[image:]
[image:]
[image:][image:][image:][image:]
[image:][image:][image:]
[image:][image:][image:][image:][image:]
[image:][image:][image:][image:]
[image:]
[image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:]
[bookmark: _GoBack][image:][image:][image:][image:][image:][image:]
image6.png
Supervised leaming can
be done by choosing the hypothesis /2* that is most probable given the data:

1 = argmax P(h|data) .
heH

By Bayes” rule this is equivalent to
1 = argmax P(data|h) P(h) .
heH

image7.png
n Trees

18.3 Learning Dec
Decision trees are a powerful representation for classification tasks, where the output is a discrete
value.
18.3.1 The Decision Tree Representation
o Structure: Each internal node tests an attribute; each branch corresponds to an attribute value;
each leaf node represents a classification decision.

« Decision Process: Starting from the root, traverse the tree according to the attribute values of

the input until a leaf node is reached.

image8.png
Patrons?

None [Some~_Ful
d e WaitEstmate?
>60_—3060 1030 o010
o Atemate? Hungry? Yes
No Yes No /\ Yes
Resevation?]| FriSar? Yes| [Atemate?
No /N\Yes Mo /NVes No /NVes
Bar? Yes Yes Ves
No /N Yes
Yes Yes

Figure 18.2 A decision tree for deciding whether to wait for a table.

image9.png
Example

Building a decision tree to decide whether to wait at a restaurant based on attributes like:

Alternate: Availability of n alternative restaurant.
Bar: Presence of a bar to wait.

Fri/Sat: Whether it's Friday or Saturday.

Hungry: Whether the patron is hungry.

Patrons: Number of patrons (None, Some, Full).

WaitEstimate: Estimated waiting time.

image10.png
The tree represents the decision process using the attributes above to decide whether to wait.

18.3.2 Expressiveness of Decision Trees
« Decision trees can represent any Boolean function.

Some functions, like the majority function, require exponentially large trees.

« The choice of representation affects the size and complexity of the tree.

18.3.3 Inducing Deci

n Trees from Examples
« Goal: Find a decision tree that correctly classifies the training examples.

« Algorithm: A greedy, recursive algorithm that selects the most informative attribute at each

node.
Attribute Selection

« The attribute that best separates the examples into classes is chosen first.

image11.png
Example Input Attributes
Alt | Bar | Fri [Hun| Pat | Price| Rain| Res | Type | Est

Yes | No| No | Yes| Some| 58| No | Yes| French| o0-10

Yes| No| No| Yes| Full | S | No| No| Thai | 30-60

3 No | Yes| No | No | Some| S | No | No| Burger| 0-10
X Yes | No| Yes | Yes| Full | S | Yes | No| Thai | 10-30
x5 Yes | No| Yes | No | Full | S| No | Yes| French| >60
o No | Yes| No | Yes| Some| $5 | Yes | Yes| lalian | 0-10
X No | Yes| No | No | None| S | Yes | No| Burger| 0-10
x5 No| No| No | Yes| Some| $5 | Yes | Yes| Thai | 0-10
o No | Yes| Yes | No | Full | S | Yes | No | Burger| >60
xio || Yes | Yes| Yes | Yes | Full | $5| No | Yes| halian | 10-30
xn No| No| No| No| None| S | No| No| Thai | 0-10
xiz || Yes| Yes| Yes | Yes| Full | $ | No | No| Burger| 30-60

Figure 18.3

Examples for the restaurant domain.

image12.png
zsvsmn zsvsmn

Patrons?

@ ®)

Figure 184 Splitting the examples by testing on attributes. At each node we show the
positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on Type
brings us no nearer to distinguishing between positive and negative examples. (b) Splitting
on Patrons does a good job of separating positive and negative examples. After splitting on
Patrons, Hungry is a fairly good second test.

image13.png
« (2 Splitting on the Type' attribute doesn't help distinguish the classes.

o (b) Splitting on the Patrons’ attribute is more informative.
Handling Different Cases
1. All examples have the same classification: Return that classification.

2. No attributes left: Return the most common dlassification among the examples.

No examples left: Return the most common classification from the parent node.

ed classification with same attributes: Return the most common classification (due to noise
or insufficient attributes).

image14.png
18.3.4 Choosing Attribute Tests

« Information Gain: A metric based on entropy used to select the most informative attribute.

Entropy (H)

Measures the uncertainty of random variable:
— Y Py log; P(vy)
&
For a Boolean variable with probability g of being true:

B(g) = —qlogy g — (1 - g) logy(1 — @)

Information Gain Formula

a
. Pt (P
Gain(A) = B —_—
A (P+n.) P p+n (m+ru)

=1

image15.png
Where:
« pand n: Number of positive and negative examples.
« pi and n: Counts in the k-th subset after splitting on attribute A.

« d: Number of distinct values of A.

image16.png
function DECISION-TREI
atree

if czamples is empty then return PLURALITY-VALUE(parent_czamples)
elseif all ezamples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(ezamples)
ese
A ATEMAX, _ usputes IMPORTANCE(a, ezamples)
tree — anew decision tree with root test A
for each value vy of A do
eas—{e : e czamples and e.A = v}
subtree — DECISION-TREE-LEARNINGczs, attributes — A, ezamples)
add a branchto tree with label (4 =) and subtree subtree
return tree

LEARNING(ezamples, attributes, parent_czamples) returns

Figure 18.5 The decision-tree leaming algorithm. The function IMPORTANCE is de-
scribed in Section 18.3.4. The function PLURALITY-VALUE selects the most common output

value among a set of examples, breaking ties randomly.

image17.png
18.3.5 Generalization and Overfitting

« Overfitting: When the model fits the training data too well, including noise, leading to poor

generalization.

Deci

ion Tree Pruning

« Purpose: Reduce overfitting by removing branches that have little predictive power.

 Method: Use statistical significance tests (e.g. chi-squared test) to decide whether to prune a
node.

image18.png
09

08

01

06

0s

Proportion cormecton est set

0 2 40 e 8 100
Training se size

Figure 18.7 A leaming curve for the decision tree leaning algorithm on 100 randomly
generated examples in the restaurant domain. Each data point is the average of 20 trials.

image19.png
18.3.6 Broadening Applicability

« Handling M

g Data: Methods to classify examples with missing attribute values.

« Multivalued Attributes: Adjusting for attributes with many possible values to prevent bias in

information gain.
« Continuous and Integer-Valued Attributes: Using thresholds to split continuous attributes,

« Regression Trees: Decision trees that predict continuous values by fitting linear models at the

leaves.

image20.png
18.4 Evaluating and Choosing the Best Hypothesis

Stationarity Assumption and 11D

: The assumption that the probability distribution of examples doesn't change over

« 1LD: Independent and identically distributed examples, a key assumption for many learning

algorithms.

Error Rates and Overfitting

. T

\g Error: The error rate on the training set.
« TestError: The error rate on unseen data.

« Overfitting: When the model's training error is low, but the test error is high.

Holdout and Cross-Validation
« Holdout Method: Splitting data into separate training and test sets.

« k-Fold Cross-Validation: Dividing data into k subsets and performing k training and testing

rounds, each time using a different subset as the test set.

image21.png
A

g Peeking

« Peeking: Using test data to make decisions about the model, leading to overly optimistic

performance estimates.

« Solution: Keep test data separate and use a validation set for model selection.

18.4.1 Model Selec

n: Complexity vs. Goodness of Fit

« Underfitting: Model is too simple to capture underlying patters.

« Overfitting: Model is too complex, capturing noise as if it were signal.

« Model Selection: Finding the optimal complexity that balances underfitting and overfitting.

Algorithm for Model Selection

« Build models of increasing complexity.
* Use cross-validation to estimate error rates.

 Choose the model with the lowest validation error.

image22.png
18.4.2 From Error Rates to Loss

« Loss Function (L(y, §)): Quantifies the cost of predicting § when the true output is .
Common Loss Functions

© 0/lloss:

0 ify—j

L(.Im?)—{l ity £

« Absolute Value Loss (L1 Loss);

Lly.9) = ly — 9l

« Squared Error Loss (L2 Loss):

L(y.9) = (v~

image23.png
18.4.3 Regularization

« Regularization: Adding complexity penalty to the loss function to prevent overfitting.

Total Cost Function

Cost(h) = Empirical Loss(h) + A x Complexity(h)

: Regularization parameter controlling the trade-off.

Minimum Description Length (MDL)

A principle that selects the hypothesis that leads to the shortest total description of the data and
the hypothesis tself.

image24.png
18.5 The Theory of Learning

This section explores the theoretical foundations of learning, including how many examples are

needed and how to ensure that leaming algorithm produces a good hypothesis.

PAC Learning

« Probably Approximately Correct (PAC): A framework that provides bounds on the number of

examples needed for learning.
Error Rate
error(h) = P(h(z) £ f(x))

« € Desired accuracy (maximum acceptable error rate).

« &: Confidence level (probability that the hypothesis is not approximately correct is less than d).

image25.png
Sample Complexity
The number of examples N needed satisfies:
1(, 1
Nz=(Inz+|H
€ 8
Where |H | is the size of the hypothesis space.
Implications

« Forlarge hypothesis spaces, | H | is large. requiring more examples.

« Restricting H can reduce the number of examples needed.

image26.png
18.5.1 PAC Learning Example: Learning Decision

ts

ts: Sequences of tests (conjunctions of literals) with associated outcomes.
k-DL (Decision Lists with k Literals)

o Hypotheses where each test is a conjunction of at most k literals.

o The size of k-DL hypothesis space is polynomial in 7. (number of attributes) for fixed k.
Sample Complexity for k-DL

« Polynomial in n, making it feasible to learn with a reasonable number of examples.

image27.png
18.6 Regression and Classification with Linear Models

Linear models are fundamental in both regression and dlassification. This section explores their uses,
starting with simple linear regression and progressing to classification.

18.6.1 Univariate Linear Regression

This is the simplest form of regression, where the task is to fit a straight line to data. The goal is to
find the line y = w)x + wp. where wy and w are weights that minimize the sum of squared errors

between the predicted and actual data points.

image28.png
« Loss Function: The loss is given by the squared difference between actual and predicted values:

¥
Loss(ha) = Y (4 — (wiz; + wa))*
=t

« Solution: The weights wy and wy can be found by solving the system of equations derived from

the partial derivatives of the loss function.
18.6.2 Multivariate Linear Regression
This extends univariate regression to multiple input variables. The hypothesis function is
h(@) = wo + wiy + o+ wejg
where i is an n-dimensional input vector. This is simply the dot product of the weight vector and

the input vector.

n: Regularization is used to avoid overfitting by adding a complexity penalty to the

« Regulari
loss function. For example, L1 (sum of absolute values) or L2 (sum of squares) regularization is

used depending on the problem.

image29.png
18.6.3 Linear Classifiers with a Hard Threshold

Linear models can also classify data by learing a linear separator between two classes. The
hypothesis function predicts class labels (0 or 1) based on whether the input falls on one side of a

linear decision boundary.

image30.png
« Decision Boundary: The linear separator is defined as 5 — 1.7y — 4.9, and the classifier

predicts 1 if the point lies on one side and 0 on the other.

image31.png
18.6.4 Logistic Regression (Soft Thresholding)
Instead of a hard threshold, logistic regression applies a soft threshold using the logistic function.

This makes predictions that are probabilities rather than binary classifications.

+ Theogistc onctin s
1

)
+e

« This smooth, differentiable function allows for more flexible predictions and can be optimized

Logistict

using gradient-based methods.

image32.png
18.7 Artificial Neural Networks

Artificial Neural Networks (ANN) are inspired by the biological neural networks. ANNs are a series of

layers of "neurons” that apply linear transformations followed by non-linear activation functions.
18.7.1 Multilayer Networks

Neural networks consist of multiple layers of nodes (neurons). Each node applies a weighted sum to

its inputs followed by an activation function like the sigmoid or ReLU function,
« Learning: The weights in the network are learned using the backpropagation algorithm, which
propagates the error of the prediction back through the network to update weights.
18.7.2 Backpropagation

Backpropagation computes the gradient of the loss function with respect to each weight using the

chain rule of calculus. This gradient is used to update the weights via gradient descent.

« Figure 18.24: Shows the backpropagation algorithm, where the deltas (errors) are propagated

back from the output layer to the input layer.

image33.png
function BACK-PROP-LEARNING czarmples, netuwork) returns a neural network.
inputs: czampics, 3 se of examples, each ith input veclor x and output vector y
metwork, 3 mulilayer network with L layers, Welghts ., activation function g
local variables: 2, a vector o erors, indexed by network node.

repeat
Tor cach welght It network do.
1, a small andom number
for each exampie (x,) In crampies do
7+ Propagate he npus forward 0 compute the oupuis »/
for each node i the input ayer do

for =210 Ldo
for each node 7 inayer £ do
iny %, g o
o g(iny)
7+ Propagate dellasbackward from output ayer o input ayer =/
Tor cach node i the utpu ayer do
Al gf(ing) % (o — a5)
for =1 1101 do

forcach node s n layer £ do
Al ¢ (in) 3, ey Al
7+ Update ever weight s nebvork using dlias «/
foreach weight v, in nctwork do
gt + o x 0y x Af]
‘until some stopping critrion is satisied
return cuort

Figure 18.24 The back-propagation algorithm for leaming in multilayer networks.

image34.png
18.8 Nonparametric Models

Nonparametric models do not assume a fixed form for the hypothesis, allowing more flexibility in

fitting data,

18.8.1 Nearest Neighbor Models
In nearest neighbor models, the output is predicted by looking at the nearest data points. For
classification, the plurality vote of the k-nearest neighbors is used, while for regression, the mean
value of the k-nearest neighbors s predicted.

« Figure 18.26: Shows k-nearest neighbor classification boundaries. For k = 1, overfitting can

occur, but increasing k smooths out the boundary.

image35.png
Figure 18.26 (3) A k-nearestneighbor model showing the extentofthe explosion class for

the data in Figure 15,15, with
problem goes away for this data set

‘Overfiting s apparent. (b) With & 5, the overfting.

image36.png
18.9 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are used for classification tasks. They work by finding the
hyperplane that best separates two classes by maximizing the margin (distance between the

hyperplane and the nearest data points).
18.9.1 Margin Maximization

The goal of SVMs is to find the hyperplane with the maximum margin, defined as the distance to the
nearest data points from either class.

18.9.2 Kernels

For non-linearly separable data, the kernel trick is used to transform the data into a higher-
dimensional space where a linear separator can be found. Common kernels include the polynomial

and radial basis function (RBF) kernels.

image37.png
18.10 Ensemble Learning

Ensemble learing involves combining multiple models to create a stronger predictor than any

individual model,

18.10.1 Bagging

Bagging (Bootstrap Aggregating) creates multiple subsets of the training data using bootstrapping
and trains a model on each subset. The final prediction is the average (for regression) or majority

vote (for classification) of the individual models.

18.10.2 Boosting

Boosting is a sequential technique where each new model corrects the mistakes of the previous
models. A popular boosting algorithm is AdaBoost, which assigns higher weights to misclassified

points to focus more on difficult cases,

18.10.3 Stacking

Stacking trains multiple different models and combines their predictions using a meta-model that

learns how to best combine them,

image1.png
18.1 Forms of Learning

Learning can take various forms depending on the component being improved, the prior knowledge

of the agent, the representation used, and the feedback available.

Components to Be Learned

« Direct Mapping: From conditions to actions.

« Inference Mechanism: Deriving properties of the world from percepts.
« World Models: Understanding how the world evolves and the effects of actions.
« Utility Information: Indicating the desirability of states.

« Action-Value Information: Indicating the desirability of actions.

* Goals: Describing desirable states to achieve maximum utility.

image2.png
Types of Learning Based on Feedback

1. Supervised Learning: Learning from Iabeled examples provided by a teacher. The agent aims to

learn a function that maps inputs to outputs.

2. Unsupervised Leaming: Leaming patterns or structures in the input data without expli

it output
labels. Clustering is a common task.

3. Reinforcement Learning: Learning to make decisions through rewards and punishments,

focusing on long-term outcomes.

4. Semi-Supervised Learning: Combining a small amount of labeled data with a large amount of

unlabeled data.

image3.png
18.2 Supervised Learning

In supervised learning, the agent is given 2 training set of N example input-output pairs:

(@ yn)s (2, 5) 0 (25, yw)

The goal is to discover a hypothesis h that approximates the unknown function f such that h(:

f(z) for new inputs.

Key Concepts
« Hypothesis (h): A proposed function that the learning algorithm outputs as an approximation of
ra
« Generalization: The ability of h to correctly predict outputs for new, unseen inputs.
« Training Set: The dataset used to train the model.

o Test Set: A separate dataset used to evaluate the performance of h.

image4.png
feo f f f

@ ® © @

Figure 181 (a) Example (z, /(x)) pairs and a consistent, lincar hypothesis. (b) A con-
ent, degres-7 polynomial hypothesis for the same data set. (¢) A different data set, which
an exact degree-6 polynomial fit or an approximate linear fit. (d) A simple, exact
it to the same data set.

image5.png
« (a) Alinear hypothesis that perfectly fits the data points.

« (b) A degree-7 polynomial that also fits the data but may overfit, capturing noise rather than the

underlying pattern.

* (o) A dataset where a high-degree polynomial fits exactly, but a linear approximation may

generalize better.

* (d) A sinusoidal function providing a simple and exact fit to the data

Ockham’s Razor
The principle that, among hypotheses consistent with the data, the simplest one should be preferred
to avoid overfitting.

Hypothesis Space (H)

The set of all hypotheses the learning algorithm considers. Choosing H involves a trade-off between

expressiveness and complexity.

