Artificial Intelligence

Course Code	20CS4501D	Year	III	Semester	I
Course Category	PEC	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Basic Mathematics
Continuous Evaluation :	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of Artificial Intelligence.	L2			
CO2	Apply the principles of AI in solutions that require problem solving, knowledge representation.	L3			
CO3	Apply Planning and Learning for solving AI problems.	L3			
CO4	Analyze a given problem and apply AI Techniques.	L4			

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1													
CO2	1								V	√				
CO3													V	
CO4		V				V			V	√		√		

	Mapped CO	
Unit No.	Contents	
UNIT-1	Introduction : Definition of AI, Foundations of AI, Applications of	
	AI. Intelligent agents: Agents and Environments, Structure of agents.	CO1,CO4
	Problem Solving Techniques:	
	Solving Problems by Searching: Problem Solving Agents, Searching	
	for Solutions.	CO1,CO2,
UNIT-2	Uninformed Search Strategies- Breadth first search, depth first Search	CO4
	Informed (Heuristic) Search Strategies- Hill climbing, A* Algorithm,	
	Alpha-Beta Pruning, Constraint Satisfaction Problem.	
	Knowledge Representation	
	Logical Agents: Knowledge Based Agents, Logic, Propositional	
UNIT-3	logic, First order logic, Syntax and Semantics in First order Logic.	CO1,CO2,
CIVII 5	Inference in first order logic : propositional vs. First order inference,	CO4
	Unification and Lifting, Forward chaining, Backward chaining,	
	Resolution	
	Planning : The Planning problem, planning with state space search,	
UNIT-4	planning graphs, planning with propositional logic, Analysis of	CO1, CO3,
	planning approaches, Hierarchical planning, conditional planning,	CO4
	Continuous and Multi Agent planning.	
UNIT-5	Learning: Learning from Examples, Knowledge in Learning, Learning	CO1, CO3, CO4
	probabilistic Models, Reinforcement Learning.	

T .	Th.
Learning	Resources
LCai ming	11CSUUI CCS

Text Books

1. Stuart Russell and Peter Norvig, -Artificial Intelligence: A Modern Approach , 3rd Edition, Prentice Hall.

References

- 1. A Classical Approach to Artificial Intelligence, M.C. Trivedi, Khanna Book Publishing, 2019.
- 2. Elaine Rich and Kevin Knight, —Artificial Intelligence, Tata McGraw Hill
- 3. Saroj Kaushik, -Artificial Intelligence, Cengage Learning India, 2011

e-Resources & other digital material

- 1. https://www.udemy.com/course/artificial-intelligence-az/
- 2. https://nptel.ac.in/courses/106105078
- 3. https://www.coursera.org/learn/introduction-to-ai