09-07-2025

UNIT -2

SEARCHING FOR SOLUTIONS

1. Search Tree

A search tree is a conceptual tool used to visualize the possible
sequences of actions starting from the initial state.

Initial State (Root Node): The starting point of the problem. For
example, in a route-finding problem, the initial state might be
"In(Arad)."

Branches (Actions): The possible actions you can take from any
given state. For example, from Arad, you can drive to Sibiu,
Timisoara, or Zerind.

Nodes (States): Each node represents a state in the problem space.
For instance, driving from Arad to Sibiu results in the state
"In(Sibiu)."

Example: Finding a Route from Arad to Bucharest

Start: The root node is "In(Arad)."

Goal Check: First, we check if this is the goal state. It is not, so
we expand the node.

Expanding the Node: From Arad, you can travel to Sibiu,
Timisoara, or Zerind. These are the child nodes.

o In(Arad) -> In(Sibiu)

> In(Arad) -> In(Timisoara)

o In(Arad) -> In(Zerind)

Frontier: The set of leaf nodes (nodes with no children)

available for expansion. Initially, the frontier includes Sibiu,
Timisoara, and Zerind.

Expanding Nodes and Choosing Paths

¢ The essence of the search process is choosing which node to
expand next. If we choose Sibiu:

* Goal Check: We check if Sibiu is the goal state. It is not.

« Expanding Sibiu: Sibiu connects to Arad, Fagaras, Oradea, and
Rimnicu Vilcea.

o In(Sibiu) -> In(Arad)
> In(Sibiu) -> In(Fagaras)
o In(Sibiu) -> In(Oradea)
> In(Sibiu) -> In(Rimnicu Vilcea)
* New Frontier: The frontier now includes Timisoara,
Arad (from Sibiu), Fagaras, Oradea, and Rimnicu Vilcea.

Zerind,

2. Redundant Paths in Problem Solving

Example: 8-Queens Problem

Original Formulation:

o In the 8-queens problem, the goal is to place 8 queens on a
chessboard such that no two queens threaten each other.

> If we allow a queen to be placed in any column, each state with
n queens can be reached by n! different paths.

o This means there are many redundant paths, making the search
inefficient.

Improved Formulation: If we reformulate the problem such that each

new queen is placed in the leftmost empty column, each state can be

reached by only one path. This eliminates redundant paths, simplifying

the search process

This formulation reduces the 8-queens state space from 1.8x1014 to

just 2,057, and solutions are easy to find.

Problems with Reversible Actions

« In some problems, such as route-finding and sliding-block puzzles,
redundant paths are unavoidable because actions are reversible.

Example: Route-Finding on a Rectangular Grid

¢ Grid Structure: In a rectangular grid, each state (or cell) has four
possible successors (up, down, left, right). This leads to a large number
of possible paths.

« Depth and Complexity: A search tree of depth d including repeated
states has 4°d leaves, but only about 2ddistinct states within d steps of
any given state.

o For d=20, this results in about a trillion nodes but only about 800
distinct states.

Impact of Redundant Paths

« Following redundant paths can cause a tractable problem to become
intractable, even for algorithms that avoid infinite loops.




3. Handling Redundant and Loopy Paths

¢ Redundant Paths: Paths that lead to the same state but are less
efficient. For instance, reaching Sibiu via Arad-Zerind-Oradea is longer
than directly from Arad.

« Loopy Paths: Paths that revisit the same state, such as Arad-Sibiu-Arad.
These make the search tree infinite and are unnecessary because the
direct path is always better.

Avoiding Redundant and Loopy Paths
« To avoid exploring redundant or loopy paths, we use two concepts:
« Explored Set (Closed List): Keeps track of all nodes that have been

expanded. Any newly generated node that matches a node in the
explored set or frontier can be discarded.

Graph-Search Algorithm: Enhances the tree-search algorithm by using
the explored set. This ensures each state is considered only once,
avoiding redundant paths.

09-07-2025

(a) The initial state (D]

(b) After expanding Arad

(€) After expanding Sibiu

General Process

Initialize: Start with the initial state in the frontier.

Expand: Expand nodes in the frontier, generating new states.

Check Goal: If a node is the goal state, return the solution.

Update Frontier: Add new states to the frontier unless they are
in the explored set or already in the frontier.

Repeat: Continue expanding nodes until a solution is found or
no more states can be expanded.

By systematically exploring the state space, the algorithm will
eventually find the optimal solution if it exists.

function TREE-SEARCH( problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH( problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not i the frontier or explored set

INFRASTRUCTURE FOR SEARCH ALGORITHMS

Components of a Search Node

Each node in the search tree contains the following four
components:

n.STATE: Represents the state in the state space that the node
corresponds to.

n.PARENT: The node in the search tree that generated this node.
n.ACTION: The action applied to the parent to generate this
node.

n.PATH-COST: The cost, typically denoted by g(n)g(n)g(n), of|
the path from the initial state to this node, as indicated by the
parent pointers.

Creating Child Nodes

The function CHILD-NODE is used to generate a child node
from a given parent node and an action. It computes the
components for the child node using the parent node's
information:

function CHILD-NODE( problem, parent, action) returns a node
return a node with
STATE = problem. RESULT(parent STATE, action),
PARE parent, ACTION = action,
PATH-COST = parent.PATH-COST + problem.STEP-COST( parent STATE, action)




Problem: You are navigating a grid where each move (up, down, left, right) has
acostof 1.

Parent Node:
STATE: (2, 3)
PARENT: Node corresponding to (2, 2)
ACTION: "Move Right"
PATH-COST: 3
Action: "Move Down"
Using the CHILD-NODE function:
STATE:
problem. RESULT((2, 3), "Move Down") = (3, 3)
PARENT:
parent = Node corresponding to (2, 3)
ACTION:
action = "Move Down"
PATH-COST:
parent. PATH-COST =3
problem.STEP-COST((2, 3), "Move Down") = 1
parent. PATH-COST + problem.STEP-COST((2, 3), "Move Down") =3 + 1

09-07-2025

Managing the Frontier

o The frontier is managed using a queue, which supports the
following operations:

EMPTY?(queue): Returns true if the queue is empty.

POP(queue): Removes and returns the first element of the
queue.

INSERT (element, queue): Inserts an element into the queue.

Types of Queues

¢ FIFO Queue: First-In-First-Out; the oldest element is popped
first.

¢ LIFO Queue (Stack): Last-In-First-Out; the newest element is
popped first.

« Priority Queue: Elements are popped based on their priority,

according to some ordering function.

Explored Set (Closed List)

The explored set keeps track of all expanded nodes to avoid
revisiting states and generating redundant paths.

It is often implemented with a hash table for efficient insertion
and lookup.

Example: Search Algorithm in Action

Consider a route-finding problem where you need to find the
shortest path from city Arad to Bucharest.

Initial State:

STATE: In(Arad)

> PARENT: None (root node)
ACTION: None

- PATH-COST: 0

Frontier: {In(Arad)}
Explored Set: {}

« First Expansion: Expand In(Arad)
Generate children: In(Sibiu), In(Timisoara), In(Zerind)
© Update nodes:
In(Sibiu) with parent In(Arad), action "Arad to Sibiu", path-cost 140

In(Timisoara) with parent In(Arad), action "Arad to Timisoara", path-cost
118

In(Zerind) with parent In(Arad), action "Arad to Zerind", path-cost 75
Frontier: {In(Sibiu), In(Timisoara), In(Zerind)}
> Explored Set: {In(Arad)}
¢ Next Expansion: Expand In(Zerind)
Generate children: In(Oradea)
Update nodes:

In(Oradea) with parent In(Zerind), action "Zerind to Oradea", path-cost
146

= Frontier: {In(Sibiu), In(Timisoara), In(Oradea)}
© Explored Set: {In(Arad), In(Zerind)}

« Continue Expansion: Expand In(Sibiu), generating In(Fagaras), In(Rimnicu
Vilcea), etc., updating frontier and explored set accordingly.

Mehadia

Drobeta 120

MEASURING PROBLEM-SOLVING PERFORMANCE

Figure 3.2 A simplified road map of part of Romania.

We can evaluate an algorithm’s performance in four ways:

COMPLETENESS: Is the algorithm guaranteed to find a
solution when there is one?

OPTIMALITY: Does the strategy find the optimal solution?
TIME COMPLEXITY: How long does it take to find a solution?

SPACE COMPLEXITY: How much memory is needed to
perform the search?




Complexity is typically measured with respect to the size of the
problem, often represented by the state space graph with vertices | V|
and edges |E|. This is appropriate when the graph is an explicit data
structure.

In AI, however, the graph is often represented implicitly by the
initial state, actions, and transition model, and can be infinite.
Therefore, complexity is expressed in terms of:

° Branching factor b: Maximum number of successors of any node.

> Depth d: Depth of the shallowest goal node.

° Maximum path length m: Longest path in the state space.

Time complexity is measured by the number of nodes generated
during the search.

Space complexity is measured by the maximum number of nodes
stored in memory.

For search on a tree, time and space complexity are straightforward,
but for a graph, it depends on the redundancy of paths.

Search cost mainly depends on time complexity but can also include
memory usage.

Total cost combines search cost and the path cost of the solution|

found.

Some common uninformed search strategies include

Breadth-First Search (BFS): Expands the shallowest nodes first.
Depth-First Search (DFS): Expands the deepest unexpanded
node first.

Uniform-Cost Search (UCS): Expands the node with the lowest
path cost first.

Depth-Limited Search (DLS): Depth-first search with a depth
limit.

Iterative Deepening Search (IDS): Repeatedly applies depth-
limited search with increasing depth limits.

09-07-2025

UNINFORMED (BLIND) SEARCH STRATEGIES

These are methods used to explore a problem space without any
additional information beyond what is given in the problem
definition.

These strategies do not use any domain-specific knowledge and

can only:

> Generate Successors: Create new states from the current state
by applying available actions.

- Distinguish Goal States: Identify if a state is a goal state or
not.

Uninformed search strategies are characterized by the order in
which they expand nodes.

|. Breadth-First Search (BFS)

o Breadth-First Search (BFS) is a simple search strategy that
explores all nodes at the present depth level before moving on to
nodes at the next depth level.

o Start from the root node.

o Expand all the root's successors.

o Expand all nodes at the next depth level, and so on.
hY

Mo vl g
® b8 & ® ®

Figure 3.12  Breadih-first search on a simple binary tree. Al each stage, the node 1o be
expanded next is indicated by a marker.

Breadth First Search

/S | Levelo
A - B | Level1

N A
c B2-E B —evere
E By - I —*| Levels
‘ —+ | Level 4
Sene>Aen>Boree5Cone>Deee Gee>Hom > Evene> Femeed oo K

function BREADTH-FIRST-SEARCH( problem ) returns a solution, or failure

node — a node with STATE = problem INITIA
if problem . GOAI node STATE) then re
frontier — a FIFO queue with node as the on
explored «— an empty set
loop do.
i EMPTY?( fronticr) then return failure
node — POP( frontier) [* chooses the shallowest node in frontier */
add rode STATE t0 explared
for each action In problem. ACTIONS(node. STATE) do
child — CHILD-NODE( problem, nodc, action)
if child STATE is not in cxplored or frontier then
if problem GOAL-TEST( child STATE) then return SOLUTION(child)
frontier — INSERT(child, frontier)

Figure .11 Breadih-first search on a graph

« New nodes (deeper than their parents) are added to the back
of the queue.

¢ Older nodes (shallower than new nodes) are expanded first.

o The goal test is applied when nodes are generated, not when
they are expanded, ensuring the shallowest path to each node
on the frontier.




Time and Space Complexity

» Time Complexity: For a uniform tree with branching factor b and solution at depth d:

Total nodes generated = b+ b* + b* + -+« + b = O(5%)

If the goal test is applied when nodes are selected for expansion rather than when generated,

the complexity becomes O(h+1).
» Space Complexity: BFS stores every expanded node in the explored set, leading to:
Space complexity = ()[b"l

This includes Q(b%~1) nodes in the explored set and O(b%) nodes in the frontier.

09-07-2025

Drawbacks

o First, the memory requirements are a bigger problem for
breadth-first search than is the execution time.

o Second, for deep solutions, BES can become impractical
due to exponential growth in the number of nodes.

2. Depth-First Search (DFS) Strategy

* DFS explores the deepest nodes in the current frontier of the
search tree first.

» Once a node is expanded, if it has no successors, the search backs
up to the next deepest node with unexplored successors.

Implementation:

DEFS can be implemented using a LIFO (Last In, First Out) queue,

meaning the most recently generated node is chosen for
expansion.

It can also be implemented recursively, where a function calls
itself on each child node in turn.

©
..
Re) § © q)\e
08 )

Figure 3.16  Depil
gray. Explored nodes wi ¢
at depth 3 have no successors and M is the only poal node.

n a binary tree, The u

plored region is shown in light
removed from memory. Nodes

Types of DFS

* Graph-Search Version:
° Avoids repeated states and redundant paths.

> Complete in finite state spaces (eventually expands every
node).

* Tree-Search Version:

= Does not avoid repeated states and can get stuck in loops (e.g.,
Arad-Sibiu loop).

° Not complete in infinite state spaces if an infinite non-goal
path is encountered.

Properties

Completeness:

o Graph-search is complete in finite state spaces.

> Tree-search is not complete in some cases (e.g., infinite loops).

Optimality:

> DFS is non-optimal. It might not find the shortest path or best
solution.

Time Complexity:

o For tree-search, DFS may generate all O(b”m) nodes, where b
is the branching factor and m is the maximum depth.

Space Complexity:

o Graph-search: No significant advantage in space.

o Tree-search: Stores only a single path from root to leaf and
unexpanded sibling nodes, requiring O(bm) space.




¢ Memory Efficiency: DFS is preferred in memory-limited
situations because it requires much less space than Breadth-First
Search (BFS).

Backtracking Search: A variant of DFS that generates only one
successor at a time, needing only O(m) memory.

DEFS is essential in Al for tasks such as constraint satisfaction.
propositional satisfiability, and logic programming due to its
lower memory requirements compared to BFS.

: Breadth- Depth-
Criterion First First
Complete? Yes® No
Time o) oB™)
Space o(b?) O(bm)
Optimal? Yes® No

09-07-2025

INFORMED (HEURISTIC) SEARCH STRATEGIES

o Informed search strategies use
to find solutions more
efficiently than uninformed strategies.

Best-First Search
Definition:

» Best-first search is a search algorithm where a node is selected
for expansion based on an evaluation function f(n).

* The node with the lowest evaluation f(n)is expanded first.

» Best-first search can be implemented using either the general
TREE-SEARCH or GRAPH-SEARCH algorithms.

o The informed search algorithm is more useful for large search
space.

 Informed search algorithm uses the idea of heuristic, so it is also
called Heuristic search.

Heuristics function: Heuristic is a function which is used in

Informed Search, and it finds the most promising path.

It takes the current state of the agent as its input and produces the
estimation of how close agent is from the goal.

The heuristic method, however, might not always give the best
solution, but it guaranteed to find a good solution in reasonable
time.

Heuristic function estimates how close a state is to the goal.

o A heuristic function h(n) estimates the cost of the cheapest path
from the state at node n to a goal state.

Unlike the cost function g(n), h(n) depends only on the state at
node n, not on the path taken to reach that node.

Cost Function g(n): Cumulative and path-dependent, reflecting
the actual cost from the start node to the current node.

Heuristic Function h(n): Estimate and state-dependent, reflecting
an estimated cost from the current node to the goal, independent
of the path taken to the current node.

Heuristic functions are used to incorporate additional problem-
specific knowledge into the search algorithm.

They are often arbitrary, nonnegative, problem-specific

functions, with the constraint that if n is a goal node, then 4(n)=0.

© In the Romania example, the heuristic function might estimate the cost
of the cheapest path from Arad to Bucharest by using the straight-line
distance between the two cities.

Two Ways to Use Heuristic Information

Heuristic information can be used in different ways to guide
the search. Two common approaches are:

Greedy Best-First Search:

o Uses the heuristic function h(n) directly as the evaluation
function f(n).

> Selects nodes with the lowest heuristic value for expansion,

prioritizing nodes that appear closer to the goal.
o ASearch:*

> Combines the cost function g(n) (the cost to reach node n)
and the heuristic function h(n) to form the evaluation
function: f(n)=g(n)+h(n)

> Balances the cost incurred so far and the estimated cost to
the goal, providing a more balanced search approach.

Greedy Best-First Search: Expands the node closest to the goal
using heuristic f(n)=h(n).

Romania Example: Uses straight-line distance to Bucharest as the
heuristic.

Efficiency: Finds a solution quickly without expanding unnecessary
nodes.

Non-Optimality: The found path may be longer than the optimal
path due to the greedy approach.

Incompleteness: In finite state spaces, can get stuck in loops or dead
ends.

Complexity: Tree version worst-case is O(b”“m) graph search
version is complete in finite spaces.

Heuristic Quality: Good heuristics can substantially reduce time
and space complexity.




Informed Search

Hill climbing
A* Algorithm
Alpha-Beta Pruning

09-07-2025

Hill Climbing

Hill climbing algorithm is a local search algorithm which
continuously moves in the direction of increasing elevation/value
to find the peak of the mountain or best solution to the problem.
It terminates when it reaches a peak value where no neighbour has a
higher value.

Hill climbing algorithm is a technique which is used for optimizing
the mathematical problems.

One of the widely discussed examples of Hill climbing algorithm is
Traveling-salesman Problem in which we need to minimize the
distance travelled by the salesman.

It is also called greedy local search as it only looks to its good
immediate neighbour state and not beyond that.

Features of Hill Climbing

Generate and Test variant: Hill Climbing is the variant of
Generate and Test method. The Generate and Test method
produce feedback which helps to decide which direction to
move in the search space.

Greedy approach: Hill-climbing algorithm search moves in
the direction which optimizes the cost.

No backtracking: It does not backtrack the search space, as it
does not remember the previous states.

Hill Climbing Different regions in the State Space Diagram:

Local Maximum: Local maximum is a state which is better than
its neighbour states, but there is also another state which is higher than it.

Global Maximum: Global maximum is the best possible state of state
space landscape. It has the highest value of objective function.

Current state: It is a state in a landscape diagram where an agent is
currently present.

Flat local maximum: It is a flat space in the landscape where all the
neighbour agents of current states have the same value.

Ridge: It is a region that is higher than its neighbors but itself has a slope.
It is a special kind of local maximum. A

Shoulder: It is a plateau that has an uphill edge.

Pr in different regi in Hill

Hill climbing cannot reach the optimal/best state(global maximum) if it
enters any of the following regions :

Local maximum: At a local maximum all neighboring states have a
value that is worse than the current state. Since hill-climbing uses a
greedy approach, it will not move to the worse state and terminate
itself. The process will end even though a better solution may exist.

To overcome the local maximum problem: Utilize the

. Maintain a list of visited states. If the search reaches an
undesirable state, it can backtrack to the previous configuration and
explore a new path.

Problems in different regions in Hill climbing

Plateau: On the plateau, all neighbors have the same value. Hence, it
is not possible to select the best direction.

To overcome plateaus: Make a big jump. Randomly select a state far
away from the current state. Chances are that we will land in a non-
plateau region.

Ridge: Any point on a ridge can look like a peak because movement
in all possible directions is downward. Hence the algorithm stops
when it reaches this state.

To overcome Ridge: In this kind of obstacle, use two or more rules
before testing. It implies moving in several directions at once.




Applicati of Hill Climbing Algorithm

Machine Learning: Hill climbing can be used for hyper parameter
tuning in machine learning algorithms, finding the best combination of
hyper parameters for a model.

Robotics: In robotics, hill climbing can help robots navigate through
physical environments, adjusting their paths to reach a destination.
Network Design: It can be used to optimize network topologies and
configurations in telecommunications and computer networks.

Game Playing: In game playing Al hill climbing can be employed to
develop strategies that maximize game scores.

Natural Language Processing: It can optimize algorithms for tasks
like text summarization, machine translation, and speech recognition.

09-07-2025

Hill Climbing Algorithm
1. Evaluate the initial state. If it is also goal state then return it, otherwise continue with the
initial state as the current state.

2. Loop until the solution is found or until there are no new operators to be applied in the
current state

a) Select an operator that has not yet been applied to the current state and apply it to
produce new state
b) Evaluate the new state
i. Ifitis agoal state then return it and quit

il. Ifitis not a goal state but it is better than the current state, then make it as current
state

fii. 1f itis not better than the current state, then continue in loop.

Hill Climbing Algorithm

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current ¢~ MAKE-NODE(INITIAL-STATE[ problem])

loop do
neighbor + a highest-valued successor of current
if VALUE[neighbor] < VATUE[current] then return STATE[curvent]
current + neighbor

Problem: https://www.youtube.com/watch?v=wM4n | 2FHelM

4-Queens

States:

Neighborhood Operators: move queen in column

Evaluation / Optimization function:

Goal test:

Initial state (guess).

o

Local search: Because we only consider local changes to the state
at each step. We generally make sure that series of local changes
can reach all possible states.

0

Hill-climbing search: 8-queens problem

* Need to convert to an optimization problem
* h=number of pairs of queens that are attacking each other
* h=17forthe above state

Hill Climbing Algorithm - Example
* To understand the concept easily, we will take up a very simple example

Inic State Goal State

0 F
a

=[5
oRe

* h{x) = +1 for all the blocks in the support structure if the block is correctly

= Let's define such function h:

positioned otherwise -1 for all the blocks in the support structure.




09-07-2025

Hill Climbing Algorithm - Example
F B
= [ = 8 =
g o OE  DEEE

a a
<: < q
H Him ~ Hoeo

hi7) =6 6l =3 his)= o1

Types of Hill Climbing techniques

e Simple Hill Climbing
e Steepest-Ascent hill-climbing
e Stochastic hill Climbing

Simple Hill Climbing

e Simple hill climbing is the simplest way to implement a hill
climbing algorithm. It only evaluates the neighbour node
state at a time and selects the first one which optimizes
current cost and set it as a current state.

It only checks it's one successor state, and if it finds better than
the current state, then move else be in the same state.

» Less time consuming
» Less optimal solution and the solution is not guaranteed

Steepest-Ascent hill-climbing

The steepest-Ascent algorithm is a variation of simple hill
climbing algorithm.

This algorithm examines all the neighbouring nodes of the
current state and selects one neighbour node which is closest
to the goal state.

This algorithm consumes more time as it searches for
multiple neighbours.

Algorithm

« Step 1: Evaluate the initial state, if it is goal state then return success
and stop, else make current state as initial state.
« Step 2: Loop until a solution is found or the current state does not
change.
» Let SUCC be a state such that any successor of the current state will
be better than it.
+ For each operator that applies to the current state:
Apply the new operator and generate a new state.
Evaluate the new state.
If it is goal state, then return it and quit, else compare it to the
SUCC.
If it is better than SUCC, then set new state as SUCC.
If the SUCC is better than the current state, then set current state
to SUCC.
« Step 5: Exit.

Example

Steepest Ascent Hill Climbing

®
@0
]

Goal

O
®




Steepest Ascent Hill Climbing

Success =9
Generate 810, C8, D4
Test Nodes,
Let Success = min(B10, C8, D4}
Then Success =4
Let curent = success

Cumen

Expond Cunent, gives X
Test X
H
4
Key: .
Nolgenarated  Gonerdted  Teved

09-07-2025

A* Searching Algorithm

It is a searching algorithm that is used to find the shortest path between
an initial and a final point.

It searches for shorter paths first, thus making it an optimal and
complete algorithm. An optimal algorithm will find the least cost
outcome for a problem, while a complete algorithm finds all the
possible outcomes of a problem.

Another aspect that makes A* so powerful is the use of weighted
graphs in its implementation. A weighted graph uses numbers to
represent the cost of taking each path or course of action. This means
that the algorithms can take the path with the least cost, and find the
best route in terms of distance and time.

Graph that we will work on... A is
Initial and | is final state

Stochastic hill climbing

e Stochastic hill climbing does not examine for all its
neighbour before moving.

« Rather, this search algorithm selects one neighbour
node at random and decides whether to choose it as
a current state or examine another state.

A* (Star) Search in Artificial Intelligence

() 101 3% o

(ar—Br4¢)

131 ns/T N =

(@) ns(s) |s /s —_

A = / OL

2. 72 \ 3 A &
128 Ll‘.. 19.1 (DR @
A 92 71 35

B

Problem Example

o Step-01:

v We start with node A.

v Node B and Node F can be reached from node A.
« A* Algorithm calculates f(B) and f(F).

- fB)=6+8=14

© f(F)=3+6=9

- Since f(F) < f(B), so it decides to go to node F.

Path-A—F

10



Problem Example

+ Node G and Node H can be reached from node F.
+ A*Algorithm calculates f(G) and f(H).

+  Since f(G) < f(H), so it decides to go to node G.

Path-A—>F -G

09-07-2025

+ Alpha-beta pruning is a modified version of the minimax

+ As we have seen in the minimax search algorithm that the

- Since we cannot eliminate the exponent, but we can cut it to half.
+ Hence there is a technique by which without checking each node

« This involves two threshold parameter Alpha and beta for future

Alpha-Beta Pruning

algorithm. It is an optimization technique for the minimax
algorithm.

number of game states it has to examine are exponential in depth
of the tree.
of the game tree we can compute the correct minimax decision,

and this technique is called pruning.

expansion, so it is called alpha-beta pruning.
It is also called as Alpha-Beta Algorithm.

« Alpha-beta pruning can be applied at any depth of a tree, and
sometimes it not only prune the tree leaves but also entire sub-
tree.

« The two-parameter can be defined as:

v" Alpha: The best (highest-value) choice we have found so
far at any point along the path of Maximizer. The initial
value of alpha is -co.

v Beta: The best (lowest-value) choice we have found so far
at any point along the path of Minimizer. The initial value of
beta is +oo.

Mini-Max algorithm

Terminal values Terminal values Tecminal values

Mini Max Search Algorithm
- MAX

= (=] =) [5] W

Alpha Beta Pruning Algorithm

0 &, i

0 @ d ‘.5 v 3]

om ‘mt m5 m e
A "é ..

© o000 00 ©

11



Working of Alpha-Beta Pruning
Example

09-07-2025

Continued...

Step-4

Step-5

Continued...

Step-1

Step-2

Step-3

Continued...

Step-6

Step-7

Continued...

Step-8

Step-9

Continued...

Step-10

Step-12

12



09-07-2025

Continued...

Step-13

Step-14

Continued...

Step-15

Step-16

Continued...

Continued...

Final Step

Step-17
Step-18
beta pruning
u - the best value /20 ;:30
for max along the path =
B - the best vaiue
for min aleng the path
5 a=20
Va P=15
s N
/ \\

CSP (Constraint Satisfaction Problem )

Standard search problem:

« State: In a standard search problem, the state is considered a
"black box," which means it can be any kind of data structure
that supports specific operations such as goal tests, evaluation,
and finding successors.

Constraint Satisfaction Problem:

« State: In a CSP, the state is defined by a set of variables Xi
where each variable can take values from a specific domain Di.

* Goal test: The goal test in a CSP is a set of constraints. These
constraints specify the allowable combinations of values for
subsets of variables.

13



09-07-2025

e CSPs provide a straightforward way to formally represent
problems using variables, domains, and constraints.

CSPs enable the use of powerful general-purpose algorithms
that are often more effective than standard search algorithms
for solving problems defined by constraints.

Each constraint Ci consists of a pair <scope, rel >where scope
is a tuple of variables that participate in the constraint and rel
is a relation that defines the values that those variables can
take on.

To solve a CSP, we need to define a state space and the notion of a
solution.

Each state in a CSP is defined by an assignment of values to some
or all of the variables, {Xi=vi,Xj=vj,...}.

An assignment that does not violate any constraints is called a
consistent or legal assignment.

A complete assignment is one in which every variable is assigned,
and a solution to a CSP is a consistent, complete assignment.

A partial assignment is one that assigns values to only some of the
variables.

It can be helpful to visualize a CSP as a constraint graph.
The nodes of the graph correspond to variables of the problem, and a
link connects any two variables that participate in a constraint.

Constraint Satisfaction Probelm
Map Coloring

== | S
WIE )
g ©)

Color each region either red,green or blue
No adjacent region can have the same color

vy

X = {SA, NSW, NT, Q, WA, v}
» D = {red, blue, green} foreachX; & X}
G = {{(¥X;, Xjsuch that X; touches X;), (Golor(X;) # Color(X;)))}

v

A 3] J2] |6
gl9 3l 15 1
¢ 1[8] [6]4
0 8111 [2]9
€17 8
F 617] |8]2
U 216] [9
w8 2| |3 9
! S| 1] |3

Crypt arithmetic puzzle

Classic cryptarithmetic puzzle, where each letter represents a
unique digit from 0 to 9.

The problem to be solved is the equation TWO+TWO=FOUR

The goal is to find the digit each letter represents such that the
equation holds true and all digits are unique.

The relationships between the variables in a graphical format,
which helps to visualize the constraints and the dependencies
between the letters.

Each circle represents a variable (F, T, U, W, R, O), and the
squares represent the constraints (C1, C2, C3, etc.).

In this graph: Each constraint (C1, C2, C3, etc.) is connected to

the variables it involves.

¢ The connections indicate how each digit influences the other
digits through the carries and the final result.

TwWo
+T WO
FOUR

L] Constraints:

= AIIDff(F,T,U,W,R,0)
» 0+0=R+10x Cyqg
» Cio+ W+ W=U+10x Cigo
» Cioo+ T+ T=0+10x Cyooo

14



[ Varieties of CSP
Discrete variables

finite domains; size == (") complete assignments

{ e.g.. Boolean CSPs, incl. Boolean satisfiability (NP-complete)

infinite domains (integers, strings, etc.)
e.g., job scheduling, variables are start/end days for each job
need a constraint language, e.g., StartJoby + 5 < StartJoby
linear constraints solvable, nonlinear undecidable

Continuous variables
& eg., start/end times for Hubble Telescope observations
¢ linear constraints solvable in poly time by LP methods

09-07-2025

[ Var

Unary constraints involve a single variable,
e.g.. SA &£ green

Binary constraints involve pairs of variables,
eg. SA# WA

Higher-order canstraints involve 3 or more variables,
e.g8., cryptarithmetic column constraints

Preferences (soft constraints), e.g., r«d is better than grecn
often representable by a cost for each variable assignment
- constrained optimization problems

ﬂ Standard search formulation 1cremental) I

|

Let’s start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
Initial state: the empty assignment, | }

Suceessor function: assign a value to an unassigned variable
that does not conflict with current assignment
fail if no legal assignments (not fixable!)

Goal test: the current assignment is complete

1) This is the same for all CSPs! &
2) Every solution appears at depth + with 1 variables
= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
AFTN(n — () at depth 7, hence 11" leaves!| 1]

][ .I*)-m;kt.rm'king search
Variable assignments are commutative, i.e.,
[W A= redthen NT = green) sameas [NT = green then I\

Only need to consider assignments te a single variable at each node
= b= and there are (" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve ri-queens for 1 = 25

1

red)

i[ Backtracking search I]

CTRACKING- SEARCH( cxp) roturns solution/failure
i RECURSIVE-BACKTRACKING({ ], cop)

1 Recvrsive IACK TRACK
nt is complete the
var — SELECT-UNASSIGNED- V.,

grment, cap) Foturns soln/failure

assignment
RABLE(VARIABLES|csp). assignmer
i value In ORDER-DOMAIN-VALUES(var, assignment, csp) d
if value is consistent with o
add {var = valuc} to
result e— RECURSIVE-BACKTRACKING(axsignment, cxp)
If result ¥ failure then 0 result
remove {var = value} from assignment
arn failure

csp)

gnment given CONSTRAINTS|csp] then

—

vy

H Improving backtracking efficiency

s methods can give huge gains in speed
1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

15



Backtracking example

09-07-2025

548 = _;u
Eo
. s 4
£y
o &
/‘—-'-"‘
L SR
e e i . ,;;—
B —e s —e s — e
Degree heuristic - -:. T

Tie-breaker among MRV variables
Degree heuristic:
choose the variable with the most constraints on remaining variables

(I Least constraining value =

Given a variable. choose the least constraining value:
the one that rules out the fewest values in the remaining variables

R <

Combining these heuristics makes 1000 queens feasible

Constraint Propagation/ inference

Forward checking =1l
Idea: Keep track of remaining legal values for unassigned variables e

Terminate search when any variable has no legal values
TSN —e0h 0
wa NT a NEW v A T

(=] w[Eass [ (=S

I Constraint propagation |

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn’t provide early detection for all failures

e —

N7 and S cannot both be blue!

Constraint

enforces locally .

16



09-07-2025

Simplest form of makes each arc

Arc consistency =

- ¥ is consistent iff
for every value » of X there is so

 allowed B

AC-3( cspr) returns the CSP, possibly with reduced domains
2 binary CSP with variables {.X
1 variables: queus

Xa}

Il the arcs in cap

a queue of arcs, initially al
queu is not empty do

X, X)) REMOVE-
if REsov

~ (.. X,) them
for each X, «
(] s[eess aess] _ =(=ss) 204 (X

Resove
edd = fulse
ch ¢ in DoMAIN[Y] do
if no value g in DOMAIN[X ] allows (.5) to satisfy the constraint X,
delete « from DonmAN|

removed

InconsisTENT-VaLues( X
(] W e w ] ww .

) returns true iff succeeds

wa wr o sw v an
[EEm=]  w[ESSTE sS[es s =]
wa nr a s v sa
wa wr a Hsw v 5a
Wt s sa

wa

nsw v

v
[ =]
v
v
<L 1

[ I I o Gl

If X' loses a value, neighbors of X' need to be rechecked

Arc consistency detects failure earlier than forward checking

I Problem st

ucture

Ir

o | Problem st e contd. |
@ - Suppose each subproblem has « variables out of 1 total

Worst-case solution cost is o1/ - o, lin

E.g. n =80, d=2, ¢=20

= 4 billion years at 10 million nodes/sec
3.2 0.4 seconds at 10 million nodes/sec

T ia and
Identifiable as 4

d CSPs ” [ Algorithm for tree-structured C

s 0

1. Choose a variable a3 root, order variables from root to leaves
@ E) such that every node’s parent precedes it in the ordering
= z - (A) (E)
B0 @, _®
(_ E B JB—0L BBLOXDKE)\F
C F) = ' : :

© { F/

Theorem:

if the constraint graph has no loops, the CSP can be solved in 2. For j from 1 down to 2, apply REMOVEINCONSISTENT( Parent(X,), X))
O(ned”) time )

3. For j from 1 to n, assign X, consistently with [Marcnf(X
Compare to general CSPs, where worst-case time is ( ('

17



[ Nearly tree-structured CSPs |

Conditioning: instantiate a variable, prune its neighbors’ domains

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size « = runtime (X' "

. very fast for small .

09-07-2025

I Iterative algorithms for CSPs

Hill-climbing, simulated ling typically work with
“complete” states, i.e., all variables assigned
To apply teo CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic
ose value that violates the fewest constraints

i.e., hillclimb with /i(n) total number of viclated constraints

I Performance of min:

iflicts I

Given random initial state, can solve ri-queens in almost constant time for

arbitrary n with high probability (e.g.. 10,000,000)
The same appears to be true for any randomly-generated CSP
oxcept in » narrow range of the ratio
n number of constraints
 number of variables

CPU
time

y [
critical
ratio

18



