P.V.P Siddhartha Institute of Technology
Department of Computer Science and Engineering
Subject Code: 20CS3603, Subject Name: MERN Stack Development:PVP20
Descriptive Examination -1

1. A) Explain about the Node.js-to-Angular stack in detail. CO1, L2, 3M
[image: Understanding the Node.js-to-AngularJS Stack Components | Introducing ...]

The Node.js-to-Angular stack is a widely used full-stack JavaScript architecture that enables the development of dynamic and scalable web applications using JavaScript from end to end. At the frontend, Angular is a powerful TypeScript-based framework developed by Google that allows developers to build rich, responsive single-page applications (SPAs). Angular provides built-in support for routing, form handling, two-way data binding, and HTTP client modules, which makes it easy to interact with backend APIs and display dynamic content on the web page.
On the server side, Node.js serves as the runtime environment that executes JavaScript code outside of a browser. It is known for its non-blocking, event-driven architecture, making it highly suitable for building real-time and scalable server-side applications. Node.js works in conjunction with Express.js, a minimal and flexible web application framework that simplifies the creation of APIs, handles routing, and manages middleware for processing requests. Express acts as a bridge between the Angular frontend and the database.
For data storage, this stack typically uses either MongoDB, a NoSQL document-based database, or relational databases like MySQL or PostgreSQL. The backend (Node.js with Express) interacts with the database to perform CRUD operations and returns the results to the Angular frontend through RESTful APIs, usually in JSON format. This seamless integration allows developers to use JavaScript consistently across the entire application stack.
The Node.js-to-Angular stack is ideal for building modern web applications such as dashboards, content management systems, chat applications, and e-commerce platforms. It offers high performance, scalability, and a strong open-source community. Overall, this stack is a powerful solution for developers looking to build fast, interactive, and efficient web applications using JavaScript on both the client and server sides.

B) Build an HTML page including any required JavaScript that takes a number from
one text field in the range of 0 to 999 and shows it in another text field in words. If the
number is out of range, it should show “out of range” and if it is not a number, it
 should show “not a number” message in the result box. CO1, L2, 2M

2. A) Demonstrate how to Publish, Install and functions in a Node.js Packaged Module from the NPM Registry CO2, L3, 5M

<!DOCTYPE html>
<html>
<head>
 <title>Number to Words Converter</title>
 <style>
 body {
 font-family: Arial;
 padding: 20px;
 }
 input[type="text"] {
 padding: 5px;
 width: 200px;
 }
 #output {
 font-weight: bold;
 margin-top: 10px;
 color: green;
 }
 </style>
</head>
<body>

 <h2>Number to Words (0–999)</h2>

 <label>Enter a number: </label>
 <input type="text" id="numberInput" />
 <button onclick="convertToWords()">Convert</button>

 <div id="output"></div>

 <script>
 function convertToWords() {
 const input = document.getElementById("numberInput").value.trim();
 const output = document.getElementById("output");

 if (isNaN(input) || input === "") {
 output.textContent = "not a number";
 output.style.color = "red";
 return;
 }

 const num = parseInt(input);
 if (num < 0 || num > 999) {
 output.textContent = "out of range";
 output.style.color = "orange";
 return;
 }

 const ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"];
 const teens = ["ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
 "sixteen", "seventeen", "eighteen", "nineteen"];
 const tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"];

 function numberToWords(n) {
 if (n === 0) return "zero";
 let words = "";

 if (Math.floor(n / 100) > 0) {
 words += ones[Math.floor(n / 100)] + " hundred ";
 n %= 100;
 }

 if (n >= 10 && n < 20) {
 words += teens[n - 10];
 } else {
 if (Math.floor(n / 10) > 0) {
 words += tens[Math.floor(n / 10)] + " ";
 }
 if (n % 10 > 0) {
 words += ones[n % 10];
 }
 }

 return words.trim();
 }

 output.textContent = numberToWords(num);
 output.style.color = "green";
 }
 </script>

</body>
</html>

3. A) Explain Request, Response and server objects CO1, L2, 2M

1. Request Object (req)
The Request object represents the incoming HTTP request from the client (e.g., a browser, Postman, or mobile app) to the server.
 	Request Method: Type of request (GET, POST, PUT, DELETE)
URL: The endpoint/resource being requested
Headers: Metadata sent by the client (e.g., authentication tokens, content-type)
Body: Data sent by the client in POST/PUT requests (e.g., form data, JSON)
Query Parameters: Data sent via the URL (e.g., ?id=10)
Cookies & Sessions: Stored data about the client
Example:
app.post('/login', (req, res) => {
 const username = req.body.username; // Accessing form data
});
2.. Response Object (req)
The Response object represents the HTTP response that the server sends back to the client.
 Status Codes: (e.g., 200 OK, 404 Not Found, 500 Server Error)
Response Headers: Metadata about the response
Body/Content: The actual data sent back (HTML, JSON, plain text)
Redirects: Can redirect client to another URL
 Cookies: Can send cookies to the client
Example:
res.status(200).send('Login successful');
3. Server Object

The Server object represents the web server itself, which listens for incoming requests and routes them to the correct handler. It manages the lifecycle of the application and network communication.

Starts the application and listens on a port (e.g., 3000)
Routes requests to the appropriate functions
Manages connections and handles errors

Example:

const http = require('http');

const server = http.createServer((req, res) => {
 res.write('Hello, World!');
 res.end();
});

server.listen(3000, () => {
 console.log('Server running on port 3000');
});
B) Implement HTTP Servers and Clients in Node.js with a suitable code example. CO2, L3,
 2M
HTTP Server in Node.js:

The server listens on a port, accepts requests, and sends responses.

File: Server.js

const http = require('http');

// Create an HTTP server
const server = http.createServer((req, res) => {
 // Set response header
 res.writeHead(200, { 'Content-Type': 'text/plain' });

 // Log the request URL and method
 console.log(`Request received: ${req.method} ${req.url}`);

 // Send a response
 res.end('Hello from Node.js HTTP Server!');
});

// Start server on port 3000
server.listen(3000, () => {
 console.log('Server is running at http://localhost:3000');
});

HTTP Client in Node.js:

This client sends a request to the server and logs the response.

File: Client.js

const http = require('http');

// Set the request options
const options = {
 hostname: 'localhost',
 port: 3000,
 path: '/',
 method: 'GET'
};

// Make the HTTP request
const req = http.request(options, (res) => {
 console.log(`Status Code: ${res.statusCode}`);

 // Print response data
 res.on('data', (chunk) => {
 console.log(`Body: ${chunk.toString()}`);
 });
});

// Handle any errors
req.on('error', (err) => {
 console.error(`Error: ${err.message}`);
});

// End the request
req.end();

Run commands:

Start the server:
node server.js

Run the client in another terminal:
node client.js

will see the server log the request, and the client will print the server's response:

Status Code: 200
Body: Hello from Node.js HTTP Server!

image1.jpeg

