
09-07-2025

1

UNIT – 3

TOPICS
 Logical Agents

 Knowledge Based Agents

 Logic

 Propositional logic

 First order logic

 Syntax and Semantics in First order Logic

 Inference in first order logic

 propositional vs. First order inference

 Unification and Lifting

 Forward chaining, Backward chaining

 Resolution

Knowledge Based Agents
 An intelligent agent needs knowledge about the real world for

taking decisions and reasoning to act efficiently.

 Knowledge-based agents are those agents who have the
capability of maintaining an internal state of knowledge,
reason over that knowledge, update their knowledge after
observations and take actions. These agents can represent the
world with some formal representation and act intelligently.

 Knowledge based agents give the current situation in the form of
sentences.

◦ They have complete knowledge of current situation of mini-
world and its surroundings.

◦ These agents manipulate knowledge to infer new things at
“Knowledge level”.

Knowledge-Based Agents

 Representation and Reasoning:

1. Agents Form Internal Representations:

◦ Imagine an agent in a smart home setting. The agent represents the
home's layout, temperature in each room, locations of inhabitants,
and status of devices (lights, thermostat, etc.).

2. Inference to Derive New Representations and Actions:

◦ The agent can infer new knowledge from existing data. For
instance, if it knows that the living room light is off and someone is
watching TV there, it can infer that they might want more light and
turn on the living room lamp.

Human Intelligence

 Reasoning with Internal Knowledge Representations:

 Reasoning Example:

◦ A person sees that it’s cloudy and deduces it might rain. They bring
an umbrella before leaving the house. This decision is based on the
internal representation of knowledge about clouds and rain.

AI Intelligence

 Mirrored in Knowledge-Based Agents:

 Smart Home Agent Example:

◦ The smart home agent has rules and knowledge encoded
about typical human behaviors and preferences.

◦ It observes that the temperature outside is dropping.

◦ Given the internal representation that the inhabitants prefer
the living room to be warm in the evening, the agent turns
on the heater in the living room.

Problem-Solving Agents

 Limitations:

◦ Previous problem-solving agents had limited and inflexible
knowledge representations.

◦ Example: The transition model in the 8-puzzle is hidden in
the code, limiting its deductive capabilities.

 Atomic Representations:

◦ In partially observable environments, listing all possible
concrete states is impractical.

09-07-2025

2

Limitations of Hidden Transition Model
 Lack of Explicit Knowledge:

◦ The knowledge of how actions affect the puzzle's state is not
represented explicitly. The agent just follows pre-defined rules
without understanding underlying principles.

 No General Reasoning:

◦ The agent can execute moves but cannot reason about broader
concepts. For example, it cannot deduce that two tiles cannot occupy
the same space or infer properties about states (e.g., parity).

 Inflexibility:

◦ This approach is domain-specific. The transition model is tightly
coupled with the puzzle's specific rules, making it hard to apply the
same logic to other problems or reason in a more abstract manner.

Comparison with Knowledge-Based Agents
 Explicit Representation:

◦ A knowledge-based agent would explicitly represent the
transition model using logical statements or rules. For
instance, it might have a rule that states, "If tile X is adjacent
to the empty space, then tile X can move to the empty space."

 Deductive Capabilities:

◦ Such an agent could deduce more general principles. For
example, it could infer constraints like "No two tiles can
occupy the same space" or "If a tile is in the top row, it cannot
move up."

 Adaptability:

◦ The agent could apply its reasoning to new tasks or changes
in the puzzle. For example, if the rules changed to allow
diagonal moves, the agent could incorporate this new rule
into its reasoning process.

Advancements in Representation

 Variable Assignments:

◦ Representing states as assignments of values to variables is
more efficient and allows domain-independent algorithms.

 Logic as a General Representation:

◦ Developing logic supports knowledge-based agents.

◦ These agents can combine and recombine information
flexibly, handle new tasks, learn new knowledge quickly,
and adapt to environmental changes.

KNOWLEDGE-BASED AGENTS

Knowledge Base:

 A knowledge base is a collection of sentences.

 Sentences represent assertions about the world.

 These sentences are expressed in a knowledge representation
language.

Example:

 In the context of a smart home, a sentence could be: "The
temperature in the living room is 22°C."

 Axiom:

◦ An axiom is a sentence taken as given, without derivation from other
sentences.

 Example:

◦ "All humans are mortal." This is an accepted truth in the system.

Operations: TELL and ASK

 TELL and ASK:

◦ TELL: Adds new sentences to the knowledge base.

◦ ASK: Queries the knowledge base to retrieve information.

 Example:

◦ TELL: Adding "The kitchen light is on" to the KB.

◦ ASK: Querying "Is the kitchen light on?" should return true based on the
KB.

 Inference:

◦ The process of deriving new sentences from existing ones.

◦ Ensures that the answers from ASK operations follow logically from the
sentences previously TELLed.

 Example:

◦ If the KB contains "All birds can fly" and "Tweety is a bird," inference
allows the agent to deduce "Tweety can fly."

Knowledge-Based Agent Program

Agent Program Outline:

 Percept: Input the agent receives from the environment.

 Action: Output or action the agent performs.

 KB Maintenance: KB contains initial background knowledge and
updates with new percepts and actions.

Example:

 A robot vacuum perceives dirt in the living room (percept).

 It queries the KB to decide to vacuum the living room (action).

 After performing the action, it updates the KB with "The living
room is clean."

09-07-2025

3

 Functions:

◦ MAKE-PERCEPT-SENTENCE: Constructs a sentence from
a percept.

◦ MAKE-ACTION-QUERY: Constructs a sentence to ask
what action to take.

◦ MAKE-ACTION-SENTENCE: Constructs a sentence
asserting the action taken.

 Example:

◦ MAKE-PERCEPT-SENTENCE: Converts "see dirt in living
room" to "Dirt(living_room)".

◦ MAKE-ACTION-QUERY: Converts "What should I do at
time t?" to "Action(t)".

◦ MAKE-ACTION-SENTENCE: Converts "vacuum living
room at time t" to "Action(vacuum, living_room, t)".

Knowledge Based Agents
Architecture

Example Scenario

 Consider a smart home heating system:
 Input from Environment: The system receives input that the

current temperature in the living room is 18°C.

 Inference Engine Processing: The inference engine queries the
knowledge base, which contains the preferred temperature range
(e.g., 20°C to 22°C).

 Querying the Knowledge Base: The inference engine retrieves
the preferred temperature range and determines that the current
temperature is too low.

 Output: The system decides to turn on the heater to raise the
temperature.

 Learning and Updating KB: Over time, the system learns that
the living room cools down faster in the evening and updates the
KB with this information to preemptively adjust heating
schedules.

Declarative vs. Procedural Approach

 Declarative Approach:
◦ Sentences are added to the KB to inform the agent about its

environment.
◦ The agent uses these sentences to reason and act.

 Example:
◦ Declaratively telling the agent: "The door is locked."
◦ The agent knows it needs to unlock the door before exiting.

 Procedural Approach:
◦ Desired behaviors are encoded directly as program code.

 Example:
◦ Writing a function directly in code:
◦ def exit_room():

 if door_locked: unlock_door()
 else: open_door()

Combined Approach
 knowledge-based agent can be built simply by TELLing it what

it needs to know. Starting with an empty knowledge base, the
agent designer can TELL sentences one by one until the agent
knows how to operate in its environment. This is called the
declarative approach to system building. In contrast, the
procedural approach encodes desired behaviors directly as
program code.

 Modern agents use both approaches for efficiency and
flexibility.

 Declarative knowledge can be compiled into procedural code
for performance.

Example:

 The agent learns from experiences that certain actions always
follow specific percepts and compiles this into efficient code.

09-07-2025

4

Learning:

 Agents can have mechanisms to learn from their environment
and update their KB autonomously.

 This allows agents to become fully autonomous.

Example:

 A thermostat learns the preferred temperature settings over time
based on user adjustments and automatically adjusts the
temperature without manual input.

 knowledge-based agents rely on a structured knowledge
base and inference mechanisms to reason and act
intelligently. They use a combination of declarative and
procedural knowledge to achieve their goals efficiently and
can learn and adapt autonomously over time.

Logic: Knowledge Bases and Sentences

 Knowledge Bases (KB):

◦ A knowledge base is a collection of statements (sentences) that
an agent knows to be true.

◦ These sentences are expressed in a formal representation
language.

◦ The KB is used by the agent to reason about the world and
make decisions.

 Sentences: Sentences are the basic units of information in a
knowledge base. They are constructed according to the rules of a
formal language and represent facts or assertions about the world.

Syntax
 Syntax refers to the rules that define which combinations of

symbols are considered valid sentences in the representation
language.

 Example in Arithmetic:
◦ Valid (well-formed) sentence: "x + y = 4"
◦ Invalid (not well-formed) sentence: "x4y+="

 In arithmetic, the syntax includes rules about how numbers,
variables, and operators can be combined to form valid
mathematical statements.

Semantics
 Semantics concerns the meaning of sentences. It defines what it

means for a sentence to be true or false in a given context or
possible world.

 Example in Arithmetic:
◦ The sentence "x + y = 4" is true in a world where x is 2 and y is 2.
◦ The sentence "x + y = 4" is false in a world where x is 1 and y is 1.

Models and Possible Worlds

 Possible World: A possible world is a specific assignment of
values to all relevant variables. In logical reasoning, we consider
all possible worlds to evaluate the truth of sentences.

 Model: A model is a mathematical abstraction that represents a
possible world. It specifies the truth or falsehood of each
sentence in that world.

 Example:

◦ Possible world where x = 2 and y = 2 is a model that satisfies
the sentence "x + y = 4". X men and Y women sitting at a
table playing bridge.

◦ Possible world where x = 1 and y = 1 is a model that does not
satisfy the sentence "x + y = 4".

Logical entailment
 logical entailment between sentences—the idea that a

sentence follows logically from another sentence.

 In mathematical notation, we write

 to mean that the sentence α entails the sentence β. The
formal definition of entailment is this:

 α |= β if and only if, in every model in which α is true, β
is also true.

 Using the notation just introduced, we can write

Logical Inference

 Logical inference is the process of deriving new sentences from
the KB using rules of logic.

 Inference Algorithm:

◦ Derives conclusions based on entailment.

◦ Model Checking: Enumerates all possible models to check if
α is true in all models where KB is true (M(KB) ⊆ M(α)).

 Soundness:

◦ An inference algorithm is sound if it derives only sentences
that are entailed (truth-preserving).

◦ Example: Model checking is sound because it only confirms
conclusions true in all relevant models.

09-07-2025

5

Completeness:

 An inference algorithm is complete if it can derive any sentence
that is entailed.

 Example: For finite sets, systematic examination ensures
completeness, but infinite sets require more sophisticated
methods.

Real-World Correspondence
 Grounding:

◦ Grounding is the connection between logical reasoning
processes and the real environment.

◦ Sensors: Provide percepts that the agent converts into
sentences in the KB.

 Example: A smell sensor detects a wumpus, and the agent
adds a sentence about the smell to the KB.

 Learning:

◦ General rules in the KB are derived from experience and
learning processes.

◦ Learning can be fallible but aims to create reliable rules
about the environment.

 Example: Learning that wumpuses cause smells, though
there might be exceptions (e.g., leap year baths).

Wumpus world

Logic

Logic is the basis of all mathematical reasoning, and of all automated
reasoning. The rules of logic specify the meaning of mathematical
statements. These rules help us understand and reason with statements
such as –

Which in Simple English means “There exists an integer that is not the
sum of two squares”. Importance of Mathematical Logic The rules of
logic give precise meaning to mathematical statements. These rules are
used to distinguish between valid and invalid mathematical arguments.
Apart from its importance in understanding mathematical reasoning, logic
has numerous applications in Computer Science, varying from design of
digital circuits, to the construction of computer programs and verification
of correctness of programs.

Propositional Logic
A proposition is the basic building block of logic. It is defined
as a declarative sentence that is either True or False, but not
both. The Truth Value of a proposition is True(denoted as T)
if it is a true statement, and False(denoted as F) if it is a false
statement. For Example,

1. The sun rises in the East and sets in the West.

2. 1 + 1 = 2

3. 'b' is a vowel.

09-07-2025

6

Basic Terminology
• Propositional logic is also called Boolean logic as it works on 0

and 1.

• In propositional logic, we use symbolic variables to represent
the logic, and we can use any symbol for a representing a
proposition, such A, B, C, P, Q, R, etc.

• Propositions can be either true or false, but it cannot be both.

• Propositional logic consists of an object, relations or function,
and logical connectives.

• These connectives are also called logical operators.

• A proposition formula which is always true is called tautology,
and it is also called a valid sentence.

• A proposition formula which is always false is
called Contradiction.

Propositional logic

◉ Logical constants: true, false

◉ Propositional symbols: P, Q, S, ... (atomic
sentences)

◉ Wrapping parentheses: (…)

◉ Sentences are combined by connectives:
 ...and [conjunction]
 ...or [disjunction]
...implies [implication / conditional]
..is equivalent [biconditional]
 ...not [negation]

◉ Literal: atomic sentence or negated atomic sentence

Examples of Propositional Logic sentences

◉P means “It is hot.”

◉Q means “It is humid.”

◉R means “It is raining.”
◉(P  Q)  R

“If it is hot and humid, then it is raining”

◉Q  P

“If it is humid, then it is hot”

Continued…

◉A simple language useful for showing key ideas and definitions

◉User defines a set of propositional symbols, like P and Q.

◉User defines the semantics of each propositional symbol:
◦ P means “It is hot”
◦ Q means “It is humid”
◦ R means “It is raining”

◉A sentence (well formed formula) is defined as follows:
◦ A symbol is a sentence
◦ If S is a sentence, then S is a sentence
◦ If S is a sentence, then (S) is a sentence
◦ If S and T are sentences, then (S  T), (S  T), and (S  T),

are sentences

Continued…

◉ A valid sentence or tautology is a sentence that is True under all
interpretations, no matter what the world is actually like or how the
semantics are defined. Example: “It’s raining or it’s not raining.”

◉ An inconsistent sentence or contradiction is a sentence that is
False under all interpretations. The world is never like what it
describes, as in “It’s raining and it’s not raining.”

◉ P entails Q, written P |= Q, means that whenever P is True, so is Q.
In other words, all models of P are also models of Q.

09-07-2025

7

Truth tables Truth tables II

The five logical connectives:

A complex sentence:

Properties of Operators Inference

◉Inference is the process of deriving new
sentences from old
◦ Sound inference derives true conclusions given true

premises

◦ Complete inference derives all true conclusions from
a set of premises

Hunt the Wumpus domain Proving Wumpus in W13

09-07-2025

8

1. Syntax of Propositional Logic:

 Atomic Sentences: The simplest form of sentences in
propositional logic, consisting of proposition symbols like P,
Q, R, or specific symbols like W1,3. These symbols represent
propositions that can be either true or false.

◦ Example: W1,3 might represent "The Wumpus is in [1,3]."

 Complex Sentences: Formed by combining atomic sentences
using logical connectives such as AND (∧), OR (∨), NOT (¬),
IMPLIES (⇒), and IF AND ONLY IF (⇔).

◦ Negation (¬): Inverts the truth value of an atomic sentence.

 Example: ¬W1,3 means "The Wumpus is not in [1,3]."

◦ Conjunction (∧): True if both connected sentences are true.

 Example: W1,3 ∧ P3,1 means "The Wumpus is in [1,3] and there's a
pit in [3,1]."

◦ Disjunction (∨): True if at least one of the connected sentences is true.

 Example: (W1,3 ∧ P3,1) ∨ W2,2 means "Either the Wumpus is in
[1,3] and there's a pit in [3,1], or there's a Wumpus in [2,2]."

◦ Implication (⇒): True unless the first sentence (antecedent) is true and
the second (consequent) is false.

 Example: (W1,3 ∧ P3,1) ⇒ ¬W2,2 means "If the Wumpus is in [1,3]
and there's a pit in [3,1], then the Wumpus is not in [2,2]."

◦ Biconditional (⇔): True if both sentences have the same truth value.

 Example: W1,3 ⇔ ¬W2,2 means "The Wumpus is in [1,3] if and
only if the Wumpus is not in [2,2]."

2. Semantics of Propositional Logic

 Model: A model in propositional logic assigns a truth value (true or
false) to each proposition symbol.
◦ Example: A model might specify P1,2 = false, P2,2 = false, P3,1 = true.

 Truth of Atomic Sentences: Determined directly by the model. For
example, if the model says P1,2 = false, then P1,2 is false.

 Truth of Complex Sentences: Determined recursively using the
truth values of atomic sentences and the rules for the logical
connectives.
◦ Negation (¬P): True if P is false in the model.
◦ Conjunction (P ∧Q): True if both P and Q are true in the model.
◦ Disjunction (P ∨Q): True if at least one of P or Q is true in the model.
◦ Implication (P⇒Q): True unless P is true and Q is false.
◦ Biconditional (P⇔ Q): True if P and Q are both true or both false.

3. Examples of Truth Evaluation

 Given a model m1 = {P1,2 = false, P2,2 =
false, P3,1 = true}, evaluate the complex
sentence ¬P1,2 ∧ (P2,2 ∨ P3,1):
◦ ¬P1,2 is true because P1,2 is false in m1.
◦ P2,2 ∨ P3,1 is true because P3,1 is true in m1.
◦ Therefore, ¬P1,2 ∧ (P2,2 ∨ P3,1) is true.

Truth tables II

The five logical connectives:

A complex sentence:

09-07-2025

9

A Simple Knowledge Base for the Wumpus World:

 The knowledge base in the Wumpus World consists of
sentences that describe both immutable aspects (facts
that do not change) and mutable aspects (facts that can
change) of the environment.

 Symbols:
 Px,y: True if there is a pit in square [x,y].
 Wx,y: True if there is a Wumpus in square [x,y], dead or

alive.
 Bx,y: True if the agent perceives a breeze in square [x,y.
 Sx,y: True if the agent perceives a stench in square [x,y]

 These symbols are used to create logical sentences that
describe the state of the Wumpus World.

Example Sentences:

 R1: ¬P1,1 – There is no pit in square [1,1]
 R2: B1,1 ⇔ (P1,2 ∨ P2,1) – Square [1,1] is breezy if and only

if there is a pit in one of its neighboring squares [1,2]or [2,1]
 R3: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) – Square [2,1] is breezy if

and only if there is a pit in one of its neighboring squares [1,1]
[2,2]or [3,1]

Percepts in a Specific World:
 R4: ¬B1,1 – There is no breeze in square [1,1].
 R5: B2,1 – There is a breeze in square [2,1].
 These sentences together describe the agent’s knowledge of the

Wumpus World, combining general rules (like the relationship
between breezes and pits) with specific percepts from the
current environment.

Inference in Propositional Logic
TT-entails algorithm

09-07-2025

10

09-07-2025

11

09-07-2025

12

09-07-2025

13

Resolution Closure (RC(S)):

09-07-2025

14

09-07-2025

15

First order logic/ predicate logic

09-07-2025

16

09-07-2025

17

09-07-2025

18

Importance of Quantifier Order

 The order of quantifiers matters significantly because it changes
the meaning of the sentence.

◦ ∀x (∃y {Loves}(x, y)) means everyone has at least one
person they love.

◦ ∃y (∀x {Loves}(x, y)) means there is a specific person who
is loved by everyone.

 Parentheses can help clarify the scope of each quantifier:

◦ ∀x (∃y {Loves}(x, y)) emphasizes that for each x, there
exists some y.

◦ ∃y (∀x {Loves}(x, y)) emphasizes that there is a particular y
who is loved by all x's.

Avoiding Confusion with Variable Names

 Same Variable Name Used Twice:

◦ Consider the sentence: ∀x(Crown(x)∨(∃xBrother(Richard,x)))

◦ This sentence uses the variable name "x" in both the universal
and existential quantifiers.

 To avoid confusion, it’s recommended to use different variable
names when working with nested quantifiers:

 Instead of ∃x {Brother}(Richard, x) inside ∀x,

◦ use ∃z {Brother}(Richard, z)} to clarify that the inner
quantifier refers to a different object.

09-07-2025

19

PL Vs FOL
1. Inference rules for quantifiers

09-07-2025

20

Herbrand'sTheorem

First order inference rule

Unification

09-07-2025

21

Example

09-07-2025

22

Storage and Retrieval

Forward chaining
Forward chaining is also known as a forward

deduction or forward reasoning method when
using an inference engine. Forward chaining
is a form of reasoning which start with atomic
sentences in the knowledge base and applies
inference rules in the forward direction to
extract more data until a goal is reached.

 It is a bottom-up approach for drawing the
inferences.

 It is a process of making a conclusion based
on known facts or data, by starting from the
initial state and reaches the goal state.
And is also called as data-driven

09-07-2025

23

Forward Chaining Example

"As per the law, it is a crime for an
American to sell weapons to hostile
nations. Country A, an enemy of
America, has some missiles, and all
the missiles were sold to it by
Robert, who is an American
citizen.”

Robert is criminal.

Forward Chaining Proof

Step 1

Step 2

09-07-2025

24

Continued…

Step 3

Backward Chaining
Backward-chaining is also known as a backward deduction or

backward reasoning method when using an inference engine. A
backward chaining algorithm is a form of reasoning, which starts
with the goal and works backward, chaining through rules to find
known facts that support the goal.

• It is known as a top-down approach.

• In backward chaining, the goal is broken into sub-goal or sub-goals
to prove the facts true.

• It is called a goal-driven approach, as a list of goals decides which
rules are selected and used.

Backward Chaining
Step-1:

Step-2:

09-07-2025

25

Continued…

Step-3:
Step-4

Continued…

Resolution

Resolution is a theorem proving technique that proceeds by
building refutation proofs, i.e., proofs by contradictions.
Resolution is used, if there are various statements are given,
and we need to prove a conclusion of those statements.
Unification is a key concept in proofs by resolutions.
Resolution is a single inference rule which can efficiently
operate on the conjunctive normal form

 Clause: Disjunction of literals (an atomic sentence) is called
a clause. It is also known as a unit clause.

 Conjunctive Normal Form: A sentence represented as a
conjunction of clauses is said to be conjunctive normal
form or CNF.

Steps for Resolution

 Conversion of facts into first-order logic

 Convert FOL statements into CNF

 Negate the statement which needs to prove
(proof by contradiction)

 Draw resolution graph (unification)

Example
 Fact
 All hounds howl at night.
 John likes all kind of food.
 John likes peanuts.

Step-1: Conversion of facts into first-order logic

 ∀x (HOUND(x) → HOWL(x))
 ∀x ¬ food(x) → likes(John, x)
 likes(John, Peanuts)

09-07-2025

26

Step-2: Conversion of FOL into
CNF
Eliminate all implication

(→) and rewrite:
 ∀x ¬ HOUND(x) ∨ HOWL(x)
 ∀x ¬ food(x) V likes(John, x)
 likes(John, Peanuts)

Move negation
(¬)inwards and rewrite

 ∀x ¬ HOUND(x) ∨ HOWL(x)
 ∀x ¬ food(x) V likes(John, x)
 likes(John, Peanuts)

Step-2 Continued…
Rename variables or standardize variables

 ¬ HOUND(x) ∨ HOWL(x)
 ∀x ¬ food(x) V likes(John, x)
 likes(John, Peanuts)
Eliminate existential instantiation quantifier by elimination

(Skolemization)

 ¬ HOUND(x) ∨ HOWL(x)
 ∀x ¬ food(x) V likes(John, x)
 likes(John, Peanuts)

Step-2 Continued…

Drop Universal quantifiers
 ¬ HOUND(x) ∨ HOWL(x)
 ¬ food(x) V likes(John, x)
 likes(John, Peanuts)

Step-3: Negate the statement which needs to prove

◉In this statement, we will apply negation to the
conclusion statements

 ¬ HOUND(x) ∨ HOWL(x)
 ¬ food(x) V likes(John, x)
 ¬ likes(John, Peanuts)

Step-4: Draw Resolution graph

•First step: ¬likes(John, Peanuts) ,
and likes(John, x) get resolved(canceled)
by substitution of {Peanuts/x}, and we are
left with ¬ food(Peanuts)

