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UNIT-I 

1 A) Describe the concept of Deep Learning. Explain the Historical evolution and 

how it differs from Traditional Machine Learning Algorithms [CO1-L2] [7M] 

Ans: Deep learning is a subset of Machine Learning that uses multi-layered neural networks, called 

  deep neural networks. The term "deep" usually refers to the number of hidden layers in 

the neural  network. Models are trained by using a large set of labeled data and neural network 

architectures that  contain many layers.  Deep Learning Models can recognize complex 

patterns in pictures, text,  sounds, and other data to produce accurate insights and prediction.  It 

improves the ability to classify,  recognize, detect and describe using data.  

For Example, we have to find out the sentences- the first layer of nodes might learn to identify 

the letters, the second layer might learn to identify the words, and the third layer might learn to 

identify sentences etc. Like this we may increase the hidden layers in the Artificial Neural 

Network. 

 

Historical Evolution of Deep Learning: 

 1957 - Frank Rosenblatt submitted a paper titled ‗The Perceptron: A Perceiving and 

Recognizing Automaton‘, which consisted of an algorithm or a method for pattern 

recognition using a two-layer neural network. 

 1965 - Alexey Ivakhnenko and V.G. Lapa developed the first working neural network and 

Alexey Ivakhnenko created an 8-layer deep neural network in 1971 which was demonstrated 

in the computer identification system, Alpha. This was the actual introduction to deep 

learning 
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 1980 - Kunihiko Fukushima developed the ‗Neocognitron‘, an Artificial deep neural 

network with multiple and convolutional layers to recognize visual patterns. 

 1985 - Terry Sejnowski created NETtalk, a program which learnt how to pronounce English 

words. 

 1989 - Yann LeCun, using convolution deep neural network, developed a system which could 

read handwritten digits. 

 Mid-2000s: The term ―deep learning‖ begins to gain popularity after a paper by Geoffrey 

Hinton and Ruslan Salakhutdinov showed how a many-layered neural network could be 

pre-trained one layer at a time. 

 2009 - As deep learning models require a tremendous amount of labelled data to train 

themselves in supervised learning, Fei-Fei Li launched ImageNet, which is a large database 

of labelled images. 

 2012 - The results of ‗The Cat Experiment‘ conducted by Google Brain were released. This 

experiment was based on unsupervised learning in which the deep neural network worked 

with unlabelled data to recognize patterns and features in the images of cats. However, it 

could only recognize 15% of images correctly. 

 2014 -  Facebook puts deep learning technology – called DeepFace – into operations to 

automatically tag and identify Facebook users in photographs.  

Difference between Traditional Machine Learning Algorithms: 

https://www.forbes.com/companies/facebook/


 

1 B) Compare and Contrast any three common Activation Functions [CO1-L2][7M] 

Ans:  An Activation Function is a mathematical operation applied to the output of a neuron in a 

neural network. It determines whether a neuron should be activated or not, based on the weighted 

sum of its inputs. Activation functions provide non-linear properties to the neural network. 

There are different types of Non Linear Activation Functions: 

(a) Sigmoid Activation Function 

(b) Tanh Activation Function 

( c) ReLU Activation Function 

 (d) Softmax Activation Function 

A) Sigmoid Activation Function:  This function is a probabilistic approach towards decision making 

and output range is between 0 and 1. The Sigmoid function, often represented as (x), features an  S-

shaped curve.  Sigmoid finds the binary classification problems, like logistic regression, where 

outputs represent probabilities. The sigmoid function, also known as the squashing function, takes the 

input from the previously hidden layer and squeezes it between 0 and 1.  Such as "yes" or "no", 

or 1 or 0. The sigmoid function can output a probability between 0 and 1, which can be used to 

predict the likelihood of a particular class. 

                                        



 

B) Hyperbolic Tangent Activation Function(Tanh):  It overcomes the disadvantage of the sigmoid 

activation function by extending the range to include -1 to 1.  It is also having the same S-shape with 

the difference in output range of -1 to 1. In Tanh, the larger the input (more positive), the closer the 

output value will be to 1.0, here as the smaller the input (more negative), the closer the output will be 

to -1.0.  

 

 

 

 

 Tanh function can be used when the input data has a range between negative and positive 

values. For instance, it can be used in Neural Networks which is made for sentiment analysis, it can 

be used to model the sentiment of text data, where negative sentiment is represented by negative 

values, positive sentiment is represented by positive values, and Neutral can be represented by zero 

or close to zero. 

C) ReLu Activation Function:   ReLU is nothing but Rectified Linear Unit. ReLU is a piecewise 

linear function that results in the input directly if it is positive. Otherwise, it outputs zero. 

Equation :- It gives an output x if x is positive and 0 otherwise. 

                       

 

 ReLU is most commonly used in Large Deep Neural Networks with lots and lots of hidden 

layers. Since ReLU only requires some threshold operations, it is computationally efficient 

even though the dataset and the network are large.  Also, ReLU is a great choice to avoid 

the Vanishing Gradient Problem 

 This is the most frequently used activation unit in deep learning. R(x) = max(0, x) . Thereby, 

if x < 0, R(x) = 0 and if x ≥ 0, R(x) = x. 

https://paperswithcode.com/method/relu
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function


 Its notable efficiency makes it especially advantageous in Convolutional Neural Networks 

(CNNs) and other deep learning models, leading to its adoption in advanced object detection 

frameworks such as  YOLO (You Only Look Once) etc. 

 Nature :- It is non-linear, which means we can easily back propagate the errors and have 

multiple layers of neurons being activated by the ReLU function. The main catch here is 

that the ReLU function does not activate all the neurons at the same time. 

(OR) 

2 A) Discuss the significance of Hyper Parameters in performance of the model 

            training          [CO1-L2][7M] 

Ans: Hyperparameters are those parameters that are explicitly defined by the user to control the 

learning process. Hyperparameters determine key features such as model architecture, learning 

rate, and model complexity. Examples of hyperparameters include the number of nodes and layers in 

a neural network and the number of branches in a decision tree.  

 Hyperparameters control many aspects of DL algorithms. 

 They can decide the time and computational cost of running the algorithm. 

 They can define the structure of the neural network model 

 They affect the model‘s prediction accuracy. In other words, hyperparameters control the 

behavior and structure of the neural network models. 

 The Main Key points used in Hyperparameters are: 

 Main parameters of the NN is W and b 

 Hyper parameters (parameters that control the algorithm) are like: 

o Learning rate. 

o Number of iterations. 

o Number of hidden layers L.  

o Number of hidden units n. 

o Choice of activation functions. 

o  Check the Training and Testing 



 

 Learning Rate: It is a Hyperparameter that provides the model a scale of how much model 

weights should be updated, to minimize the Loss Function. 

 Optimizer: In deep learning, optimizers are crucial as algorithms that dynamically adjust the 

model's parameters to minimize the loss function. 

 There are various optimization techniques to change model weights and learning rates, like 

AdaGrad, RMSProp, AdaDelta, and Adam. 

 Adagrad stands for Adaptive Gradient Optimizer. It is  used to reduce the loss function with 

respect to the weights. The weight updating formula is as follows: 

 

 Based on iterations, this formula can be written as:  

 

where 

w(t) = value of w at current iteration,  

w(t-1) = value of w at previous iteration and  

η = learning rate. 

Regularization: Regularization is a set of methods for reducing overfitting in Deep Learning 



 

 Just have a look at the above figure, and we can immediately predict that once we try to 

cover every minutest feature of the input data, there can be irregularities in the extracted 

features, which can introduce noise in the output. This is referred to as "Overfitting".  

 This may also happen with the lesser number of features extracted as some of the important 

details might be missed out. This will leave an effect on the accuracy of the outputs 

produced. This is referred to as "Underfitting". 

 To eliminate this, regularization is used, in which we have to make the slightest modification 

in the design of the neural network, and we can get better outcomes. 

 Dropout: Dropout was introduced by "Hinton et al" and this method is now very popular. It 

consists of setting to zero the output of each hidden neuron in chosen layer with some 

probability and is proven to be very effective in reducing overfitting. 

 

 To achieve dropout regularization, some neurons in the artificial neural network are 

randomly disabled. That prevents them from being too dependent on one another as they 

learn the correlations. 

 

2 B) Explain at least 3 real world applications where deep learning has shown   

       significant process.        [CO1-L2][7M]  

 Ans:  1. Medical Care: Deep learning helps in detecting cancer cells and analyzing the MRI 

images to give elaborative results. Google has made Google AI eye doctor software. It examines retina 

scans and identifies diabetic retinopathy, which can cause blindness. Suppose we have taken Kidney Disease 

Prediction it will follow the structure. 



 

  This image, we can take Convolution Neural Networks are used for Feature Extraction 

and Classification. 

2. Visual Translation: With deep learning, identification of text on the images is possible. Once 

identification completes, it translates the text immediately and recreates the image with translated 

text. 

 For example, Suppose you visit an unknown country whose local language is not known to 

you. An app like google translator converts the text of an image in an understandable 

language. 

 

 

 With the power of deep learning, Neural Machine Translation (NMT) has arisen as the most 

powerful algorithm to perform this task.  This state-of-the-art algorithm is an application of deep 

learning in which datasets of translated sentences are used to train a model capable of translating 

between any two languages.  This conversion is composed by using Two Recurrent Neural 

Networks(RNN) 

3. Self Driving Car: Google has made an amazing self-driven car. This car operates on a 

combination of sensors and software.  

 Car can classify objects, people, traffic signs and signals. It also detects the road works. It 

uses Lidar Technology. 

 A self-driving car (sometimes called an autonomous car or driverless car). 

 Tesla, the most popular car manufacturing company is working on self-driving car.  

https://www.geospatialworld.net/blogs/what-is-lidar-technology-and-how-does-it-work/
https://www.geospatialworld.net/blogs/what-is-lidar-technology-and-how-does-it-work/
https://www.geospatialworld.net/blogs/what-is-lidar-technology-and-how-does-it-work/
https://www.geospatialworld.net/blogs/what-is-lidar-technology-and-how-does-it-work/
https://www.geospatialworld.net/blogs/what-is-lidar-technology-and-how-does-it-work/
https://www.geospatialworld.net/blogs/what-is-lidar-technology-and-how-does-it-work/


 

UNIT-II 

3 A) Distinguish the key differences between a Variational Auto Encoder (VAE) 

and a Traditional Auto Encoder (TAE)? How does a VAE enable generating new 

data  samples.         [CO2-L4] [7M] 

Ans: 

 

Mathematically,  

 



 The VAE is similar to compression and Denoising autoencoders in that they are all trained in 

an unsupervised manner to reconstruct inputs.  Variational Autoencoders (VAEs) are generative 

models explicitly designed to capture the underlying probability distribution of a given dataset 

and generate novel samples.  

 However, the mechanisms that the VAEs use to perform training are quite different. In a 

compression/denoising autoencoder, activations are mapped to activations throughout the 

layers, as in a standard neural network; comparatively, a VAE uses a probabilistic 

approach for the forward pass.  

 First, we map each point x in our dataset to a low-dimensional vector of means μ(x) and 

variances σ(x)2 for a diagonal multivariate Gaussian distribution.  

 

 The encoder-decoder architecture lies at the heart of Variational Autoencoders (VAEs), 

distinguishing them from traditional autoencoders. The encoder network takes raw input data and 

transforms it into a probability distribution within the latent space.  

i.e, the latent code generated by the encoder is a probabilistic encoding, allowing the VAE 

to express not just a single point in the latent space but a distribution of potential 

representations. 

3 B) Demonstrate the fundamental idea behind Deep Belief Networks (DBNs)? 

            [CO2-L3] [7M] 

  Ans: We create Deep Belief Networks (DBNs) to address issues with classic neural networks in 

deep layered networks.  

 For example – slow learning, becoming stuck in local minima owing to poor parameter 

selection, and requiring a large number of training datasets of these given input layer. 

https://www.analyticsvidhya.com/blog/2022/01/introduction-to-neural-networks/
https://www.analyticsvidhya.com/blog/tag/deep-belief-networks/


 A DBN is a deep-learning architecture introduced by Geoffrey Hinton in 2006. Deep Belief 

Networks (DBNs) are a type of deep learning architecture combining unsupervised learning 

principles and neural networks.  

 Deep Belief Networks (DBNs) are sophisticated artificial neural networks used in the field 

of deep learning. 

 Imagine them as multi-layered networks, where each layer is capable of making sense of the 

information received from the previous one, gradually building up a complex understanding of 

the overall data. They are composed of layers of Restricted Boltzmann Machines (RBMs), 

which are trained one at a time in an unsupervised manner. 

 Several Restricted Boltzmann Machines (RBM) can be stacked and trained in a greedy 

manner to form Deep Belief Network architecture. 

 i.e, It is a composition of Stack of Unsupervised Neural Network such as Restricted 

Bolzmann Machine (RBM). Each RBM has a Visible Layer (Input) and Hidden Layer 

(Output) . Here the Hidden Layer in Stack1 is the Visible Layer  for the Stack2.etc. 

 DBNs work similarly to traditional multi-layer perceptrons (MLPs) and offer certain 

benefits over them, including faster training and better weight initialization. 

Structure of DBNs: 

 

https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
https://www.geeksforgeeks.org/introduction-deep-learning/


 In the DBN, we have a hierarchy of layers. The top two layers are the associative memory, and 

the bottom layer is the visible units. The arrows pointing towards the layer closest to the data 

point to relationships between all lower layers.  

(OR) 

4 A) Construct the architecture of Generative Adversarial Networks (GANs) with 

an example          [CO2-L2][7M] 

 Ans: Generative Adversarial Networks : Generative Adversarial Networks (GANs) are a powerful 

class of neural networks that are used for unsupervised learning. It was developed and introduced by Ian 

J. Goodfellow in 2014.  

 GANs are basically made up of a system of two competing neural network models which compete 

with each other and are able to analyze, capture and copy the variations within a dataset. To 

understand the term GAN let‘s break it into separate three parts • 

 Generative – To learn a generative model, which describes how data is generated in terms of a 

probabilistic model. In simple words, it explains how data is generated visually.  

  Adversarial – The training of the model is done in an adversarial setting.  

  Networks – use deep neural networks for training purposes. GAN consists of 2 models that 

automatically discover and learn the patterns in input data.  

 The two models are known as Generator and Discriminator. They compete with each other to 

scrutinize, capture, and replicate the variations within a dataset.  

What is a Generator? A Generator in GANs is a neural network that creates fake data to be trained on 

the discriminator. It learns to generate plausible data. The generated examples/instances become 

negative training examples for the discriminator. It takes a fixed-length random vector carrying noise as 

input and generates a sample.  

The main aim of the Generator is to make the discriminator classify its output as real. The part 

of the GAN that trains the Generator includes:  

 noisy input vector  

 generator network, which transforms the random input into a data instance  

 discriminator network, which classifies the generated data  

 generator loss, which penalizes the Generator for failing to dolt the discriminator 

 



What is a Discriminator? The Discriminator is a neural network that identifies real data from the fake 

data created by the Generator. The discriminator's training data comes from different two sources:  

1. The real data instances, such as real pictures of birds, humans, currency notes, etc., are used by the 

Discriminator as positive samples during training.  

2. The fake data instances created by the Generator are used as negative examples during the training 

process. 

 

While training the discriminator, it connects to two loss functions. During discriminator training, the 

discriminator ignores the generator loss and just uses the discriminator loss. In the process of training 

the discriminator, the discriminator classifies both real data and fake data from the generator. The 

discriminator loss penalizes the discriminator for misclassifying a real data instance as fake or a fake 

data instance as real. The discriminator updates its weights through backpropagation from the 

discriminator loss through the discriminator network. 

Working of GAN: 

 

In GANs, there is a generator and a discriminator. The Generator generates fake samples of data (be it 

an image, audio, etc.) and tries to fool the Discriminator.  

 The Discriminator, on the other hand, tries to distinguish between the real and fake samples. 

The Generator and the Discriminator are both Neural Networks and they both run in 

competition with each other in the training phase.  

 The steps are repeated several times and in this, the Generator and Discriminator get better and 

better in their respective jobs after each repetition.  

 The Discriminator, on the other hand, is based on a model that estimates the probability that the 

sample that it got is received from the training data and not from the Generator.  



 The GANs are formulated as a minimax game, where the Discriminator is trying to minimize 

its reward V(D, G) and the Generator is trying to minimize the Discriminator‘s reward or in 

other words, maximize its loss. It can be mathematically described by the formula below: 

 

 

4 B) Describe the architecture and Training process of a Restricted Boltzmann 

Machine (RBM) and provide one example     [CO2-L2][7M] 

Ans: Restricted Boltzmann Machine is an undirected graphical model that plays a major role in Deep 

Learning Framework in recent times. It is an algorithm which is useful for dimensionality reduction, 

classification, regression, collaborative filtering, feature learning, and topic modeling. The ―restricted‖ 

part of the name ―Restricted Boltzmann Machines‖ means that connections between nodes of the same 

layer are prohibited (e.g., there are no visible-visible or hidden connections along which signal passes). 

 

 

 Network layout There are five main parts of a basic RBM: 

 • Visible units 

 • Hidden units 

 • Weights 

 • Visible bias units 

 Hidden Bias Units 



1. Layers: Restricted Boltzmann Machines are shallow, two-layer neural nets that constitute the 

building blocks of deep-belief networks. The first layer of the RBM is called the visible, or input 

layer, and the second is the hidden layer. Each circle represents a neuron-like unit called a node. The 

nodes are connected to each other across layers, but no two nodes of the same layer are linked. 

 

2. Visible and hidden layers: In an RBM, every single node of the input (visible) layer is connected 

by weights to every single node of the hidden layer, but no two nodes of the same layer are 

connected. The second layer is known as the ―hidden‖ layer. Hid‐ den units are feature detectors, 

learning features from the input data. Each node performs computation based on the input to the 

node and outputs a result based on a stochastic decision whether or not to transmit data through an 

activation. 

 3. Connections and Weights: All connections are visible-hidden; none are visible-visible or hidden-

hidden. The edges represent connections along which signals are passed. Loosely speaking, those 

circles, or nodes, act like human neurons. They make decisions about whether to be on or off through 

acts of computation. ―On‖ means that they pass a signal further through the net; ―off‖ means that 

they don‘t. Usually, being ―on‖ means the data passing through the node is valuable; it contains 

information that will help the network make a decision. Being ―off‖ means the net‐ work thinks that 

particular input is irrelevant noise. 

 1. Biases: There is a set of bias weights (―parameters‖) connecting the bias unit for each layer 

  to  every unit in the layer. Bias nodes help the network better triage and model 

  cases in which an input  node is always on or always off. 

   2. Training: The technique known as pre training using RBMs means teaching it to reconstruct 

   the original data from a limited sample of that data. That is, given a chin, a  trained net‐ 

  work could  approximate (or ―reconstruct‖) a face. RBMs learn to reconstruct the  input dataset. 

  3. Reconstruction: Deep neural networks with unsupervised pretraining (RBMs, autoencoders) 

   perform feature engineering from unlabeled data through reconstruction.  



 

Example: We can visually explain reconstruction in RBMs by looking at the MNIST dataset. The 

MNIST dataset is a collection of images representing the handwritten numerals 0 through 9. 

 

The training dataset in MNIST has 60,000 records and the test dataset has 10,000 records. If we use a 

RBM to learn the MNIST dataset, we can sample from the trained network to see how well it can 

reconstruct the digits. If the training data has a normal distribution, most of them cluster around a central 

mean, or average, and become scarcer the further you stray from that average.  

UNIT-III 

5 A) What are structured output in the context of CNNs and why are they 

important in tasks like image segmentation or object detection? Explain with an 

Example          [CO3-L4] [7M] 

Ans:  Convolutional networks can be trained to output high-dimensional structured output rather than 

just a classification score. 

 To produce an output map as same size as input map, only same-padded convolutions can be 

stacked. 

 The output of the first labelling stage can be refined successively by another convolutional 

model. 

 If the models use tied parameters, this gives rise to a type of recursive model as shown below. 

(H¹, H², H³ share parameters or Hidden Layers) 



 

 

 The input layer receives the raw data, such as an image, and serves as the starting point 

for processing. 

 Then the so-called Hidden Layers: here the Hidden Layers are Convolutional Layer, 

Activation Function, Pooling Layer. 

 The term "hidden layers" in a CNN refers to the intermediate layers between the input and 

output layers. Although the layers are not directly observable from the input or output, 

you have the authority to shape their structure and functionality . 

 By defining the convolutional layers, activation functions, pooling layers, you guide the 

network's ability to extract meaningful features and make accurate predictions. 

 CNNs are especially useful for computer vision tasks such as image recognition and 

classification because they are designed to learn the spatial hierarchies of features by capturing 

essential features in early layers and complex patterns in deeper layers. One of the most 

significant advantages of CNNs is their ability to perform automatic feature extraction or 



feature learning. This eliminates the need to extract features manually, historically a labor-

intensive and complex process. 

 Object detection is the process of identifying and locating objects in an image. The task is to 

determine the object's class and obtain the exact coordinates of its location. 

 CNN-based neural networks play an important role in object detection. They identify features 

in an image that help identify and locate objects. Convolutional layers in CNNs effectively 

detect various features, leading to accurate object detection. 

 

 

5 B) Describe the concept of Random or unsupervised features in CNNs  

            [CO3-L2] [7M] 

Ans: Typically, the most expensive part of conv network training is learning the features. There are 3 

basic strategies for obtaining convolution kernels without supervised training. 

1. Simply initialize randomly: random filters work well in convolutional networks. Inexpensive 

way to choose the architecture of a convolutional network: 

 Evaluate the performance of several convolutional network architecture by training only 

the last layer. Take the best of these architectures and train the entire architecture using a more 

expensive approach. 

 2. Design them by hand 

3. Unsupervised training of kernels may be performed;  

 Eg: applying k-means clustering to image patches and using the centroids as 

convolutional kernels.  

 Unsupervised pre training may offer regularization effect (not well established). It 

may also allow for training of larger CNNs because of reduced computation cost. 

 Learning the features from unsupervised criterion allows them to be determined separately from 

the classifier layer at the top of the architecture. 

 Another approach for CNN training is greedy layer-wise pretraining most notably used in 

convolutional deep belief network.  



 For example, In the case of multi-layer perceptrons, starting with the first layer, each layer is 

trained in isolation. Once the first layer is trained, its output is stored and used as input for 

training the next layer, and so on. Instead of training an entire convolutional layer at a 

time, we can train a model of small patch, we can use the parameters from this patch-

based to define the kernels of a convolutional layer. 

 To reduce the computational cost of training the CNN, we can use features not learned by 

supervised training.  

 1. Random initialization has been shown to create filters that features are selective and 

translation invariant. This can be used to inexpensively select the model architecture.  

 

Randomly initialize several CNN architectures and just train the last classification layer. Once a 

Features are extracted, that model can be fully trained in a supervised manner. 

2. Hand designed kernels may be used; e.g. to detect edges at different orientations and 

intensities. 

 

3. Unsupervised training of kernels may be performed;  

Eg: applying k-means clustering to image patches and using the centroids as convolutional kernels. 

Unsupervised pre training may offer regularization effect (not well established). It may also allow for 

training of larger CNNs because of reduced computation cost. 

 



(OR) 

6 A) Explain Two efficient convolution algorithms used in CNNs.   [CO3-L4] [7M] 

Ans:  In the CNN Architecture, There are many Efficient Algorithms are used based on Research 

occur in Object Detection and Image Classification. 

 Here we will show the basic Convolution Algorithms are: 

 1. One Dimensional (1D) Convolution Algorithm 

 2. Two Dimensional(2D) Convolution Algorithm 

 3. Fourier Transform 

1. One Dimensional Convolution(ID): 1D CNN can perform activity recognition task from 

accelerometer data, such as if the person is standing, walking, jumping etc. In 1D convolution 

example has one input channel and one output channel. In ID our Input is One Dimensional 

Array.  In the given Example, we have taken the Input Vector, and simply multiplied with the 

Number.  

 

 ( This is the simplest case of 1D Convolution). But we can used this in Deep Learning , we 

have aware of Feature Vector, Filter or Weights, Feature Map. 

 

 Generally, Here the Input size is 12 and Filter size is 1 and Output Size is 12. 

 But in Deep Learning all can represent by using Matrix Form. So, Input Size is 12 x1 and 

Filter Size 1x1 and Output Size 12x1. 

 



 Next, we can move this filter to next position (i.e, Right Direction) 

 

 Eg-2:  Suppose here we can take the Filter Size 3x 1. So here, we can use padding due to 

loss of information 

 

2. Two Dimensional Convolution(2D): In 2D CNN, kernel moves in 2 directions. Input and 

output data of 2D CNN is 3 dimensional. Mostly used on Image data. Here filter comes to play 

which select some part of images and applies dot product on that.  

 A dot product is the element-wise multiplication between the filter-sized patch of the input 

and filter, which is then summed, always resulting in a single value. This filter has to be design 

to detect specific type of feature in image. 

 

 After filter iterate through entire image(Input), we get feature map. 

 

https://en.wikipedia.org/wiki/Dot_product


 We can change the kernel or filter to detect horizontal or vertical lines as per needed. 

This feature map help us to identify edges, vertical lines, horizontal lines, bends, etc. 

6 B) Compare and Contrast Max Pooling and Average Pooling, highlighting 

Strengths and Weaknesses.        [CO3-L4] [7M] 

Ans:  Pooling layers are one of the building blocks of Convolutional Neural Networks. Where 

Convolutional layers extract features from images, Pooling layers consolidate the features learned by 

CNNs.  

  we use a pooling function to modify the output of the layer further. Its purpose is to gradually 

shrink the representation‘s spatial dimension to minimize the number of parameters and 

computations in the network. 

 Pooling layers are used to reduce the dimensions of the feature maps. 

 The size of the pooling operation or filter is smaller than the size of the feature map. This 

means that the pooling layer will always reduce the size of each feature map by a factor of 

2. 

1. Max Pooling: Finally, we can say it selects the maximum valued element from the region captured 

by the filter in any feature map. 

 This works by selecting the maximum value from every pool. Max Pooling retains the most 

prominent features of the feature map, and the returned image is sharper than the original image. i.e, if 

we talk about image processing the max-pooling helps to extract the sharpest features on the image. 

 Kernel/filter is the size of a matrix that is applied over the complete input data. As the 

filter moves across the input, it selects the pixel with the maximum value to send to the 

output array. 

 

Mathematical Formula: The pooling layer requires 2 hyperparameters 

 1. Kernel/filter size F and  



 2. Stride S. 

On applying the pooling layer over the input volume, output dimensions of output volume 

will be ((n-f)/s +1) x ((n-f)/s +1)  

 

2. Average Pooling: As the filter moves across the input, it calculates the average value within the 

receptive field to send to the output array. This pooling layer works by getting the average of the pool. 

Average pooling retains the average values of features of the feature map. Average pooling method 

smooth's out the image and hence the sharp features may not be identified when this pooling method 

is used. 

 With average pooling, the harsh edges of a picture are smoothened, and this type of pooling 

layer can used when harsh edges can be ignored. 

 

Comparison of Max Pooling and Average Pooling :  

 



 Max pooling selects the brighter pixels from the image. It is useful when the background of the 

image is dark and we are interested in only the lighter pixels of the image. For example: in MNIST 

dataset, the digits are represented in white color and the background is black. So, max pooling is used. 

Similarly, min pooling is used in the other way round. 

 Average pooling method smoothes out the image and hence the sharp features may not be 

identified when this pooling method is used. 

UNIT-IV 

7 A) Construct the Architecture of an LSTM cell and how it retains and updates 

information over time         [CO3-L3] [7M] 

Ans: The architecture of LSTM: The LSTM architectures involves the memory cell which is 

controlled by three gates: 

 

 These gates decide what information to add to, remove from, and output from the memory 

cell. 

 The input gate controls what information is added to the memory cell. 

 The forget gate controls what information is removed from the memory cell. 

 The output gate controls what information is output from the memory cell. 

 Cell (the memory part of LSTM): The cell stores the state of a sequence, so it has the 

ability to either keep or forget certain information. 

 The LSTM maintains a hidden state, which acts as the short-term memory of the network. 

The hidden state is updated based on the input, the previous hidden state, and the memory cell‘s 

current state. 

 Here Information is retained by the cells and the memory manipulations are done by 

the gates.  

 Let's assume we have a sequence of words (w1, w2, w3, ..., wn) and we are processing the 

sequence one word at a time. Let's denote the state of the LSTM at time step t as (ht, ct),  

 where ht is the hidden state and ct is the cell state. 

 ct-1 stands for the input from a memory cell in time point t; 

Xt is an input in time point t; 

 ht is an output in time point t that goes to both the output layer and the hidden layer in the 

next time point. 

 



 

 Here Information is retained by the cells and the memory manipulations are done by the gates.  

 Let's assume we have a sequence of words (w1, w2, w3, ..., wn) and we are processing the 

sequence one word at a time. Let's denote the state of the LSTM at time step t as (ht, ct),  

 where ht is the hidden state and ct is the cell state. 

 ct-1 stands for the input from a memory cell in time point t; 

Xt is an input in time point t; 

 ht is an output in time point t that goes to both the output layer and the hidden layer in the next 

time point. 

The equation for the forget gate is: 

 

 where: 

 Wf represents the weight matrix associated with the forget gate. 

 [ht-1, Xt] denotes the concatenation of the current input and the previous hidden 

state. 

 bf is the bias with the forget gate. 

 σ is the sigmoid activation function. 

Input Gate: The input gate (it) decides what new information to store in the cell state.  

It has two parts. A sigmoid Function called the "input gate layer" decides which values we'll 

update, and a tanh Function creates a vector of new candidate values (Ct~) that could be added to 

the state. Ie, First, the information is regulated using the sigmoid function and filter the values to 

be remembered similar to the forget gate using inputs ht-1 and xt. . 



 Then, a vector is created using tanh function that gives an output from -1 to +1, which 

contains all the possible values from ht-1 and xt. At last, the values of the vector and the regulated 

values are multiplied to obtain the useful information.  

 The equation for the input gate is: 

 

 Candidate Values(Cell State Update): 

 

Output Gate: The task of extracting useful information from the current cell state to be presented 

as output is done by the output gate. First, a vector is generated by applying tanh function on the 

cell. Then, the information is regulated using the sigmoid function . At last, the values of the vector 

and the regulated values are multiplied to be sent as an output and input to the next cell. The 

equation for the output gate is: 

 

Hidden State:  

 

 

 

 

 

7 B) What is the primary role of an Encoder-Decoder Architecture in Sequence- to 

– Sequence tasks? Discuss with an Example.    [CO3-L2] [7M] 

Ans: Encoder – Decoder Model:  

There are three main blocks in the encoder-decoder model, 

 Encoder 

 Hidden Vector 

 Decoder 

 The Encoder will convert the input sequence into a single-dimensional vector (hidden vector). 

The decoder will convert the hidden vector into the output sequence. 



 Encoder-Decoder models are jointly trained to maximize the conditional probabilities of the 

target sequence given the input sequence. 

Encoder-Decoder Architecture in Sequence- to – Sequence tasks : In order to fully 

understand the model‘s underlying logic, we will go over the below illustration: 

 

1. Encoder : Multiple RNN cells can be stacked together to form the encoder. RNN reads each inputs 

sequentially 

 For every timestep (each input) t, the hidden state (hidden vector) h is updated according to the 

input at that timestep X[i]. 

 After all the inputs are read by encoder model, the final hidden state of the model represents the 

context/summary of the whole input sequence. 

 Example: Consider the input sequence ―I am a Student‖ to be encoded. There will be totally 4 

timesteps ( 4 tokens) for the Encoder model. At each time step, the hidden state h will be updated 

using the previous hidden state and the current input. 

2. Encoder Vector: This is the final hidden state produced from the encoder part of the model. It is 

calculated using the formula above.This vector aims to encapsulate the information for all input 

elements in order to help the decoder make accurate predictions.it acts as the initial hidden state of 

the decoder part of the model. 

3. Decoder :   The Decoder generates the output sequence by predicting the next output Yt given the hidden 

state ht. 

 The input for the decoder is the final hidden vector obtained at the end of encoder model. 

 Each layer will have three inputs, hidden vector from previous layer ht-1 and the previous layer 

output yt-1, original hidden vector h. 

 At the first layer, the output vector of encoder and the random symbol START, empty hidden 

state ht-1 will be given as input, the outputs obtained will be y1 and updated hidden state h1 (the 

information of the output will be subtracted from the hidden vector). 

 The second layer will have the updated hidden state h1 and the previous output y1 and original 

hidden vector h as current inputs, produces the hidden vector h2 and output y2. 



 The outputs occurred at each timestep of decoder is the actual output. The model will predict the 

output until the END symbol occurs. 

 A stack of several recurrent units where each predicts an output y_t at a time step t. 

(OR) 

8 A) Explain the concept of Deep Recurrent Networks (DRN) and how it enables 

the modeling of complex sequential dependencies     [CO3-L4] [7M] 

Ans:  Deep Recurrent Networks: Defining networks consisting of a sequence input, a single hidden 

RNN layer, and an output layer. Despite having just one hidden layer between the input at any time 

step  and the corresponding output, there is a sense in which these networks are deep. Inputs from 

the first time step can influence the outputs at the final time step T (often 100s or 1000s of steps later). 

These inputs pass through T applications of the recurrent layer before reaching the final output. 

However, we often also wish to retain the ability to express complex relationships between the inputs 

at a given time step and the outputs at that same time step. Thus we often construct RNNs that are deep 

not only in the time direction but also in the input-to-output direction. This is precisely the notion of 

depth that we have already encountered in our development of MLPs and deep CNNs. 

 

 

 

 



8 B) Illustrate the core idea behind Gated Recurrent Unit (GRU) and how they 

extend the capabilities of standard RNNs.        [CO3-L3] 

[7M] 

Ans:  The basic idea behind GRU is to use gating mechanisms to selectively update the hidden state 

of the network at each time step. The gating mechanisms are used to control the flow of information in 

and out of the network. The GRU has two gating mechanisms, called the reset gate and the update 

gate. 

The reset gate determines how much of the previous hidden state should be forgotten, while the update 

gate determines how much of the new input should be used to update the hidden state. The output of 

the GRU is calculated based on the updated hidden state. 

Architecture:  

 

The equations used to calculate the reset gate, update gate, and hidden state of a GRU are as 

follows: 

Reset gate: r_t = sigmoid(W_r * [h_{t-1}, x_t]) 

Update gate: z_t = sigmoid(W_z * [h_{t-1}, x_t]) 

Candidate hidden state: h_t‘ = tanh(W_h * [r_t * h_{t-1}, x_t]) 

Hidden state: h_t = (1 – z_t) * h_{t-1} + z_t * h_t‘ 

where W_r, W_z, and W_h are learnable weight matrices, x_t is the input at time step t, h_{t-1} is the 

previous hidden state, and h_t is the current hidden state. 

 GRU networks are a type of RNN that use gating mechanisms to selectively update the hidden 

state at each time step, allowing them to effectively model sequential data. They have been shown to 

be effective in various natural language processing tasks, such as language modeling, machine 

translation, and speech recognition. 

 A Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) that enhances the 

speed performance of LSTM networks by simplifying the structure with only two gates: the update 

gate and the reset gate. It is used when speed is crucial in processing large amounts of data.  



UNIT-V 

9 A) Discuss the significance of Deep Learning in the field of Speech Recognition 

             [CO4-L2] 

[7M] 

Ans:  Speech recognition is the ability of a machine or program to identify and understand human 

speech. It has a wide range of applications, from virtual assistants like Siri and Alexa, to transcription of 

audio tracks, like generating subtitles for YouTube videos. Early speech recognition systems relied on 

hand-crafted algorithms and acoustic models. However, with the rise of deep learning, speech 

recognition systems have become far more accurate. Deep neural networks are able to learn speech 

representations directly from data, surpassing previous state-of-the-art models. 

 The primary goal of speech recognition systems is to accurately and efficiently transcribe 

spoken words into a format that can be processed, stored, or used for various applications. This 

technology relies on sophisticated algorithms and Deep Learning techniques to interpret and 

understand human speech patterns. 

 Automatic speech recognition (ASR) refers to the task of recognizing human speech and 

translating it into text. 

Architecture: 

 

Working Procedure: 

 

 The big problem is that speech varies in speed.  



 One person might say ―hello!‖ very quickly and another person might say 

―heeeelllllllllllllooooo!‖ very slowly, producing a much longer sound file with much more 

data. 

 Both both sound files should be recognized as exactly the same text — ―hello!‖ 

  Automatically aligning audio files of various lengths to a fixed-length piece of text turns out 

to be pretty hard.  

 Step-1: Turning Sounds into Bits: The first step in speech recognition is obvious — we need 

to feed sound waves into a computer. 

 For Eg: how to take an image and treat it as an array of numbers so that we can feed directly 

into a neural network for image recognition: 

 But sound is transmitted as waves. How do we turn sound waves into numbers? Let‘s use this 

sound clip of me saying ―Hello‖: 

 

 Sound waves are one-dimensional. At every moment in time, they have a single value based 

on the height of the wave. Let‘s zoom in on one tiny part of the sound wave and take a look( 

These  are Analog Signals) 

 Step-2: Pre-processing the Sample sound data 

 We could feed these numbers right into a neural network. But trying to recognize speech 

patterns by processing these samples directly is difficult. Instead, we can make the problem 

easier by doing some pre-processing on the audio data. 

 To make this data easier for a neural network to process, we are going to break apart this 

complex sound wave into it‘s component parts. We‘ll break out the low-pitched parts, the next-

lowest-pitched-parts, and so on. Then by adding up how much energy is in each of those 

frequency bands (from low to high). 

 Step-3: Recognizing Characters from Short Sounds 

 Here we have to apply deep neural network. The input to the neural network will be 20 

millisecond audio chunks. For each little audio slice, it will try to figure out the letter that 

corresponds the sound currently being spoken. 



 

 We‘ll use a recurrent neural network — that is, a neural network that has a memory that 

influences future predictions.  

 That‘s because each letter it predicts should affect the likelihood of the next letter it will 

predict too.  

 For example, if we have said ―HEL‖ so far, it‘s very likely we will say ―LO‖ next to finish 

out the word ―Hello‖.  

9 B) Illustrate the application of Deep Learning in the healthcare domain with an 

Example           [CO4-L3] [7M] 

Ans:  Deep learning helps in detecting cancer cells and analyzing the MRI images to give elaborative 

results. Google has made Google AI eye doctor software. It examines retina scans and identifies 

diabetic retinopathy, which can cause blindness. Suppose we have taken Kidney Disease Prediction it 

will follow the structure. 

 

 

Kidney Disease Classification is a project utilizing deep learning techniques to classify Kidney Tumor 

and Stone diseases from medical images dataset. This project leverages the power of Deep Learning, 

https://medium.com/@ageitgey/machine-learning-is-fun-part-2-a26a10b68df3
https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-normal-cyst-tumor-and-stone/


Machine Learning Operations (MLOps) practices, Data Version Control (DVC). It integrates with 

DagsHub for collaboration and versioning. 

 

 

This image , we can take Convolution Neural Networks are used for Feature Extraction and 

Classification 

(OR) 

10 A) Demonstrate the evolution of Deep Neural Networks in Computer Vision and 

their impact in image processing applications     [CO4-L3] [7M] 

Ans: Deep learning is a machine learning technique used to build artificial intelligence (AI) systems. It is based 

on the idea of artificial neural networks (ANN), designed to perform complex analysis of large amounts of data 

by passing it through multiple layers of neurons.  

 1. Image Classification: Convolutional Neural Networks (CNNs) have revolutionized image 

classification by their ability to automatically learn and extract features from images. CNNs process 

visual data through multiple layers, each layer extracting increasingly complex features from the 

image. This hierarchical feature extraction makes CNNs highly effective for classifying images into 

predefined categories. 

Real-world Applications: 

Facial Recognition: CNNs are widely used in facial recognition systems to identify and verify 

individuals based on their facial features. Applications include security systems, unlocking 

smartphones, and personalized user experiences. 

Object Detection: In object detection tasks, CNNs not only classify images but also identify the 

location of objects within the images. This is essential for applications such as surveillance, 

autonomous driving, and robotics. 

2. Image Segmentation:  

Semantic Segmentation: This technique involves classifying each pixel in an image into a category, 

such as identifying different parts of an object or distinguishing between various objects within the 

same image. Semantic segmentation is crucial for understanding the structure and content of images. 



Instance Segmentation: Building on semantic segmentation, instance segmentation identifies and 

segments each object instance separately. This allows for distinguishing between multiple objects of 

the same category in a single image. 

 Medical Imaging: Image segmentation is vital in medical imaging for identifying and 

delineating anatomical structures, tumors, and other pathologies. It aids in accurate diagnosis and 

treatment planning. 

 Autonomous Driving: Self-driving cars rely on image segmentation to understand and 

navigate their environment. By segmenting the road, pedestrians, vehicles, and obstacles, 

autonomous systems can make informed driving decisions. 

3. Image Generation and Enhancement:  

GANs for Creating Realistic Images :Generative Adversarial Networks (GANs) are used to generate 

highly realistic images by training two neural networks — the generator and the discriminator — in a 

competitive setting. The generator creates fake images, while the discriminator tries to distinguish 

between real and fake images. Over time, the generator becomes proficient at producing images that 

are indistinguishable from real ones. 

10 B) Explain the impact of Deep Learning in improving Machine Translation, 

Sentiment Analysis        [CO4-L4] [7M] 

Ans: One popular type of deep learning model used in sentiment analysis is recurrent neural networks 

(RNNs). RNNs are designed to handle sequential data such as natural language by taking into account 

previous inputs when processing current inputs. 

 Sentiment analysis is a powerful tool in Natural Language Processing (NLP) that allows us to 

understand and interpret the emotions and sentiments expressed in text data. With the advancements in 

deep learning techniques, sentiment analysis has become even more accurate and efficient, leading to its 

adoption in various real-life applications. 

1. Customer feedback analysis: In today‘s competitive market, understanding customer sentiments is 

crucial for businesses to improve their products and services. Sentiment analysis using deep learning 

algorithms can help companies analyze large volumes of customer feedback from various sources such 

as social media reviews, surveys, and customer support interactions. This enables businesses to gain 

insights into customer satisfaction levels, identify areas for improvement, and make data-driven 

decisions. 

 2. Brand monitoring: With the rise of social media platforms, brands need to be aware of how their 

customers perceive them online. Sentiment analysis using deep learning techniques can help brands 

monitor their reputation by analyzing mentions on social media platforms, news articles or blog posts 

related to their brand. This allows companies to stay informed about any negative sentiment towards 

their brand and take necessary actions. 

3. Stock market prediction: Sentiment analysis has found its use in predicting stock market trends by 

analyzing financial news articles or social media conversations related to stocks. Deep learning models 



can analyze textual data from multiple sources and classify it as positive or negative sentiment towards 

specific stocks or the overall market trend. This information can be used by investors for making 

informed decisions about buying or selling stocks. 

 Social media is used to categorise products or services, but analysing vast comments is time-

consuming. Researchers use sentiment analysis via natural language processing, evaluating methods 

and results conventionally through literature reviews and assessments. However, our approach diverges 

by offering a thorough analytical perspective with critical analysis, research findings, identified gaps, 

limitations, challenges and future prospects specific to deep learning-based sentiment analysis in recent 

times. 

 

It all starts with building a sentiment library. Sentiment libraries are made of multiple dictionaries that 

have an exhaustive list of phrases and adjectives that have been manually scored beforehand. This is the 

same way we understand phrases. The first time we hear a phrase, we might not understand it but based 

on the context it is used in, we file away in our brain whether it has a positive, negative or neutral 

connotation. 

 

 

 

 

 

************** THE END************* 


