
20. Learning Probabilistic Models 

This chapter discusses how intelligent agents can learn about the uncertain world by constructing 
probabilistic models from data. It emphasizes that learning can be viewed as a form of 
probabilistic inference, where the goal is to predict future events based on past observations and 
manage uncertainty using probabilistic reasoning. 

20.1 Statistical Learning 

Statistical learning involves using data (evidence) to infer hypotheses about the world, where 
hypotheses represent probabilistic theories explaining how the domain works. In this approach, 
the data serve as the observed values of certain random variables, while the hypotheses represent 
different probabilistic models. 

 For instance, Bayesian learning methods use Bayes’ rule to update the likelihood of 
different hypotheses as more data become available, allowing predictions that account 
for uncertainty and noise in the data. 

Example: Consider a candy bag where the types of candies (cherry or lime) are unknown, and 
we want to predict the flavor of the next candy based on the flavors we have already observed. 
Bayesian learning calculates the probability of different hypotheses about the bag’s candy 
composition and makes predictions by averaging over these hypotheses. 

___________________________________________________________________________ 

20.2 Learning with Complete Data 

In this section, the focus is on learning from complete data, meaning every random variable in 
the data set has been observed. The goal is often to learn the parameters (numerical values) of a 
probabilistic model, such as the conditional probabilities in a Bayesian network or the parameters 
of other probabilistic models. 

20.2.1 Maximum-likelihood Parameter Learning: Discrete Models 

In maximum-likelihood learning, the task is to find the parameters that maximize the likelihood 
of the observed data. For discrete models, this often involves counting the occurrences of 
different outcomes and determining the parameter values that best explain the observed 
frequencies. 

Example: In a model where candies can either be cherry or lime, the maximum-likelihood 
estimate of the proportion of cherry candies in a bag would simply be the observed ratio of 
cherry candies to the total number of candies. 

20.2.2 Naive Bayes Models 

Naive Bayes is a simplified Bayesian network model where the class variable (the label to 
predict) is the root node, and the attribute variables (features) are the leaves. The model assumes 
that, given the class. This assumption all attributes are conditionally independent of each other 
allows for efficient learning and inference, and despite being "naive," it often performs well in 
practice. 

Example: In a spam email classifier, the class variable would be whether an email is spam or 
not, and the attributes might be the presence of specific words. The model assumes that given the 
spam status, the occurrence of each word is independent of the others. 



 

20.2.3 Maximum-likelihood Parameter Learning: Continuous Models 

In continuous models, such as those based on the Gaussian (normal) distribution, the maximum-
likelihood learning task involves determining parameters like the mean (average) and standard 
deviation that best fit the observed data. The log-likelihood is used to simplify the maximization 
process since it turns products of probabilities into sums, making the math more tractable. 

Example: Suppose you have a set of measurements of the heights of individuals. You can model 
the data with a Gaussian distribution and use maximum likelihood to estimate the average height 
(mean) and how spread out the heights are (standard deviation). 

20.2.4 Bayesian Parameter Learning 

Bayesian parameter learning extends maximum-likelihood learning by incorporating prior beliefs 
about the parameters before any data is observed. As new data is observed, these priors are 
updated to form a posterior distribution over the parameters. This approach helps avoid 
overfitting, particularly when data is sparse or noisy, by allowing prior beliefs to influence the 
model's predictions. 

Example: If you have a prior belief that the bag of candy is likely to be mostly lime-flavored, 
Bayesian learning allows you to incorporate this belief and update it as you observe the actual 
flavors. 

20.2.5 Learning Bayes Net Structures 

Learning the structure of a Bayesian network (i.e., the relationships between variables) is a more 
complex task than parameter learning. This process often involves searching for the network 
structure that best fits the data while balancing complexity. Two key methods for learning 
structures are: 

1. Conditional Independence Tests: Checking whether the relationships implied by the 
network structure are consistent with the observed data. 

2. Maximum Likelihood (or MAP) with Complexity Penalties: Choosing the structure 
that maximizes the likelihood of the data while penalizing more complex models to avoid 
overfitting. 

20.2.6 Density Estimation with Nonparametric Models 

Nonparametric density estimation techniques do not assume a fixed parametric form for the 
probability distribution (like a Gaussian) but instead use methods such as nearest neighbors or 
kernel functions to estimate the underlying distribution directly from the data. These methods are 
useful when the form of the probability distribution is unknown. 

Example: Given a set of two-dimensional points, k-nearest neighbors might estimate the density 
around a point by measuring how many neighbors fall within a given distance. Kernel density 
estimation would use smooth functions, like Gaussians, centered at each data point to estimate 
the overall distribution. 

___________________________________________________________________________ 

20.3 Learning with Hidden Variables: The EM Algorithm 

The Expectation-Maximization (EM) algorithm is a powerful technique used to learn 
probabilistic models when some variables are hidden (unobserved). The EM algorithm iterates 
between two steps: 



 E-step (Expectation): Estimates the distribution of the hidden variables based on the observed 
data and current model parameters. 

 M-step (Maximization): Updates the model parameters by maximizing the expected log-
likelihood calculated in the E-step. 

20.3.1 Unsupervised Clustering: Learning Mixtures of Gaussians 

Unsupervised clustering involves identifying different categories (or clusters) in data without 
knowing the labels in advance. The EM algorithm is often used to fit a mixture of Gaussians 
model, where the data are assumed to come from a mixture of multiple Gaussian distributions. 
Each data point is assigned probabilistically to one of these distributions, and the parameters of 
each distribution are updated iteratively. 

Example: If you have a dataset of star observations, EM could be used to cluster the stars into 
groups (like red giants and white dwarfs) by fitting a mixture of Gaussian distributions to the 
data. 

20.3.2 Learning Bayesian Networks with Hidden Variables 

The EM algorithm can also be used to learn Bayesian networks where some variables are hidden. 
These hidden variables often represent underlying causes or latent factors that explain the 
observed data. In the E-step, the hidden variables are inferred, and in the M-step, the network 
parameters are updated. 

Example: In a medical diagnosis problem, diseases may be hidden variables, while the observed 
variables are symptoms. The EM algorithm can infer the most likely diseases and adjust the 
model to best fit the observed symptoms. 

20.3.3 Learning Hidden Markov Models 

Hidden Markov Models (HMMs) represent processes where the system transitions between 
different hidden states over time. EM, specifically the Baum-Welch algorithm, is used to learn 
the transition probabilities and the emission probabilities (how states generate observations) from 
observed sequences of data. 

Example: In speech recognition, the hidden states could represent phonemes (basic sound units), 
and the observed data are the sound signals. The EM algorithm can learn how the phonemes 
transition over time and how they correspond to different sound patterns. 

20.3.4 The General Form of the EM Algorithm 

The general form of the EM algorithm is applicable to a wide variety of models beyond mixtures 
of Gaussians or hidden Markov models. The E-step computes the expected values of hidden 
variables, and the M-step maximizes the likelihood of the data given these expectations. This 
general framework can be customized for many different types of probabilistic models. 

20.3.5 Learning Bayes Net Structures with Hidden Variables 

Learning both the structure and parameters of a Bayesian network with hidden variables is a 
challenging task. The structure search may involve adding or removing variables and 
connections while optimizing the likelihood of the data, often requiring complex search 
algorithms or sampling techniques (like MCMC). This process allows the discovery of latent 
variables that can simplify the model and improve its fit to the data. 
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