Heap-Increase-Key

