Code: 20CS4701A PVP-20

PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

IV B.Tech- I Semester- Regular Examinations- OCTOBER 2024

DEEP LEARNING

Duration: 3 Hours Max. Marks : 70

UNIT-I

1 A) Describe the concept of Deep Learning. Explain the Historical evolution and how it differs from Traditional Machine Learning Algorithms

Deep Learning [2M]

History of DL [2M]

Differences b/w ML and DL [3M]

1 B) Compare and Contrast any three common Activation Functions

Write any 3 Activation Functions [6M]

Comparison [1M]

(OR)

2 A) Discuss the significance of Hyper Parameters in performance of the model training

Key Points used in Hyper Parameters [3M]

Performance of the Model Training [4M]

2 B) Explain at least 3 real world applications where deep learning has shown significant process.

Write any 3 Real World Applications. [7M]

UNIT-II

3 A) Distinguish the key differences between a Variational Auto Encoder (VAE) and a Traditional Auto Encoder (TAE)? How does a VAE enable generating new data samples.

Differences between TAE and VAE [4M]

How does a VAE enable generating new data samples. [3M]

	Deep Belief networks	[3M]
	Architecture	[4M]
	(OR)	
4 A) Cons an examp	struct the architecture of Generative Adversarial le	Networks (GANs) w
	Generative Adversarial Networks	[3M]
	Architecture	[2M]
	Example	[2M]
-	ribe the architecture and Training process of a R (RBM) and provide one example	estricted Boltzmann
	Restricted Boltzmann Machine (RBM)	[2M]
	Training Process	[3M]
	Example	[2M]
	<u>UNIT-III</u>	
•	<u>UNIT-III</u> nat are structured output in the context of C t in tasks like image segmentation or object de	· ·
importan	nat are structured output in the context of (· ·
importan	nat are structured output in the context of C t in tasks like image segmentation or object do	etection? Explain w
importan Example	nat are structured output in the context of t in tasks like image segmentation or object de Structured output in CNN	etection? Explain w [4M] [3M]
importan Example	nat are structured output in the context of to in tasks like image segmentation or object do Structured output in CNN Example	etection? Explain w [4M] [3M]
importan Example	nat are structured output in the context of C t in tasks like image segmentation or object de Structured output in CNN Example ribe the concept of Random or unsupervised feat	[4M] [3M] ures in CNNs
importan Example	Structured output in the context of Ott in tasks like image segmentation or object do Structured output in CNN Example ribe the concept of Random or unsupervised feat List 3 Random or Unsupervised Features	[4M] [3M] ures in CNNs [3M]
importan Example 5 B) Desc	Structured output in the context of Concept Structured output in CNN Example List 3 Random or Unsupervised Features Concept	[4M] [3M] ures in CNNs [3M] [4M]
importan Example 5 B) Desc	Structured output in the context of Ott in tasks like image segmentation or object do Structured output in CNN Example ribe the concept of Random or unsupervised feat List 3 Random or Unsupervised Features Concept (OR)	[4M] [3M] ures in CNNs [3M] [4M]

Max Pooling and Average Pooling	[5M]
Comparison	[2M]
<u>UNIT-IV</u>	
7 A) Construct the Architecture of an LSTM cell arinformation over time	nd how it retains and up
Architecture of LSTM	[5M]
Weights Updation	[2M]
7 B) What is the primary role of an Encoder-Decoder Sequence tasks? Discuss with an Example.	Architecture in Sequenc
Encoder-Decoder Architecture	[3M]
How Sequence- to – Sequence tasks used in	Encoder and Decoder [4M
(OR)	
8 A) Explain the concept of Deep Recurrent Networks modeling of complex sequential dependencies	(DRN) and how it enable
Deep Recurrent Networks	[3M]
Architecture	[4M]
8 B) Illustrate the core idea behind Gated Recurre extend the capabilities of standard RNNs.	nt Unit (GRU) and how
Gated Recurrent Networks	[4M]
capabilities of standard RNNs	[3M]
<u>UNIT-V</u>	
9 A) Discuss the significance of Deep Learning in the f	ield of Speech Recognition
	[4M]
Speech Recognition	[41/1]

9 B) Illustrate the application o	f Deep	Learning in	the	healthcare	domain	with	an
Example							

Any healthcare Domain with Algorithm

[7M]

[4M]

(OR)

10 A) Demonstrate the evolution of Deep Neural Networks in Computer Vision and their impact in image processing applications

Deep Neural Networks in Computer Vision

How it is used in Image Processing [3M]

10 B) Explain the impact of Deep Learning in improving Machine Translation, Sentiment Analysis

Machine Translation with Algorithm [3M]

Sentimental Analysis Explanation [4M]