09-07-2025

UNIT -3

TOPICS

o Logical Agents
= Knowledge Based Agents
= Logic
= Propositional logic
= First order logic
= Syntax and Semantics in First order Logic
o Inference in first order logic
= propositional vs. First order inference
= Unification and Lifting
= Forward chaining, Backward chaining
= Resolution

Knowledge Based Agents

« An intelligent agent needs knowledge about the real world for
taking decisions and reasoning to act efficiently.
¢ Knowledge-based agents are those agents who have the
capability of maintaining an_internal state of knowledge,
reason_over_that knowledge, update their knowledge after
observations and take actions. These agents can represent the
world with some formal representation and act intelligently.
» Knowledge based agents give the current situation in the form of
sentences.
o They have complete knowledge of current situation of mini-
world and its surroundings.
> These agents manipulate knowledge to infer new things at
“Knowledge level”.

Knowledge-Based Agents

* Repr ion and R ing
1. Agents Form Internal Representations:
> Imagine an agent in a smart home setting. The agent represents the
home's layout, temperature in each room, locations of inhabitants,
and status of devices (lights, thermostat, etc.).
2. Inference to Derive New Representations and Actions:
> The agent can infer new knowledge from existing data. For
instance, if it knows that the living room light is off and someone is
watching TV there, it can infer that they might want more light and
turn on the living room lamp.
Human Intelligence
« Reasoning with Internal Knowledge Representations:
* Reasoning Example:
> A person sees that it’s cloudy and deduces it might rain. They bring
an umbrella before leaving the house. This decision is based on the
internal representation of knowledge about clouds and rain.

Al Intelligence
¢ Mirrored in Knowledge-Based Agents:
¢ Smart Home Agent Example:

> The smart home agent has rules and knowledge encoded
about typical human behaviors and preferences.

It observes that the temperature outside is dropping.

> Given the internal representation that the inhabitants prefer
the living room to be warm in the evening, the agent turns
on the heater in the living room.

Problem-Solving Agents
¢ Limitations:

> Previous problem-solving agents had limited and inflexible
knowledge representations.

o Example: The transition model in the 8-puzzle is hidden in
the code, limiting its deductive capabilities.

« Atomic Representations:

o In partially observable environments, listing all possible
concrete states is impractical.

Limitations of Hidden Transition Model
¢ Lack of Explicit Knowledge:
© The knowledge of how actions affect the puzzle's state is not
represented explicitly. The agent just follows pre-defined rules
without understanding underlying principles.
« No General Reasoning:
© The agent can execute moves but cannot reason about broader
concepts. For example, it cannot deduce that two tiles cannot occupy
the same space or infer properties about states (e.g., parity).
« Inflexibility:
© This approach is domain-specific. The transition model is tightly
coupled with the puzzle's specific rules, making it hard to apply the
same logic to other problems or reason in a more abstract manner.

09-07-2025

Comparison with Knowledge-Based Agents
« Explicit Representation:

o A knowledge-based agent would explicitly represent the
transition model using logical statements or rules. For
instance, it might have a rule that states, "If tile X is adjacent
to the empty space, then tile X can move to the empty space."

* Deductive Capabilities:

° Such an agent could deduce more general principles. For
example, it could infer constraints like "No two tiles can
occupy the same space" or "If a tile is in the top row, it cannot
move up."

* Adaptability: 1

o The agent could apply its reasoning to new tasks or changes
in the puzzle. For example, if the rules changed to allow
diagonal moves, the agent could incorporate this new rule
into its reasoning process.

Advancements in Representation

¢ Variable Assignments:
> Representing states as assignments of values to variables is
more efficient and allows domain-independent algorithms.
« Logic as a General Representation:
= Developing logic supports knowledge-based agents.
> These agents can combine and recombine information

flexibly, handle new tasks, learn new knowledge quickly,
and adapt to environmental changes.

KNOWLEDGE-BASED AGENTS

Knowledge Base:

» Aknowledge base is a collection of sentences.

« Sentences represent assertions about the world.

« These sentences are expressed in a knowledge representation
language.

Example:

« In the context of a smart home, a sentence could be: "The
temperature in the living room is 22°C."

* Axiom:

An axiom is a sentence taken as given, without derivation from other
sentences.

+ Example:
"All humans are mortal." This is an accepted truth in the system.
Operations: TELL and ASK
¢ TELL and ASK:
TELL: Adds new sentences to the knowledge base.
ASK: Queries the knowledge base to retrieve information.
+ Example:
TELL: Adding "The kitchen light is on" to the KB.

ASK: Querying "Is the kitchen light on?" should return true based on the
KB.

+ Inference:
The process of deriving new sentences from existing ones.

Ensures that the answers from ASK operations follow logically from the
sentences previously TELLed.

+ Example:

If the KB contains "All birds can fly" and "Tweety is a bird," inference
allows the agent to deduce "Tweety can fly."

Knowledge-Based Agent Program

Agent Program Outline:
» Percept: Input the agent receives from the environment.
« Action: Output or action the agent performs.

« KB Maintenance: KB contains initial background knowledge and
updates with new percepts and actions.

Example:
« A robot vacuum perceives dirt in the living room (percept).
It queries the KB to decide to vacuum the living room (action).

« After performing the action, it updates the KB with "The living
room is clean."

09-07-2025

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time.

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action — ASK(KB,MAKE-ACTION-QUERY(t))
TELL(KB, MAKE- ACTION-SENTENCE(action, t))
te—t+1

return action

A generic knowledge-bused agent. Given a percept, the agent adds the percept
to its knowledge base, asks the knowledge base for the best action, and tells the knowledge
base that it has in fact taken that action.

* Functions:
° MAKE-PERCEPT-SENTENCE: Constructs a sentence from
a percept.
> MAKE-ACTION-QUERY: Constructs a sentence to ask
what action to take.
° MAKE-ACTION-SENTENCE: Constructs a sentence
asserting the action taken.
¢ Example:
> MAKE-PERCEPT-SENTENCE: Converts "see dirt in living
room" to "Dirt(living_room)".
> MAKE-ACTION-QUERY: Converts "What should I do at
time t?" to "Action(t)".
° MAKE-ACTION-SENTENCE: Converts "vacuum living
room at time t" to "Action(vacuum, living_room, t)".

Knowledge Based Agents
Architecture

Environment

Input from

unsonet | i KBA
Inference Engine

Knowledge Base

J Learning
(Updating KB)

Example Scenario

Consider a smart home heating system:

Input from Environment: The system receives input that the
current temperature in the living room is 18°C.

Inference Engine Processing: The inference engine queries the
knowledge base, which contains the preferred temperature range
(e.g., 20°C to 22°C).

Querying the Knowledge Base: The inference engine retrieves
the preferred temperature range and determines that the current
temperature is too low.

Output: The system decides to turn on the heater to raise the
temperature.

Learning and Updating KB: Over time, the system learns that
the living room cools down faster in the evening and updates the
KB with this information to preemptively adjust heating
schedules.

Declarative vs. Procedural Approach

¢ Declarative Approach:

> Sentences are added to the KB to inform the agent about its
environment.

> The agent uses these sentences to reason and act.
* Example:
> Declaratively telling the agent: "The door is locked."
> The agent knows it needs to unlock the door before exiting.
¢ Procedural Approach:
> Desired behaviors are encoded directly as program code.
¢ Example:
° Writing a function directly in code:
> def exit_room():
if door_locked: unlock_door()
else: open_door()

Combined Approach

» knowledge-based agent can be built simply by TELLing it what
it needs to know. Starting with an empty knowledge base, the
agent designer can TELL sentences one by one until the agent
knows how to operate in its environment. This is called the
declarative approach to system building. In contrast, the
procedural approach encodes desired behaviors directly as
program code.

Modern agents use both approaches for efficiency and
flexibility.

Declarative knowledge can be compiled into procedural code
for performance.

Example:

« The agent learns from experiences that certain actions always
follow specitfic percepts and compiles this into efficient code.

Learning:

* Agents can have mechanisms to learn from their environment
and update their KB autonomously.

 This allows agents to become fully autonomous.

Example:

« A thermostat learns the preferred temperature settings over time
based on user adjustments and automatically adjusts the
temperature without manual input.

o knowledge-based agents rely on a structured knowledge
base and inference mechanisms to reason and act
intelligently. They use a combination of declarative and
procedural knowledge to achieve their goals efficiently and
can learn and adapt autonomously over time.

09-07-2025

Logic: Knowledge Bases and Sentences

« Knowledge Bases (KB):
> A knowledge base is a collection of statements (sentences) that
an agent knows to be true.
 These sentences are expressed in a formal representation
language.
> The KB is used by the agent to reason about the world and
make decisions.
* Sentences: Sentences are the basic units of information in a
knowledge base. They are constructed according to the rules of a
formal language and represent facts or assertions about the world.

Syntax

Syntax refers to the rules that define which combinations of
symbols are considered valid sentences in the representation
language.

Example in Arithmetic:

o Valid (well-formed) sentence: "x +y = 4"

> Invalid (not well-formed) sentence: "x4y+="

In arithmetic, the syntax includes rules about how numbers,
variables, and operators can be combined to form valid
mathematical statements.

Semantics

» Semantics concerns the meaning of sentences. It defines what it
means for a sentence to be true or false in a given context or
possible world.

¢ Example in Arithmetic:
> The sentence "x +y =4"is true in a world where x is 2 and y is 2.
o The sentence "x +y = 4" is false in a world where x is 1 and y is 1.

Models and Possible Worlds

« Possible World: A possible world is a specific assignment of
values to all relevant variables. In logical reasoning, we consider
all possible worlds to evaluate the truth of sentences.
¢ Model: A model is a mathematical abstraction that represents a
possible world. It specifies the truth or falsehood of each
sentence in that world.
* Example:
> Possible world where x = 2 and y = 2 is a model that satisfies
the sentence "x + y = 4". X men and Y women sitting at a
table playing bridge.

> Possible world where x = 1 and y = 1 is a model that does not
satisfy the sentence "x +y =4".

Logical entailment

logical entailment between sentences—the idea that a
sentence follows logically from another sentence.

In mathematical notation, we write
akEp

to mean that the sentence o entails the sentence f3. The
formal definition of entailment is this:

a [= B if and only if, in every model in which a is true, B
is also true.

Using the notation just introduced, we can write

a = fifand only if M(a) € M(j3).

Logical Inference

» Logical inference is the process of deriving new sentences from
the KB using rules of logic.

+ Inference Algorithm:
o Derives conclusions based on entailment.

> Model Checking: Enumerates all possible models to check if
a is true in all models where KB is true (M(KB) € M(a)).

* Soundness:
° An inference algorithm is sound if it derives only sentences
that are entailed (truth-preserving).
= Example: Model checking is sound because it only confirms
conclusions true in all relevant models.

Completeness:

« An inference algorithm is complete if it can derive any sentence
that is entailed.

« Example: For finite sets, systematic examination ensures
completeness, but infinite sets require more sophisticated
methods.

09-07-2025

Real-World Correspondence

¢ Grounding:
> Grounding is the connection between logical reasoning
processes and the real environment.
> Sensors: Provide percepts that the agent converts into
sentences in the KB.
Example: A smell sensor detects a wumpus, and the agent
adds a sentence about the smell to the KB.
* Learning:
o General rules in the KB are derived from experience and
learning processes.
° Learning can be fallible but aims to create reliable rules
about the environment.
Example: Learning that wumpuses cause smells, though
there might be exceptions (e.g., leap year baths).

Wumpus world

Figure 7.2 A typical wumpus world. The agent is in the bottom left comer. facing right.

= — s 15
o ox
@ []
o] " G
= | ox ox | ox

@) The initial sit

The first ste
reept nove, with percept

. EE]) = e [
"
e 52 e = 3 =
(5 (R e o EX e Cx p—)
v v v
ox ox ox ok
@ ®)
s Of the agenl. (a) After U

| (b) Aficr the fifth move,

Logic

Logic is the basis of all mathematical reasoning, and of all automated
reasoning. The rules of logic specify the meaning of mathematical
statements. These rules help us understand and reason with statements

such as —
BB uch that iezh

Which in Simple English means “There exists an integer that is not the
sum of two squares”. Importance of Mathematical Logic The rules of
logic give precise meaning to mathematical statements. These rules are
used to distinguish between valid and invalid mathematical arguments.
Apart from its importance in understanding mathematical reasoning, logic
has numerous applications in Computer Science, varying from design of
digital circuits, to the construction of computer programs and verification
of correctness of programs.

Propositional Logic

A proposition is the basic building block of logic. It is defined
as a declarative sentence that is either True or False, but not
both. The Truth Value of a proposition is True(denoted as T)
if it is a true statement, and False(denoted as F) if it is a false
statement. For Example,

1. The sun rises in the East and sets in the West.

2 1+1=2

'b" is a vowel.

Basic Terminology

Propositional logic is also called Boolean logic as it works on 0
and 1.

In propositional logic, we use symbolic variables to represent
the logic, and we can use any symbol for a representing a
proposition, such A, B, C, P, Q, R, etc.

Propositions can be either true or false, but it cannot be both.

Propositional logic consists of an object, relations or function,
and logical connectives.

These connectives are also called logical operators.

A proposition formula which is always true is called tautology,
and it is also called a valid sentence.

A proposition formula which is always false s
called Contradiction.

09-07-2025

Propositional logic

Logical constants: true, false

Propositional symbols: P, Q, S, ... (atomic
sentences)

Wrapping parentheses: (...)
Sentences are combined by connectives:

A ..and [conjunction]
v..or [disjunction]
=>...implies [implication / conditional]
©..is equivalent [biconditional]
—...not [negation]

Literal: atomic sentence or negated atomic sentence

(anf) (Ana) commutativity of A

) commutativity of v
associativity of A
associativity of v

((avi

@ double-negation elimination

a =) 7 = -a) contraposition
a i) v implication climination
r e 8) = ((a JA(# = a)) biconditional elimination
(A 3) (-av —=53) DeMorgan
~(ax v 3) De Morgan
an(Bvy) (e Ay)) distributivity of A over v
(avi(Baqy) (V) distributivity of Vv over A

Figure 7.11 Standard logical equivalences. The symbols a, 3, and + stand for arbitrary
sentences of propositional logic.

Examples of Propositional Logic sentences

P means “It is hot.”

Q means “It is humid.”

R means “It is raining.”

(PAQ)—>R

“If it is hot and humid, then it is raining”
Q->P

“If it is humid, then it is hot”

Continued...

A simple language useful for showing key ideas and definitio
User defines a set of propositional symbols, like P and Q.
User defines the semantics of each propositional symbol:

P means “It is hot”

Q means “It is humid”

R means “It is raining”
A sentence (well formed formula) is defined as follows:

A symbol is a sentence

If S is a sentence, then —S is a sentence

If S is a sentence, then (S) is a sentence

If S and T are sentences, then (Sv T), (SAT),and (S -1
are sentences

Continued...

A or is a sentence that is True under all
interpretations, no matter what the world is actually like or how the
semantics are defined. Example: “It’s raining or it’s not raining.”
An or is a sentence that is
False under all interpretations. The world is never like what it
describes, as in “It’s raining and it’s not raining.”

, written P [= Q, means that whenever P is True, so is Q.
In other words, all models of P are also models of Q.

Truth tables

09-07-2025

Truth tables Il

The five logical connectives:

And Oor

P 4 P-4 P a A
T T o T
T F F I F T
F T F F T T
F R F F F F

... then Not
P g p=>q P ~p
r I T T F
r F F F T
FrT T
F F T

Properties of Operators
o Distributive: o Commutativity:
o PAQVR)=(PAQ)V [PAR). ° PAQ=QAPor
c PVQ=QVPR

o PV(QAR=(PVQ)APVR).
o Associativity:
o DE Morgan's Law:
e aPAQ)=(-P)V(-Q)

e =PVQ=(=P) A (-Q).

o (PAQ)AR=PA(QAR),
o (PVQ)VR=PV(QVR)

o Identity element:

c Double-negation elimination: © PATre=P,

s ~(-P)=P.
o PV True= True.

P 0 P PAQ pvp | P20 P
Flse Fulse T Fulse Fulse Tre Truie
Fise | Tre T Fulse Tnie Trie Fulse
Trie Fulse Fulse Fulse Taie Fulse Fulse
Thie T False Tnie Taic Tre Trie

A complex sentence:

4 H PVH (PVHA~H HP-/HH'\H\:P]
Fulse Fulse Flse Fulse The
FRilse Tnie True Filse True
Tre Flse True Trie True
Triie Tnic Trie Fulse T
Inference

Inference is the process of deriving new
sentences from old
Complete inference derives all true conclusions from
a set of premises

Hunt the Wumpus domain

i e 73 o

+ Some atomic propositions:
$12 = There is a stench in cell (1,2)
B34 = There is a breeze in cell (3,4) "
W22 = Wumpus is in cell (2,2)
V11 =We’ve visited cell (1,1)
OK11 = Cell (1,1) is safe. =

* Some rules:
(RI) =S11 - —WI1l A~ W12 A= W21
(R2) = 821 =5 =WI11 A= W21 A= W22 A= W31
(R3) = S12 > —=W11 A = WI2 A= W22 A = WI3
(R4) S12—- W13 v WI2v W22 v Wil

» The lack of variables requires us to give similar
rules for each cell!

Proving Wumpus in W13

Apply MP with —=S11 and R1:
“WIl A= WI2 A~ W21

Apply And-Elimination to this, yielding 3
- WIl, = W12, - W21

Apply MP to ~821 and R2, then apply And-elimination:
-~ W22, - W21, - W3l

Apply MP to S12 and R4 to obtain:
WI3vWIZv W22 v Wi

Apply Unit resolution on (W13 v W12 v W22 v Wl1l1) and —=W11:
WI13 v Wi2v W22

Apply Unit Resolution with (W13 v W12 v W22) and —W22:
W13 v W12

Apply UR with (W13 v W12) and -W12:

I. Syntax of Propositional Logic:

Atomic Sentences: The simplest form of sentences in
propositional logic, consisting of proposition symbols like P,
Q, R, or specific symbols like W1,3. These symbols represent
propositions that can be either true or false.

o Example: W1,3 might represent "The Wumpus is in [1,3]."

Complex Sentences: Formed by combining atomic sentences
using logical connectives such as AND (A), OR (V), NOT (),
IMPLIES (=), and IF AND ONLY IF (&).

09-07-2025

OPERATOR PRECEDENCE

Figure 7.7 A BNF (Backus-Naur Form) grammar of sentences in propositional logic,
along with operator precedences, from highest to lowest.

Negation (—): Inverts the truth value of an atomic sentence.
Example: "W 1,3 means "The Wumpus is not in [1,3]."

Conjunction (A): True if both connected sentences are true.
Example: W1,3 A P3,1 means "The Wumpus is in [1,3] and there's a
pitin [3,1]."

Disjunction (V): True if at least one of the connected sentences is true.

Example: (W1,3 A P3,1) V. W2,2 means "Either the Wumpus is in
[1,3] and there's a pit in [3,1], or there's a Wumpus in [2,2]."

> Implication (=): True unless the first sentence (antecedent) is true and

the second (consequent) is false.
Example: (W1,3 A P3,1) = —~W2,2 means "If the Wumpus is in [1,3]
and there's a pit in [3,1], then the Wumpus is not in [2,2]."
Biconditional (¢): True if both sentences have the same truth value.
Example: W1,3 & —W2,2 means "The Wumpus is in [1,3] if and
only if the Wumpus is not in [2,2]."

2. Semantics of Propositional Logic

* Model: A model in propositional logic assigns a truth value (true or
false) to each proposition symbol.

Example: A model might specify P1,2 = false, P2,2 = false, P3,1 = true.
Truth of Atomic Sentences: Determined directly by the model. For
example, if the model says P1,2 = false, then P1,2 is false.

Truth of Complex Sentences: Determined recursively using the

truth values of atomic sentences and the rules for the logical
connectives.

© Negation (—P): True if P is false in the model.
Conjunction (P A Q): True if both P and Q are true in the model.

° Disjunction (PV Q): True if at least one of P or Q is true in the model.
Implication (P = Q): True unless P is true and Q is false.

= Biconditional (P & Q): True if P and Q are both true or both false.

3. Examples of Truth Evaluation

* Given a model ml = {P1,2 = false, P2,2 =
false, P3,1 = true}, evaluate the complex
sentence —PI1,2 A (P2,2 v P3,1):
= =iPl,2 is true because P1,2 is false in ml.
> P2,2 v P3,1 is true because P3,1 is true in ml.
o Therefore, =P1,2 A (P2,2 V P3,1) is true.

Truth tables Il

The five logical connectives:

P 0 P PAQ pvp | P30 Peo
Filse | Flse Tre False Fulse Trie Triie
Filse Tre Tne Fulse Taie Tre Fulse
Tne Fulse Fse Fulse Taie Fulse Fulse
Tre Trie Fse Trie Tnie Trie Tnie

A complex sentence:

[H PVH (PUHINH | (PYHIAH = P|
Fulse Fulse Flse Fulse The
Fulse Tnie Trie Fulse Triee
True Fulse Trie True Triee
Triie Tnie Trie Filse Trie

A Simple Knowledge Base for the Wumpus World:

* The knowledge base in the Wumpus World consists of
sentences that describe both immutable aspects (facts
that do not change) and mutable aspects (facts that can
change) of the environment.

¢ Symbols:

¢ Px,y: True if there is a pit in square [X,y].

* Wx,y: True if there is a Wumpus in square [x,y], dead or
alive.

« Bx,y: True if the agent perceives a breeze in square [X,y.

« Sx,y: True if the agent perceives a stench in square [x,y]

« These symbols are used to create logical sentences that
describe the state of the Wumpus World.

09-07-2025

Example Sentences:

« R1: —P1,1 — There is no pit in square [1,1]

« R2: B1,1 & (P1,2 V P2,1) — Square [1,1] is breezy if and only
if there is a pit in one of its neighboring squares [1,2]or [2,1]

* R3: B2,1 & (P1,1 Vv P2,2 vV P3,1) — Square [2,1] is breezy if
and only if there is a pit in one of its neighboring squares [1,1]
[2,2]or [3,1]

Percepts in a Specific World:

* R4: —B1,1 - There is no breeze in square [1,1].

* RS5: B2,1 —There is a breeze in square [2,1].

« These sentences together describe the agent’s knowledge of the
Wumpus World, combining general rules (like the relationship
between breezes and pits) with specific percepts from the
current environment.

Inference in Propositional Logic

The goal of inference is to determine whether a certain sentence a (e.g. P ») is entailed by the
knowledge base (KB). Entailment means that a must be true in every possible world (or model)
where KB is true,

Model-Checking Approach:

The simplest inference method is model checking, which involves:

1. Enumerating all possible models: A model is an assignment of truth values (true or false) to
each proposition symbol in the KB.

2. Checking whether a is true in every model where KB is true: If o is true in every such model,
then o is entailed by KB.
Example with the Wumpus World:

* Relevant Proposition Symbols: B . Ba 1, Py |, Py

Py

= Number of Possible Models: With 7 symbols, there are 128 possible models

* Model-Checking Result: In the example, out of 128 models, only 3 models satisfy the
knowledge base. In all 3 of these models, | 12 (no pit in square [1, 2) s true. Therefore, the

KB entails ~Py ».

TT-entails algorithm

The TT-ENTAILS? algorithm (Truth Table Entailment) is 3 straightforward, brute-force method for
determining whether a knowledge base (KB) logically entails a statement cv. It warks by
systematically checking every possible assignment of truth values to the propasition symbols.in the
knowledge base and a. If o is true in 2ll cases where the KB is true, then we say that « is entailed by
the KB.

Steps of the TT-ENTAILS? Algorithm

1. Identify Proposition Symbals:
» List all the distinct proposition symbols that appear in the knowledge base (KB) and the
query a.
2. Generate All Possible Models:

¢ Amodelis 3 specific assignment of truth values (True or False) to each propesition symbol,

For i proposition symbols, there are 2" possible models {combinations of truth values)

3. Evaluate KB and for Each Model:

« For each possible model, check whether the KB is true and whether o is true under that

model
4. Check Entailment:
* Ifin every model where the KB is true, v is also true, then KB = (. Othenwise, o is not
entailed by the KB.
Simple Example
Let's go through a simple example to illustrate the TT-ENTAILS? algorithm.
Problem Setup
¢ Knowledge Base (KB): KB = (A~ B)

+ Queryia = A

Step T: identify Proposition Symbols

» The proposition symbols in this case are A and B.

Step 2: Generate All Possible Models

« For 2 proposition symbols (A and I3), there are 2% — 4 possible models:

Model # A B

1 True True
2 True False
3 False True
4 False False

09-07-2025

Step 3: Evaluate KB and a for Each Model
* Evaluate KB = (A A B)anda = A:

1. Theorem Proving vs. Model Checking

Model # A B KB= (41 8) a=4

1 True True True True o Model Checking: This involves enumerating all possible models (assignments of truth values to
2 True False False True propositions) and verifying that a sentence is true in every model where the knowledge base

3 False True False False (KB} is true. While effective, this approach can be inefficient, especially when the number of

4 False False false False

models is large.

Step 4: Check Entailment

Theorem Proving: Instead of checking madels, theorem proving involves applying rules of

* Now, we check if o is true in every model where KB is true inference directly to the sentences in the KB to derive the desired conclusion (sentence) without

« InModel 1. KB is True and a is also True. explicitly enumerating all models. This can be more efficient, especially when the length of the
+ InModels 2,3, and 4, KI3 is False, so we don't care about the truth value of o in these proof is short relative to the number of models
models.,
Since a = A is true in every model where KB is true. we conclude that KB =

1. Model Checking

Model checking involves checking all possible assignments of truth values to the propositions to see
Scenario: if I is true in all models where the KB is true,

* There are three propositions. so there are 2° = § possible models.
You have three propasitions:

* Pultis raining. e @ L L= ek z L i
T T T T T T T T
s (Q:The ground is wet. = =
T T E T £ T F F
e R:The flowers are blooming. T F T P T T F T
T F F £ T T F F
Given the following knowledge base (KB): E— = = : = = . =
1. P —+ @ (fitis raining, then the ground is wet) F 1 ; 1 ; F F :
2. Q —+ R (If the ground is wet, then the flowers are blooming) £ £ T T T 3 E T
F F F b | T F F F

3. P (itis raining)

Step 1: Identify the models where the K& is true. This is when P, P — Q.and Q — Rare all

true,

You want to determine whether the KB entails R (i.e, whether the flowers are blooming).

Step 2: I the table above, the only row where the KB i true is the first row (where P = 7

Q=T.R=T)

Step 3: In this model, K is true. Therefore, F must be true in all models where the K8 is true.

Hence, the K8 entails 2.

2. Logical Equivalence

2. Theorem Proving + Definition: Two sentences a and 3 are logically equivalent (o =) if they are true in the same

: set of models. In other words, & and 5 have the same truth value in every possible model
Thearem proving involves using rules of inference te derive R from the KE.

+ Example: The sentences P A\ @ and @ A\ P are logically equivalent because they are true in the

Step 1: Start with the given sentences in the KB:

same models.
« PQ
0 R * Role in Logic: Logical equivalences function like arithmetic identities in mathematics, allowing us
10 simplify or rewrite logical expressions. They can also be used as inference rules in theorem
. P

proving.

Step 2: Apply Modus Ponens (If P — (@ and P are true, then (Q is truek:

3. Validity
o From Pand P — Q. weinfer Q@

« Definition: A sentence is valid if it is true in all possible models. Valid sentences are also known

Step 3: Apply Modus Ponens sgain:
33 tautologies because they are always true, regardless of the specific situation or model.
o From Qand Q — R weinfer R. :
s Example: The sentence /v — P (either P is true or P is not true) is valid because it holds in

Conclusion: We have derived R from the KB using inference rules. proving that the K8 entails it every model

» Deduction Thearem: This theorem states that for any sentences cx and 3, o = 3 (ie. B is
entailed by o) if and only if the sentence @ —=> 3 is valid. This provides a way to check

entailment by proving that @ —> 3 is logically equivalent to the sentence “True,*

10

4. Satisfiability

Definition: A sentence is satisfiable if there is at least ane model in which the sentence is true.
In other words. it is possible for the sentence to be true under some assignment of truth values

10 its propesitions.

Example: The knowledge base fi1 A B2 A B3 A R4/ 15 is satisfiable because there are
models in which all these sentences hold true.

Connection to Validity: A sentence o is valid if and only if its negation —a is unsatisfiable.
Conversely. o is satisfiable if and only if —a is not valid.

Reductio ad Absurdum (Proof by Contradiction): This classical method of proof inveives
assuming the negation of what you want to prove and showing that this assumption leads to a
contradiction, thereby proving that the original statement must be true, In logical terms, proving
a |- 3 can be done by showing that a /A —7 is unsatisfiable.
Consider the Baolean formula:
F=(Av-B)A(BVC)A (=AY ~C)
Satisfiability Check:
Let's try to find an assignment of truth values to A, B, snd C thar satisfies afl the elauses
+ Casek A = True, B = True.C = False
« First Clause: True V False = True (Satisfied)
= Second Clause: Trve v False = True (Satisfied)

= Third Clause:

alse 4 True = True Satisfied)

All laisses are satisfied with this assignment. 56 the formula £ s satisfiable.

09-07-2025

5. Inference and Proofs

* Inference Rules: These are logical rules that allow you to derive new sentences (conclusions)
from existing sentences {premises) in the knowledge base.
s Modus Ponens: This is one of the most fundamental inference rules. it states that if
@ = {3 and « are both true, then J must be true. For example, if “If the Wumpus is
ahead and alive, then shoot™ ((WumpusAhead A Wumpus Alive) — Shoot) and
“The Wumpus is ahead and alive” (W umpusAhcad /1 Wumpus Alive) are true, then
“Shoot" must also be true,

And-Elimination: This rule allows you to infer any individual part of a cenjunction. For

example, from WumpusAhead A WumpusAlive. you can infer Wumpus Alic

Unit resolution is a specific inference rule used in logic and theorem proving. particularly in the
context of propositional lagic. It is 3 simplification of the general resslution rule. focusing on cases
where one of the clauses involved is 3 unit clause. A unit clause is a clause that contains anly a single
literal (e.g. P or ~@Q).
Definition of Unit Resolution
The unit resclution rule allows us to simplify the process of deriving new information from known
facts (clauses). It states;
Given

1. Aciause Ly V Ly v -- v L, (a digjunction of literais).

2. A unit clause —L; (the negation of one of the literals in the first clause).
You can derive:

e Anewclause Ly V Ly V

V Ly W Ly VooV L, (which is the eriginal clause with L,
removed).

Example of Unit Resolution
Consider the following two clauses:
1. PV Qv R) — This is 8 clause with multiple fiterals.

2.~ — This is a unit clause,

Applying Unit Resolution:

= The unit clause ~@ negates the

€ in the first clause.
By unit resolution, we can remove €7 from the first clause, resulting in the new clause:

PYR

« Proof Construction: The process of theorem proving involves constructing a proof—a sequence
of applications of inference rules that leads from the initial knowledge base to the desired

conclusion.

+ Example in Wumpus World: Starting with the knowledge base R1 to R5, we can derive
~Py 2 (there is no pit in (1, 2]) by applying inference rules like biconditional elimination,
And-Elimination, Modus Ponens. and De Morgan's rule. The final proof shows that neither

1,2] nor [2,1] contains a pit

6. Search for Proofs

Proof Search: Searching for a proof can be more efficient than model checking, particularly
when the proof involves only a few relevant sentences, ignoring irrelevant ones. This contrasts

with the exponential number of models that need to be checked in model checking.

.

Search Problem Definition:

ial State: The initial knowledge base.
» Actions: Applying inference rules to the sentences in the knowledge base.
* Result: Adding the inferred sentence to the knowledge base.

* Goal: Reaching a state where the sentence we want to prove is in the knowledge base.

7. Monotonicity

« Definition: Monatonicity in logical systems means that the set of sentences that are entailed by
the knowledge base can only increase as more information is added. In other words, adding new

sentences to the knowledge base cannot invalidate previously drawn conclusions.

Implication: This property ensures that inference rules can be applied consistently regardless of
what else is in the knowledge base.

4. Unit Resolution

* Unit Resolution: A specific form of the resolution rule where one of the clauses is 3 single literal

(a unit clause). This simplifies the process by reducing a disjunction (OR) to a simpler clause.

5. Full Resolution Rule

» The full resolution rule generalizes the unit resolution rule to allow resolving any two clauses,
not just when one is a unit clause. The result is a new clause formed by combining all the literals
from both original clauses, except for the pair of complementary literals {one literal and its

negation). which cancel out.

6. Conjunctive Normal Form (CNF)

* CNF: Resolution only werks on sentences that are in conjunctive normal form (CNF), which is a
conjunction (AND) of clauses, where each clause is a disjunction (OR) of literals.

Example of Full Resalution Rule
Clauses:

. Clause £ Cy = (AV BV -C)
This clause contains the iterals A. [and €'

Clause 2:C; = (<BVC v D)
This ciause contains the literals ~l3, C, and D,

11

09-07-2025

7. Converting to CNF:

Here's how you convert a general sentence into CNF: Example of Converting to CNF:
1. Eliminate biconditional (&): = Consider the sentence By < (Py5V Py,)
* Convert sentences of the form o <

Binto (a0 = §) A (8 =

1. Eiminatess: (Byy = (Pia Vv Pag)) A (Pra v Pay) = Byy).
2. Eliminate implications (=): 2 Eiminate = (~By, v Poa V Pog) A (~(Poa V Pas) V Big).

o Haplace o=y frui ol B INGLOR B 3. Move NOT inwards: (~B11 v Pya Vv Poi) A ((=Pra A =Pat) v Bra).
3. Move NOT inwards (De Morgan's laws): "

Distribute OR over AND: (B,

V Bry) A (=Pay V Byy).

Apply rules to ensure negations only apply directly to literals (eg. —(a A A)

W n r r the resol rocedure.
4 Distiibute GR over AND: Now, the sentence is in CNF and ready for the resclution procedure.

* Apply the distributive laws to ensure the farmula is in the farm of a conjunction of

disjunctions (CNF).

1. Proof by Contradiction

3. Resolution Process in Action (Wumpus World Example)
* Concept: To prove that 3 knowledge base I logically entails a statement & (denoted as

af * Scenaris
KB i= @), we can use proof by contradiction. We assume that e is false and show that this

he agent is at [1,1] and perceives no breeze, implying no pits in adjacent squares.
assumption leads to a contradiction.

*+ Knowledge Base:

* Procedure: The idea is to add the negation of a (Le.. ~a) to the knowledge base and check

* KB= (B, < (P By

whether this new combined knowledge base KB (x is unsatisfiable (i.2. it leads to a

s @ — P (the agent wants to prove that there is no pit in [1.2]).
contradiction)
o % n * Process:

2. Resolution Algorithm Overview
« Goal: The resolution algerithm is used ta determine whether KI3 |= a by trying to derive a + Convert KB A ~arto CNF.

contradiction from KB /A —a. * Resolve the clauses iteratively until gither:
* Steps:

« Acontradiction (empty clause) is found. proving a. or
1. Convert KB A —a to Conjunctive Normal Form (CNF): This involves breaking down the s

No further clauses can be added. indicating a is not entailed.
Iogic into a conjunction of clauses, where each clausa is a disjunction of literals.

2. Apply Resolution Rule: Resolve pairs of clauses that contain complementary literals (e.g. 4. Empty Clause
- k 3
st P} o prsduce e . « The empty clause is a clause with no literals. It represents a logical contradiction (since a
3. Check for Conadiction:

disjunction is only true if at least one of its literals is true, and the empty clause has no literal]
If the resolution process leads to the empty clause (a clause with no literals, equivalent

to "False). then KB = a.

Significance: If resolution leads to the empty clause, it means the original assumption (~a) if

false, and thus ar must be true.

1f 7o new clauses can be added, and the empty clause is not produced, then KB £ o

function PL-RESOLUTION(K B. o) returns true or false
inputs: K13, the knowledge base. a sentence in propositional logic
. the query. a sentence in propositional logic

clauses « the set of clauses in the CNF representation of KB A —a
new — { }

loop do
for each pair of clauses €', €
resalvents — PL-RESOL

n clauses do

Ci.Cy)

if resolvents contains the empty clause then return frue
new — new U resolvents ~
lauses then return false Figure 7.l].1 4
clauses — clauses U new world. =P 2

Partial application of PL-RESOLUTION to a simple inference in the wumpus
shown to follow from the f

Figure 7.12 A simple resolution algorithm for propositional logi

The function
PL-RE : returns the set of all possible clauses obt:

s (WO inputs.

ied by resolving

12

09-07-2025

Resolution Closure (RC(S)):

* Defl

n: The resolution closure of a set of clauses S, denoted as RC'(S). is the set of all
clauses that can be derived from § by repeated application of the resolution rule. This
includes all clauses in S and any new clauses obtained by resolving pairs of clauses in S or

their derivatives.

+ Fi
distinct clauses that can be constructad from the symbols Py, P

iteness: The text states that RC'(S) must be finite because there are only finitely many

+vos Pu that appearin S.
This is crucial because it ensures that the resolution process will terminate,

Factoring Step: The text mentions a factoring step, which removes multiple copies of literals
in a clause. For instance, if a clause is (P \/ P). factoring would simplify it to (P). This step
is essential because it reduces the number of distinct <lauses, helping to ensure the
finiteness of RC(S)

Ground Resolution Theorem:

s Theorem Statement: The ground resclution theorem states that if a set of clauses S is
unsatisfiable (i.e. no possible assignment of truth values can make all clauses true
simultaneously), then the resolution closure RC'(5) will contain the empty clause. The

empty clause represents a contradiction.

Proving Completeness via the Contrapositive:
* The proof of the theorem is approached by proving its contrapositive:
+ Contrapositive Statement: If the resolution closure RO(S) does not contain the
empty clause, then the original set of clauses S is satisfiable. In other words. if
resolution fails to derive a contradiction, then there exists a consistent assignment of

truth values to the propositional variables that satisfies all clauses in S.

Constructing a Model:

+ The proof involves constructing a model (an assignment of truth values) for the

propositional variables Py, Pa. ..., Py. The procedure is as follows:

s Step 1: Start with the first variable F; and decide its truth valus,

+ Step 2: Continue to the next variable Py, and so on, until all variables are assigned

truth values.

+ Decision Process: For each varisble F;:

Case 1: If there is a clause in RC'(S) that contains the literal — P, (i.e., the
negation of ;) and all the other literals in the clause are false under the current
partial assignment. then assign P, to be false. This assignment ensures that the

clause is not falsified

Case 2: If the above condition does not hold, assign F; to be true.

Implication: If RC'(S) does not contain the empty clause, § must be satisfiable. Hence.
the resclution process is complete: if the set of clauses is unsatisfiable, resolution will

eventually derive a contradiction (the empty clause).

Example;

Consider the following set § of clauses:
1O (P v Py
2 G (P VE)

Py

)
Goal:

We want to construct a model (an assignment of truth values to the varisbles Py, Ps. and P;) that

satisfies S, following the steps described in the resolution completeness proof.

1. Step 1: Start with Pz

Check: Is there a clause in RC(S) that contains — Py (the negation of Py) where all other

literals are false under the current partial assignment?

At this point. no literals have been assigned truth values yet. We arbitrarily decide to assign

Py = True.

Reasoning: Since Py = True, C'y {which contains Py) is alreadly satisfied regardless of the

other literals.

2. Step 2: Move to P,

Check: Is there 3 clause in ROC(S) that containg —Fh where ail other literals are false?

P is sssigned True, 5o consider Cy 1 (P v —F

» Py isTrue so C) is satisfied regardiess of Py's value.

s Cy: (P2 ~Ps): No information yet about P, so this clause doesn't help.

There's no clause forcing P to be false. so we assign Py = True.

Result: Now, C'y : (P v

y) is satisfied because P> = True.

3. Step 3: Finally, Px:
s Check: Is there a clause in 2C'(S) that contains —P; where all other literals are false?

o P hasn't been assigned yet. but considen:

(=P, v Py):Since Py = True, Py should be True to satisfy C'a.

(~P2 v P3):Since Py = True. Ps should be True to satisfy Ci.

* Tosatisfy Oz and C'y, assign Py = True.

Model Conclusion:
* Final Assignment: Py = True, P» = True. P; = True,
* Check All Clauses:
s Cp:(P1V —=Ps) = TrueV False = True
+ Ca:(-P v Py =
» C3:(PyV —Ps)= True v False = True
s Cyi(~PVE)=

False vV True = True,

Ise v True = True,

13

Analysis and Implication:

1. No Contradiction: The constructed mode| satisfies all clauses in 5. There is no point where 3

clause is falsified.

2. Satisfiability: Since we successfully constructed a model that satisfies S, the set of clauses S is
satisfiable.

3. Resolution Completeness: If the resolution closure RC'(S) had led to the empty dlause. §
would have been unsatisfiable. But in this case, since we found a model, § is satisfiable,
confirming that the resolution process is indeed complete: it would have found a contradiction if

one existed.

* Themodel {P} =

‘e, Py = True, Py = True} satisfies all the clauses,

= This example illustrates how constructing a mode! verifies the satisfiability of the clause set, and

shows the completeness of the resolution methad: it finds a contradiction if and only if the

k is unsatisfisble.
clause set is unsatisfiable. N

Consiaer the taHswInG
@z P
2. Ga: (=)
(B v Pa)
(—F2)

£y

09-07-2025

Introduction to Horn Clauses and Definite Clauses:

1. Definite Clause:

A definite clause is a special kind of logical formula, specifically a disjunction of literals

where exactly one literal is positive.

Example: (—Ly V —Breeze v By) is a definite clause because it contains exactly one

positive literal, By ;.

Aclause fike (— By V P
literals Py o and P .

% 1) is not a definite clause because it has two positive

2. Homn Clause:

¢ AHorn clause is a more general form where there is at most one positive literal. Therefore,

all definite clauses are Horn clauses. but some Horn clauses may not be definite clauses.
* Goal Clauses: Horn clauses that contain no positive literals are called goal clauses.

* Closure Property: Horn clauses are closed under resolution, This means that if you resolve
two Horn clauses. the result will also be a Horn clause.

Implication Form:

+ Every definite clause can be rewritten as an implication. The premise (body) is a conjunction

of positive literals, and the conclusion (head) is a single positive literal,

» Example: The definite clause (— Ly, V ~Breeze v By,1) can be rewritten as the
implication (Ly, A Breeze) = By
« Body: The premise (L1 A Breeze) is called the body.
s Head: The conclusion B y is called the head

+ Facts: A sentence with a single positive literal. such as Ly . is called 5 fact. It can be written

as True = L;), butit's simpler to write just L ;.

Inference with Horn Clauses:

Efficient Entailment:

Inference can be efficiently carried out using forward chaining or backward chaining

algorithms.

* Forward Chaining: Starts from known facts and applies inference rules to derive new
facts until the goal is reached.

Backward Chaining: Starts with the goal and works backward by determining which
facts need to be true to satisfy the goal.

These algorithms are natural, meaning that the steps are intuitive and easy for humans to

follow.

One of the most attractive properties of Horn clauses is that deciding entailment (whether a
particular conclusion follows from the knowledge base) can be done in time linear to the

size of the base, This is a because it ensures that

reasoning with Horn clauses can be dene efficiently.

Forward Chaining:
Concept:

» Forward chaining is a data-driven reasoning approach. It starts with known facts and applies

rules to infer new facts until the query [goal) is proved or no more inferences can be made.

function P’ ENTAILS (KB, ¢) returns true or false
Inputs: KB, the knowledge base, a set of propositional definite clauses
g. the query, a proposition symbol
count +— a lable, where count|e] is the number of symbols in s prem
inferred « a table, where inferved|s] is initially false for all symbols
agenda — a queue of symbaols, initially symbols known to be true in K5

while agenda is not empty do
p« PoP(agenda)
If p = g then return truc
If inferred]p] = falsc then
inferred|p] o true
for each clause « in K3 where p is in «.PREMISE do
decrement count|¢]
I count[c] =0 then add c.CONCLUSION 10 agenda
return false

Knawledge Base:
- P
o LAMsP

o« BAL=M

s ArP =L
¢« AAB=L 4

8
oA

A &
b (a) (b)
HIUre 7,16 (a) A et of o clauscs. (5) The comesponding AND-0 graph

+ Process:

¢ Start with A and I as known facts.
* infer Lfrom AADB = L.

o Infer M from B A L = M.

* Infer Pfrom LA M = P.

* Finally. infer @ from P = Q.

Graph Representation:
= Modes represent facts and edges represent implications.

» Forward chaining propagates truths upwards through the graph, inferring new facts as

premises are satisfied

14

Backward Chaining:
Concept:

* Backward chaining is 3 goal-driven reasoning approach. It starts with the query and works
backward. looking for premises that would satisfy the query.

Process:

* Start with the query Q.

Look for clauses in the knowledge base where @ is the conclusion.

For each such clause, attempt to prove 3ll its premises.

if all premises of at least one clause can be proved true. then the query is true.

The process repeats recursively until the base facts (like A and B) are reached.

09-07-2025

Query: (@

Find P = Q. 50 prove P.

To prove P, find L A M = P.

To prove L. use A A B = L (proved by A and B).

To prove M, use B A L =+ M (proved by 3 and L).

Since all premises are satisfied. Q is true.

Key Points:

Forward Chaining is efficient when you have many facts and want to derive all possible

conclusions.

Backward Chaining is more efficient when you have a specific query in mind, as it only explores

relevant parts of the knowledge base

Forward Chaining

1. Soundness and Completeness

Soundness: Forward chaining is sound because every inference made is an application of
Modus Ponens. a valid logical rule. Modus Panens states that if *p = ¢° (if P then Q) and
“p" is true. then “g" must be true. Forward chaining applies this rule to infer new facts
based on known facts and rules.

Completeness: Forward chaining is complete because it can derive all atomic sentences
entailed by the knowledge base (KB}, To see this, consider that the algarithm eventually
reaches a fixed point where no new inferances can be mada, At this point. the table of
inferred facts contains true values for all symbols that can be derived from the KB, This

means every sentence entailed by the KB will be included in the set of inferred facts.
Efficiency:

Backward chaining can be more efficient than forward chaining because it focuses on
relevant facts directly related to the query. It avoids unnecessary work by not processing
facts that are not connected 1o the query. This makes it particularly useful for answering
specific questions or solving problems where the Guery guides the search.

Comparison:

= Both forward and backward chaining can be implemented efficiently. often in linesr time

with respect to the size of the KB. Forward chaining processes facts incrementally. while
backward chaining searches for relevant facts to prove a specific goal. The choice between
them depends on the context: forward chaining is useful for deriving all possible
conclusions from knewn facts, while backward chaining is useful for goal-oriented
reasoning.

First order logic/ predicate logic

1. Possible Worlds and Ontological Commitment

Possible Worlds: In logic, possible worlds are hypothetical scenarios or universes where logical

statements might be true or false. Each world is a different way things could have been

Ontological Commitment: This refers tc the kinds of entities (like objects and relations) that a
logical system assumes exist in these possible worlds. First-order logic (FOL) has a strong
ontological commitment. meaning it assumes the existence of specific entities (like objects and
relationships) in any given possible worid.
Models for First-Order Logic
What is a Model? A model is a formal structure that represents a passible world. it links the
symbols of a logical language (like variables. functions. and predicates) to actual entities in this
world, allowing us to determine whether a sentence is true o false within that world.
Propositional Logic vs. First-Order Logic:

= In propesitional logic. medels are simple: they link proposition symbols {like P.) to truth
values (true or false),

In first-order logic. medels are more complex because they involve objects, relations, and
functions.

1. Syntax and Semantics:

First-Order Logic extends propositional logic by including objects and relations.

Objects: Individual entities in the domain of discourse (e.g.. people, piaces. things).

Relations: Relationships between abjects (e.g., "is adjacent to”. "is a parent of).

Functions: Mappings from objects to objects (e.g.. “father of", "next number”).

Quantifiers: First-order logic introduces quantifiers like V (for all) and 7 (there exists) to express

statements about some or all objects in the domain,

2. Semantics:

s Semantics involves interpreting sentences based on models. A model consists of a domain of
objects and interpretations for pradicates {relations) and functions. Sentences are true if they
hold in this model.

3. Ontological Commitment:

* Ontological Commitment: First-order logic assumes that the world consists of objects and
relations among them. It is more expressive than propositional logic because it can describe
relationships and properties of objects. The formal models are more complex. reflecting the
structure of objects and relations,

Domain of a Model

Domai

he domain of a model is the set of all objects that exist in that possible world. It must
be non-empty, meaning that every possible world contains at least one object. This ensures that

there's always something to talk about or relate in the logical language.

* Richard the Lionheart: King of England from 1189 to 1199.

* King John: Richard’s younger brother and King from 1199 to 1215,

e Left Legs of Richard and John: Specific parts of Richard and John.

® A Crown: An object in the model.

15

Relations in the Model
What is a Relation? A relation links objects in the model. Formally. it is a set of ordered pairs {or
tuples) of objects.

Unary Relations (Properties)

What is a Unary Relation? A unary relation is a property that applies to a single object.

Functions in the Model

What is a Function? A function is a special type of relation where each object s related to

exactly one object.

Total Functions: In first-order logic, all functions must be total. This means that every possible

input (like every object in the domain) must have a corresponding output.

Link Between Model Elements and Logical Sentences
Finally. the model must connect the objects. relations. and functions to the logical vocabulary
used in sentences. This connection allows us 16 interpret santences and determine their truth
Valle within the context of the model

09-07-2025

‘igure 82 A model containing five objects, two binary relations, three unary relations
(indicated by labels on the objects), and one unary function, left-leg.

Objects:

1. R (Richard the Lionheart): Represented as a stick figure labeled "R."

2. J (King John): Represented as a stick figure labeled

w

Crown: An object placed above John's head.

]

Left leg of Richard: Shown as an oval connected to Richard.
5. Left leg of John: Shown as an oval connected to John.

Binary Relations: ((Richard the Lionhean, King John). (King John, Richard the Lionhean) |

1. Brother Relation: Represented by an arrow labeled “brother” pointing
from Richard (R) to John (J) and another arrow from John () to
Richard (R). This shows that Richard and John are brothers, and this
relationship is bidirectional.

2. On Head Relation; Represented by an arrow labeled "on head”
pointing from the crown to John (J). This indicates that the crown is

on King John's head. o
{the crown, King John),

Unary Relations (Properties):

Person: Labeled on both Richard (R) and John (), indicating that both

are persons.

2. King: Labeled only on John ()), indicating that Jehn is a king (Richard
is not labeled as a king, possibly because he is considered dead in this

model).

3. Crown: Labeled on the crown, indicating that this object is a crown.

Unary Function:
1. Left Leg Function:

s An arrow labeled “left leg” points from Richard (R) to his left leg
and from John {J) to his left leg. This indicates that the function
maps each person to their respective left leg.

* There's a function mapping each person to their left leg:
« Richard the Lionheart — Richard’s let leg

o King John — John's left leg

Summary

This model illustrates how first-order logic can represent a possible world

with specific objects and relationships:
s Richard and John are both persons.

¢ John is a king, but Richard is not, possibly because he is dead at this

point.
¢ Richard and John are brothers.
* The crown is on John's head.

¢ Each person has one left leg, which is specified by the "left leg”

function.

Sentence — AtomicSentence | ComplexSentence
AtomicSentence — Predicate | Predicate(Term, ...} | Term = Term
ComplezSentence — { Sentence)| | Sentence |
- Sentence
Sentence N\ Sentenee
Sentence v Sentence
Sentence = Sentence

Sentence < Sentence

Quantificr Variable, ... Sentence

Term — Function(Term, . ..)

Constant

Variable

Quantifier — V| 3

Constant — A | X, | John |
Varigble — a| x| s| -
Predicate — True| False | After | Loves | Raining | -
Function — Mother | Lefeleg | ---
OPERATOR PRECEDENCE : =, =,A,V,= &

Figure 8.3 The syntax of first-order logic with equality. specified in Backus Naur form

16

Definition of a Term:

o Aterm is a logical expression that refers to an object. Constant symbols {e.g.. “John,"
“Richard”) are examples of terms because they directly refer to specific objects.

* However, in some cases, we might want to refer to objects without giving them a distinct
name, such as referring to "King John's left leg” rather than assigning a unique symbol for

it. This is where function symboels come into play.

Function Symbols:

* Function symbols help create complex terms. For instance, instead of naming King John's
left leg with 3 constant symbol, we use 3 function symbol like "LeftLeg(John)" to refer to it.

» A complex term is created by a function symbol followed by a list of arguments (terms). For
example, “LeftLeg(John)" is a term where “Leftleg" is a function symbol and "John" is the

argument.

+ Definition of an Atomi¢ Sentence:

o An atomic sentence is the most basic form of a sentence in FOL. It's created by combining a
predicate symbol with a list of terms. For example, " 8rother (Richard, John)" is an atomic

sentence that states a relationship (brotherhood) between two objects (Richard and John).

09-07-2025

« Complex Terms in Atomic Sentences:

* Atomic sentences can involve complex terms, For example, *Married(Father(Richard),
Mother(John))™ states that Richard's father is married to John's mother.

Truth in a Model:

« An atomic sentence is true in a model if the relationship (represented by the predicate)
holds among the objects that the terms refer to in that model. For example,
“@rother(Richard, John)" is true if Richard is indeed the brother of John under the given

interpretation.

g Complex Sentences:

Complex sentences in FOL are created by combining atomic sentences using logical

.

connectives, just like in propositional logic. Some of the common connectives include:

Negation (=): " -Brother(LeftLeg(Richard), John)® states that Richard's left leg is not

John's brother.

Conjunction (A): “8rother(Richard, John) A Brother(lohn, Richard)” states that

Richard is John's brother and John is Richard’s brother.

Disjunction (V): *King(Richard) v King(John)® states that either Richard or John is a

king.

Implication (=): *-King(Richard) = King(John)" states that if Richard is not a king.

then John is a king.

Universal Quantification (V):

Universal quantification is used to state that a property holds for all ebjects in the domain,

For example, “¥x King(x) = Person(x)" means "For all x, if x is a king, then x is a person.”

The variable “x" is a placeholder for any object in the domain. The sentence is true if, for

every object in the domain, the implication *King(x) = Person(x)" is true.

Richard the Lionheart is a king = Richard the Lionheart is a person.
King John is aking = King John is a person.

Richard’s left leg is a king = Richard's left leg is a person.

John’s left leg is a king = John's left leg is a person.

The crown is aking = the crown is a person.

Existential Quantification (3):

¢ Existential quantification is used to state that there exists at least one object in the domain
that satisfies a certain property. For example, “3x Crown(x) A OnHead(x, John)™ means

“There exists an x such that x is a crown and x is en John's head.”

Nested Quantifiers:

1. Quantifiers of the Same Type:
+ Example of “Brothers are siblings™:

» The sentence “Brothers are siblings” can be expressed using two universal quantifiers:
y (Brother(x, y) = Sibling(z, y))

This reads as: "For all x and for all y, if x is a brother of y, then x is a sibling of y."
+ Simplifying Consecutive Quantifiers:

» When quantifiers of the same type (e.g.. two universal quantifiers) appear consecutively,
they can be combined into a single quantifier with multiple variables:
e,y (Sibling(z,y) & Sibling(y, x))
This says that for all x and y, x being 3 sibling of y is equivalent to y being a sibling of x, This

is a way to express the symmetry of the sibling relationship.

2. Mixed Quantifiers:
¢+ Example of “Everybody loves somebody":
¢ This sentence requires a universal quantifier followed by an existential quantifier:
Y (JyLoves(z,y))

This reads as: “For every person x. there exists some person y such that x loves y.”
+ Example of "There is someone who is loved by everyone":

o This sentence reverses the order of quantifiers:
Jy (v Loves(z, y))

This reads as: “There exists some person y such that for every person x, x loves .

17

Importance of Quantifier Order

¢ The order of quantifiers matters significantly because it changes
the meaning of the sentence.
> ¥x (Jy {Loves}(x, y)) means everyone has at least one
person they love.
o Ay (Vx {Loves}(x, y)) means there is a specific person who
is loved by everyone.

Parentheses can help clarify the scope of each quantifier:

> Vx (By {Loves}(x, y)) emphasizes that for each x, there
exists somey.

> y (Vx {Loves}(x, y)) emphasizes that there is a particular y
who is loved by all x's.

09-07-2025

Avoiding Confusion with Variable Names

Same Variable Name Used Twice:
> Consider the sentence: Vx(Crown(x)V(3xBrother(Richard,x)))

e

° This sentence uses the variable name
and existential quantifiers.

in both the universal

To avoid confusion, it’s recommended to use different variable
names when working with nested quantifiers:

Instead of 3x {Brother}(Richard, x) inside Vx,

> use 3z {Brother}(Richard, z)} to clarify that the inner
quantifier refers to a different object.

Connections Between Universal (V) and Existential (3) Quantifiers

1. Relationship via Negation:

Universal and Existential Quantifiers are connected through negation. This means that any
statement made with a universal quantifier can be rewritten with an existential quantifier by

negating the statement. and vice versa.

Example 1: "Everyone dislikes parsnips”
¢ This can be written as:
7 - Likes(x, Parsnips)
o This reads as; "For all x, x does not like parsnips.”

* This is logically equivalent to saying:

Tz Likes(x, Parsnips)
* This reads as: “There does not exist an x such that x likes parsnips.”

+ Interpretation: If everyone dislikes parsnips, then it's true that there's no one who likes

them.

» Example 2: "Everyone likes ice cream”
* This can be written as:
v Likes(x, lceCream)
 This reads as: "For all x. x likes ice cream.”

* Thisis logically equivalent to:

 —Likes(xz, IceCream)
® This reads as: "There does not exist an x such that x does not like ice cream.
o Interpretation: If everyone likes ice cream, then it's true that there's ne ane who dislikes it.
De Morgan's Laws for Quantifiers:

De Morgan'’s Laws connect the univarsal and existential quantifiers with logical connectives

(AND A and OR v). They show how negating 3 or t

changes the quantifier and the nature of the statement
* Universal Quantifier and Negation:
Vo —~P(z) Jz P(z)

s | a statement is not true for any x, then there does not exist an x for which the

statement is true.

Existential Quantifier and Negation:
vz P(z) = 3z -P(z)

o [fit's not true that a statement holds for every x, then there exists an x for which the

statement does not hold.

* Existence and Universality through Negation:
¥z P(z) = -3z -P(x)

s Astatement is true for every x if there does not exist an x for which the statement is
not true.

Jz P(z) = -V ~P(z)

¢ Astatement is true for some x if it is not the case that the statement is false for every x.

Equality in First-Order Logic (FOL):
1. Equality Symbol (=):
* Infirst-order logic. equality is used to assert that two terms refer to the same object.
« Example:
Father(John) = Henry

* This means that the object referred to as "John's father” is the same as the object referred

to as “Henry."

2. Using Equality in Logical Statements:

* Equality can be used to express facts about relationships between terms or to distinguish
between objects.

Example: Richard has at least two brothers:
* To express that Richard has two distinct brothers, we write:

ir,y (Brother(x, Richard) A Brother(y, Richard) (x=uy))

+ This reads as: “There exist two people, x and . such that x is a brother of Richard, y is a
brother of Richard, and x is not the same as y."

18

PLVs FOL
1. Inference rules for quantifiers

Universal Instantiation (U1):
1. Definition:
= Universal Instantiation is a rule that allows us to derive specific instances from a universally
quantified statement. If something is true for all elements in a domain. then it is true for any
particular element in that domain.
Yo a
Susst({v/q},a)

2. Example with Universal Quantifiers:

+ Consider the axiom:
Vo (King(x) A Greedy(x) = Evil(x))
This statement means that “for all x. if x is a king and x is greedy. then x is evil.” Using

Universal Instantiation, we can derive specific instances:

 Iflohn is 2 king and greedy, then John is evil
King(John) A Greedy(John) = Evil{Jehn)
« IfRichard is a king and greedy. then Richard is evik
King(Richard) » Greedy(Richard) — Evil(Richard)
« If the father of John is a king and greedy. then the father of John is evil
King(Father(John)) 7 Greedy(Father(dohn)) = Evil(Father(John))

Where *v* is a variable and "g” is a ground term, The specific sentences given above are
obtained using the substitutions {2/ John}. {x/ Richard). and {x/Father(John)}

09-07-2025

Existential Instanti

ion (EI):
1. Definition:
¢ Existential Instantiation is a rule that allows us to take a statement that asserts the existence
of some object with a certain property and replace the existentially quantified variable with
a new constant symbol that doesn't appear elsewhere in the knowledge base. This process

gives a name to the unknown object,
2. Example with Existential Quantifiers:

o Consider the sentence:
Jx (Crown(x) A OnHead(z, John))
This states that “there exists an x such that x is a crown and x is on John's head.” Using

Existential Instantiation, we can infer.

Crown(C1) A OnHead(C1, John)
Here, "C1" is a new constant symbol representing some specific crown that satisfies the

condition,

Skolemization:

o The process of introducing a new constant symbol (like "C1%) is a special case of a more
general process called skolemization, The new name
or constant introduced must not already belong to another object in the knowledge base.

Difference between Ul and El:

* Universal Instantiation can be applied multiple times. 3s it deals with 3 universally
quantified sentence that can lead to multiple specific instances.

« Existential Instantiation is typically applied only once because the existentially quantified
sentence is satisfied by finding just one instance. Once the sentence is instantiated. the

original existential statement can be discarded.

After applying Existential Instantiation. the new knowledge base is not logically equivalent
to the original knowledge base. but it is inferentially equivalent.

Reduction to Propositional Inference
1. Basic Concept:

 Theidea is that once we have rules to derive non-quantified (i, propositional) sentences
from quantified sentences, we can reduce the problem of inference in first-order logic (FOL)

10 3 problem of inference in propositional logic, which is simpler and better understood.
2. Replacement of Quantified Sentences:
= Existential Quantifiers:

o InFOL an existentially quantified sentence (e.g. "3x P(x)") can be replaced by a single

instantiation {e.g.. "P{c).” where “c” is a specific constant).
* Universal Quantifiers:

+ Auniversally quantified sentence (e.g. °

% P(x)") can be replaced by the set of all
possible instantiations with ground terms from the knowledge base, This means that

for each possible value of the variable "x.” you create a specific sentence.

Example of Propaositionalization:
* Consider a knowledge base with the following sentences:

o Va(King(z) A Greedy(x) = Evil(z))

« King(John)
+ Greedy(John)
« Brother(Richard, John)

* To apply propositionalization

Use Universal Instantiation (UI) on the universally quantified sentence with all possible

ground-term substitutions. such as { / John} and {x/ Richard}.

This gives:
King(John) A Greedy(John) = Evil(John)

King(Richard) A Greedy(Richard) = Evil(Richard)

.

The original universally quantified sentence Y (King(x) A Greedy(z) =

Lvil(z)) is then discarded because we've covered all relevant ground terms.

Complete Propositionalization:

can be lized to any first-ord: base and query. This

means that the process can convert any first-order logic problem into a propositional logic

problem while p g il (i.e.. the logical of the base
remain the same).
The Problem with Function Symbols:

» Asignificant challenge arises when the knowledge base includes function symbols (e.g.
“Father”). Function symbols can generate an infinite number of ground terms. For instance,
if “Father” is a function symbol. you could have an infinite sequence of terms like
“Father{lohn),"

her(Father(John)).” “Father{Father(Father(John)))." etc.

® The set of possible ground-term substitutions becomes infinite, leading to an infinitely
large propositional knowledge base, which traditional propositional algerithms cannot
handle.

19

Herbrand's Theorem

Finite Subset and Herbrand's Theorem:
* Herbrand's Theorem (1930):

* This theorem offers a solution to the problem of infinite ground terms. It states that if a
sentence is entailed by the original first-order knowledge base, there exists a proof

involving only a finite subset of the propositionalized knowledge base,

The proof involves generating all possible instantiations up to a certain depth, starting
with constant symbols (like “John" and "Richard") and then moving on to more

complex terms (like "Father(John)" and “Father(Richard)"), and so on.

You continue this process until you find a finite propositional proof of the entailed

sentence.

09-07-2025

Inefficiency of Propositionalization:

By the early 1960s, it became clear that propositionalization (the process of converting first-
order logic to propositional logic) was inefficient. For example, to infer that “John is evil®
given a query like “Evil(x)" from the knowledge base, it's unnecessary to generate and
consider sentences like "King(Richard) A Greedy{Richard) = Evil(Richard)" when they aren't

relevant to the query about John.

Human beings can easily infer that *John is evil" by simply noticing that “John is 3 king" and
*John is greedy,” without needing to consider other individuals like Richard. The goal is to

make this process similarly efficient for computers.

First order inference rule

Generalized Modus Ponens:

* The passage introduces Generalized Modus Ponens. an inference rule that extends the
basic Modus Panens rule from propositianal logic to first-order logic (which includes

variables and quantifiers).

.

Example:

* Given Knowledge Base:
1. Vz(King(z) A Greedy(x) = Evil(r))
2. King(John)
3. Greedy(John)

To infer that "John is evil.” we can use a substitution @) that maps the variable x in the
first sentence te "John." This makes the premises in the rule match the facts in the

knowledge base.

.

The substitution § = {x/Jolin} makes "King(x)" become "King{John)" and

"Greedy(x)" become “Greedy{John).” This substitution allows us to infer “Evil{John).”

& The process can handle more complex casas. Suppose we don't have "Greedy(John)®

explicitly but instead know that *everyone is greedy” (VyGreedy(y)). We can still conclude

“EvilJohn)" by using a substitution that matches both the variables in the implication and
those in the knowledge base.

» Forexample, the substitution @ = {iz/John, y/John} spplies to both "King(x)" and
“Greedy(x)" as well as "King(John)" and "Greedy(y)." allowing us to infer "Evil(John)."

Farmal Definition of Generalized Modus Ponens:
* Structure:
* Consider atomic sentences py, Pz, ... P and an implication py A pz A .. A p, == 4.

® The rule states that if there is a substitution @ such that the substituted versions of
DUy P2 e, Do (dencted as pl, ph, ...,) match the premises, then you can infer the

conclusion ¢ after applying the same substitution .

+ Example Application: ;

o P, = King(John). py, = King(x)
o Py = Greedyly). p2 — Greedy(z)

o g = Evil(x). so after applying & = {x/John, y/John}, we infer "EvilJohn)."

Soundness of Generalized Modus Ponens:
+ This rule is sound. meaning it will only produce conclusions that are logically valid based on
the given premises. This saundness comes from the property that for any sentence p and

substitution 8, the sentence p logically entails SUBST (8, p).

The rule works by applying a substitution to match the premises and then using Modus

Ponens (if A and A = B are true, then I3 must be true) to infer the conclusion,

Lifted Inference Rules:

¢ Generalized Modus Ponens is described 25 a lifted version of Modus Ponens. “Lifted”
means that it works at the level of variables and quantifiers (first-order logic), not just on
ground (variable-free) propositions.

e This lifting is crucial because it avoids the inefficiencies of propositionalization by making
only the necessary substitutions needed for the inference. rather than generating all

possible ground instances.

Unification

Unification:

« Unification is the process of finding a substitution that makes different logical expressions

look identical, -
UNIFY(p, q) = @ where SUBST(@, p) = SUBST(0, q)
= UNIFY Algorithm:

* The UNIFY algorithm takes two sentences and finds a substitution # such that after

applying fl, the two sentences are the same.
« Examples of Unification:
1. UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane}:

* The variable o can be substituted with "Jane" to make both sentences
identical.

2, UNIFY(Knows(John, x), Knows(y. Bill)) = {x/Bill, y/John}:

* Substituting = with "Bill" and y with “John" makes both sentences identical.

20

09-07-2025

3. UNIFY(Knows({John, x), Knows(y, Mother(y))) = {y/John, x/Mother(John)}):

* Substituting i with "John" and & with "Mother{John)" makes the sentences
identical.
Example
4. UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail:
» This unification fails because x cannot be both "John® and "Elizabeth” o UNIFY(a. 3) = ifaf = 30
simultaneously.

» q [l
+ Problem: Knows(Jahn 2) | Knows{John, Jane) | {z/Jane]
Knows(John,z) | Knows(y, Mar T il
« Sometimes unification fails because of 3 variable name clash (e.g. both sentences use A nowsleoin;a)| Bnouwdgisiany) {i/Mary,yfJohn)

Knows(John,x) | Knows(y, Mother(y)) | {y/John,z/Mother(John)}

Jaill

the same variable . leading to confusion). |
Ko

= Solution:

+ To avoid this, we can standardize apart one of the sentences by renaming its variables

to avoid clashes. For example. rename in one sentence to &7 (2 new unique variable « Standardizing apart eliminates overlap of variables, e.g., fnows(z 7. Mary)
name). This allows unification to proceed correctly.

Knows(John.z) | Knows(zz, Mary) | {217/ Jokin.zfMary}

function UNIFY(z, . #) returns a substitution to make z and y identical
inputs: . a variable, constant, list, or compound expression
. a variable, constant, list, or compound expression
. the substitution built up so far (optional, defaults to empty)

it 0 = failure then return failure Mpst Genarsl Untfisr (MGH):

+ Muitiple Unifiers:

else if VARIABLE?(z) then return UNIFY-VAR(z, .6)
else if VARIABLE?(y) then return UNIFY-VAR(y, z.6)
else if COMPOUND?(x) and COMPOUND (1) then
38, . ARGS, UNIFY(z.0P, .0P, 6)) UNIFY (Knows(John,z), Knows(y, z)) could return either {y/John, 2/z}
else if LIST2(x) and LIST?(y) then

return UNIFY(z REST, y REST, UNIFY(r FIRST, y. FIRST, #))
else return failure .

* Sometimes, there could be more than one way to unify two expressions. For example,

or {y/John,z/John, z/John}.

Generalization:

function UNIFY-VAR(var, z,6) a substitution

e The first unifier is more general than the second because it places fewer restrictions on
il {var/val} € 8 then return UNIEY(val, z,6) the variables’ values. The most general unifier (MGU) is the most general substitution
else if {/val} € 6 then return UNIFY (var, val,8)
else if OCCUR-CHECK?(var, £) then return failure
else return add {varfz} 1o @

that can unify the twa expressions. In this case, it is {y/John,z/z}.

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures
of the inputs, element by element. The substitution @ that is the argument to Un is built
up along the way and is used 1o make sure that later comparisons are consistent with bindings
that i earlier. In a ion such as F/(A, B), the OP field picks
out the function symbol F"and the ARGS field picks out the argument list (A, B).

UNIFY Algorithm and Occur Check:

* Generalized Modus Ponens is a powerful inference rule that extends Modus Ponens to first-
The UNIFY algorithm works by recursively comparing the structures of two expressions arder logic. allowing computers to make inferences more efficiently without generating
while building a unifier unnecessary ground instances.
® Occur Check: s Unification is the process of finding substitutions that make different logical expressions
o Acrucial part of the algorithm is the occur check, which ensures that a variable does 1dentical. Vs # corerpartof irst-order inference:
not appear within its own substitution term (e.g.. S(x) cannot unify with §(S(z))). * Most General Unifier (MGU) refers to the most general substitution that unifies two
This check is necessary to prevent constructing inconsistent or unsound unifiers. expressions, ensuring that the inference process remains as flexible as possible.
* However, the occur check makes the UNIFY algorithm quadratic in complexity, * Occur Check is a step in the UNIFY algorithm that prevents variables from being substituted in a
meaning it takes more time as the expressions get larger, Some systems skip the occur way that would lead to logical inconsistencies.

check to improve performance but risk making unsound inferences.

21

Storage and Retrieval

1. Basic Operations: STORE and FETCH

STORE(s): This function stores 3 sentence & into the knowledge base. It simply means adding

new information or a fact into the database.

FETCH(g): This function retrieves all unifiers such that the query g unifies with some sentence in
the knowledge base. It's like asking the knowledge base to return all pieces of information that
could match or answer the query.

2. Simplest Implementation of STORE and FETCH

* The simplest way to implement these operations is to keep all facts in a long list. When you
need to retrieve information. FETCH simply unifies the query with every element in the list

Efficiency Issue: This method is inefficient because it involves checking each fact in the list

which can be time-consuming for large knowledge bases,

09-07-2025

3. Predicate Indexing to Improve FETCH

+ Predicate Indexing: To make FETCH more efficient, facts can be indexed by their predicate (the
function name in the logical statement). For example, all facts related to the predicate "Knows™

would be stored together, separate from facts related to the predicate “Brother.”

* Hash Table: These indexed buckets can be stored in a hash table for fast retrieval, allowing the
system 1o quickly access only those facts that are relevant 1o the query.

4. Challenges with Large Predicate Buckets

« Example Scenario: Suppose the knowledge base contains facts about employment refationships
using the predicate ~Enploys (x, y)". If there are millions of employers and employees. the
“Enploys” bucket would be enormous.

« Query Efficiency: A quary like *Employs(x, Richard) would require scanning the entire bucket
which is inefficient.

5. Multiple Index Keys for Better Querying

= To handle specific queries more efficiently. facts can b indexed using combined keys. For
example, the system might index facts by both the predicate and the second argument, or the
predicate and the first argument,

= Example: For the query “Employs(IBN, y)". the system would use an index that combines the
“Employs” pradicate with the first argument (" 18M°), allewing it to directly retrieve the relevant
facts.

6. Subsumption Lattices

Concept: A subsumption Iattice is 3 structure that organizes queries or logical sentences based
on how they genes

e or specify each other,

Example from Figure 9.2:

« Figure 9.2(a): Shows the subsumption lattice for the sentence *Esplays(IBH, Richard)”

Lowest Node: *Employs(IBN, Richard)" is the most specific query (asks for both the
employer and employes).

.

Intermediate Nodes: * Esploys(x, Richard)® and *Employs(IB, y)" are more general

queries.

.

Highest Node: *employs(x, y)® is the most general query, asking for any employment

relationship.

Employsisy) Enplays(z.)
_— ~—— = | —
Emplo s Richar mplass{IBM.y) Employsix dohn) Employstcy EmplaysJohey)
— = s

Emplo ys{FBM, Richard) Emplaystdol

@)

 Jahay

Figurc 9.2 (a) The subsumption lattice whose lowest node is Employs(IBM , Richand).
(b) The subsumption lattice for the sentence Employs(John, John).

Child Nodes: A child node in the lattice is derived from its parent node by a single substitution.
For example, “Enploys(x, y)~ (parent) can lead to *Employs(x, Richard)" (child) by substituting
*y" with “Richard",

8. Efficiency and Complexity of Indexing

* Number of Nodes: The |atti

the lattice can have (2") nodes, If the terms involve function symbols. the Iattice can grow

e structure can become complex. For a predicate with n arguments,

exponentially with the size of the terms.

» Cost of Indexing: Maintaining such a large number of indices can become inefficient. At some
point. the overhead of maintaining indices outweighs the benefits of fast retrieval.

« Fixed vs. Adaptive Policy: To manage this complexity, systems can use 3 fixed policy (e.g..
indexing only on the predicate and each argument) or an adaptive policy that creates indices

based on the types of queries frequently asked.

Forward chaining

Forward chaining is also known as a forward
deduction or forward reasoning method when
usin? an inference engine. Forward chaining
is a form of reasoning which start with atomic
sentences in the knowledge base and applies
inference rules in the forward direction to
extract more data until a goal is reached.

It is a bottom-up approach for drawing the

>
inferences.
~ It is a process of making a conclusion based

on known facts or data, by starting from the
initial state and reaches the goal state.
And is also called as data-driven

Tunction FOL-FC-ASK(K B, a) returns a substitution or false
inputs: KB, the knowledge base. a set of first-order definite clauses
«a, the query, an atomic sentence

local variables: new,

he new sentences inferred on each iteration

repeat until new is empty
new—{ }
for cach rule in KIZ do
(PrA..A pn =) STANDARDIZE-VARIABLES(rule)
h # such that SUBST(H, py A ... A p,)=SUBST(8,p| A A pp)
forsome gi,...,p’, in KB
SuBsST(8.)
does not unify with some sentence already in KB or new then
add ¢’ to new
& — UNIFY(g', &)
if & is not foil then return ¢
add new 10 KB
return false

22

Forward Chaining Example

"As per the law, it is a crime for an
American to sell weapons to hostile
nations. Country A, an enemy of
America, has some missiles, and all
the missiles were sold to it by
Robert, who is an American
citizen.”

Robert is criminal.

09-07-2025

Converting Problem Statements to Definite Clauses
The problem statements are converted into first-order definite clauses:

* Clause 9.3: The law about Americans selling weapons to hostile nations:

an(x) A (y) A Sells(x, y, z) A

The existential statement 3 x Owns(Nono, x) A Missile(x) is splitinto:

Applying the Forward-Chaining Algorithm
Forward Chaining: The forward-chaining algorithm starts with the known facts (the atomic

sentences) and rep s Modus Po

tedly ap

ens (a rule of inference) to derive new facts until

no more new information can be inferred
Example Execution:

* Start with the facts:

(M1), Dwns(Nono, M1), American(West), Enemy(Nono, America)

« Apply forward chaining:

1. From missile(M1) and Missile(x) = Wespon(x) . infer Wieapon(ii) .

. From Enemy(Mono, America) and Enemy(x, America) = Hostile(x).infer

Hostile (Nona)

w

From weapon(M1) . American(Mest). Hostile(lono) . and Sells(West, M1, Nono)

infer Criminal(West) .

Conclusion: By applying the for

rd-chaining sigorithm, we can infer that Colonel West is a

criminal based on the given knowl

ge base.

2. Example Problem: Proving Colonel West is a Criminal

The problem involves a set of facts and rules represented as first-order definite clauses, aiming to

prove that Colonel West is a criminal based on these facts.

* Given Facts:

The law states that it's a crime for an American to sell weapons to hostile nations,

The country Nono, an enemy of America, has missiles, and all its missiles were sold to it by

Colanel V

st, who is an American.

* Goal: Use forward chaining to infer that West is a criminal.

Clause 9.6: All missiles owned by Nono were sold to it by Colonel West:

ssile(x) A Owns(Nono, x) = Sells(West, x, Nono)

Clause 8.7: Missiles are weapons

Clause 9.8; An en

Clause 9.9: West is an American:

Clause 9.10: Neno 15 an e

Forward Chaining Proof

Step |

|Amencan(RobertJ | Missile (T1) | |OWnsEATlJ ||Enemy[A, Amenca]l

[Weapons(T) | ISeUs(Hobert,Tl,AJl | rostiew |

]Ameritan(ﬂnhert] | Missile (T1) | |0wns (AT ||EnemytA,Amer\ca)|

23

Continued...

Criminal (Robert) A

[Weapons(Tt) | [selsRobert,T1, 4] [Hostilet®) |

|Amerilan (Robert)

| Missile (T1) | |0wns{A.T1) ||Enemy(Mmerica)| —

09-07-2025

Algorithm Properties:

= Soundness: The aigorithm is sound because every inference it makes is based on a valid

application of Generalized Modus Ponens.

* Completeness: The algorithm is complete for definite clause knowledge bases. It can
answer every query entailed by the knowledge base. In the case of Datalog knowledge
bases (which lack function symbols), the proof of completeness is straightforward.

Efficiency Considerations:

» The aigorithm is conceptually simple but inefficient because it may add many redundant
facts and repeatediy check all rules. The inefficiency grows with the complexity of the
knowledge base.

* Fixed Number of Facts: The number of passible distinct ground facts is bounded by the
maximum arity (number of arguments) of predicates, the number of predicates, and the

number of constant symbals. Once all possible facts are inferred, the algorithm reaches a
fixed point.

Backward Chaining

Backward-chaining is also known as a backward deduction or
backward reasoning method when using an inference engine. A
backward chaining algorithm is a form of reasoning, which starts
with the goal and works backward, chaining through rules to find
known facts that support the goal.

« ltis known as a top-down approach.

In backward chaining, the goal is broken into sub-goal or sub-goals
to prove the facts true.

It is called a goal-driven approach, as a list of goals decides which
rules are selected and used.

Backward chaining works by starting from a goal and finding facts that support it by chaining

backwards through rules in the knowledge base (KB).

* Goal-Driven: The algorithm begins by checking if the goal can be derived from the rules in the
KB. If a rule exists where the right-hand side (ths) matches the goal, it then checks whether the

left-hand side (Ihs) of that rule can be derived (proven true).

AND/OR Search: The process of proving a goal involves bath:
+ OR: Checking if there are any rules in the KB that can prove the goal.

¢ AND: Ensuring that all conjuncts (conditions on the Ihs) of 3 rule are satisfied.

Generators: Since there might be multiple ways to prove a query, the algorithm uses a
generator to return multiple possible results, each representing a substitution for variables in
the gosl.

.

Depth-First Search {DFS): Backward chaining uses DFS, meaning it explores one possible path

until completion before backtracking to try alternatives.

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query, { })

generator FOL-BC-Or(KB
for each rule (ths = rhs)
(lhs, rhs)

oal,) vields a substitution
FETCH-RULES-FOR-GOAL KB, goal) do
AN ZE-VARIABLES((fhs, 1fis))
FOL-BC-AND(KB, lhs, UNIFY(rhs, goal, 8)) do

generator FOL-BC-AND(KB, goals, #) yiclds a substitution

if @ = fatiure then return
else if LENGTH(goals) = 0 then vield #
else do

first.rest — FIRST(goals), REST(goals)

for each ' in FOL-BC-OR(KB. SUBST(#, first). #) do

for each & in FOL-BC-AND(K D, rest. ¢’} do
yield

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.

Backward Chaining
step-1:

Crininal (Robert)

{ Robert/p}

A4

Fumnnm[ﬂnb«ll” Weapan (g) Hsaxsotmenq.; || Hostie) |

i3

24

09-07-2025

Continued...

o] [o] [

i)

‘ Mssie ()

fam} (8] (O] (]

Continued...
Step-3: Stepd
{ Rabert/p}
Fmenwlwsl | Weapon (q) ”Se\\smnbenﬂ r)| | Hostite(r) [
01
{omi
fqmj i} {1}
N4
Resolution

Resolution is a theorem proving technique that proceeds by
building refutation proofs, i.e., proofs by contradictions.
Resolution is used, if there are various statements are given,
and we need to prove a conclusion of those statements.
Unification is a key concept in proofs by resolutions.
Resolution is a single inference rule which can efficiently
operate on the conjunctive normal form

Clause: Disjunction of literals (an atomic sentence) is called
a clause. It is also known as a unit clause.

Conjunctive Normal Form: A sentence represented as a
conjunction of clauses is said to be conjunctive normal
form or CNF.

Steps for Resolution

Conversion of facts into first-order logic
Convert FOL statements into CNF

Negate the statement which needs to prove
(proof by contradiction)

Draw resolution graph (unification)

Example
-

» All hounds howl at night.
»John likes all kind of food.
» John likes peanuts.

« Anything anyone eats and not killed is food.
+ Anil eats peanuts and still alive

« Harry eats everything that Anil eats.

+ John likes all kind of food.

« Apple and vegetable are food

« Prove by resolution that:

« John likes peanuts.

Step-1: Conversion of facts into first-order logic

> Yx (HOUND(x) — HOWL(x))
> Wx = food(x)— likes(John, x)

» likes(John, Peanuts)
. x:food(x) > likes(John, x)

o @

food(Apple) A food(vegetables)
Wx y: eats(x, y) A killed(x) > food(y)

o

a

eats (Anil, Peanuts) A alive(Anil).

. Vx s eats(Anil, x) -» eats(Harry, x)

™

Vx: alive(x) 5~ killed(x)

F @

likes(John, Peanuts)

L Vx: —killed(x) > alive(x) }adued predicates.

25

Elminate allimpication (3) and rewrite:

Step-2: Conversion of ..cvswn
C N F 2 foodlAople) A foodtvegiabics)

3.y -~ [eats(x, y) A~ kilied(x)] ¥ foodly)
Eliminate all implication :e:uwmssew
(—) and rewrite:
> vx =+ HOUND(x) v HOWL(x)
> x = food(x) V likes(John, x)
> likes(John, Peanuts) % i Pt
. Move negation (Jinwards and rewre
Move negatlon 1. wx = foodx) V likes{John, x)
(M)inwards and rewrite . ..o
> Vx = HOUND(x) v HOWL(x)
> x = food(x) V likes(John, x)
» likes(John, Peanuts)

5. -veats{Ani, o] ¥ eats(Harry, 1)
. [ki) |V alvel)

7. alive(s) ¥ - klledx)

3. v vy ~ eatslx, ¥} V lled(s) V foodly)
4. eats [Ani, Peanuts) A alive{Ani)

5. eats(And, 3] Y eats{Harry, x)

6. wx ~kiecix) | V alivelx)

7. v ~alive(x) V -~ killed(x)

8. Hes{John, Peanuts).

09-07-2025

Step-2 Continued...

Rename variables or standardize variables
» = HOUND(x) v HOWL(x)

> Wx = food(x) V likes(John, x)

» likes(John, Peanuts)

Eliminate existential instantiation quantifier by elimination
(Skolemization)

» = HOUND(x) v HOWL(x)
> Wx = foodx) V likes(John, x)
» likes(John, Peanuts)

Step-2 Continued...

Drop Universal quantifiers
- HOUND(x) v HOWL (x)
= food(x) V likes(John, x)
likes(John, Peanuts)

Step-3: Negate the statement which needs to prove

In this statement, we will apply negation to the
conclusion statements

-+ HOUND(x) v HOWL (x)
= food(x) V likes(John, x)
= likes(John, Peanuts)

Step-4: Draw Resolution graph

—likes(John, Peanuts) —food(x) V likes{John, x)

\ / {Peanuts/x}

First step: -likes(John, Peanuts)
and likes(John, x) get resolved(canceled)
by substitution of {Peanuts/x}, and we are
left with = food(Peanuts)

26

