P.V.P Siddhartha Institute of Technology
Department of Computer Science and Engineering
Subject Code: 20CS3402, Subject Name: Advanced Data Structures, Regulation:PVP20
Descriptive Examination -2

1 a) Apply insertion operation on B- Tree of order 3 for the given elements 6, 7, 9, 22, 13, 31, 35, 28, 24, 5, 34, 8, 25, 10, 11, 12, 14, 39, CO3 L3 4M
[image:]

[image:]

[image:]

[image:]
B) Explain pattern matching and give its applications		 CO2, L2	 1M
Pattern Matching is the process of finding a specific sequence of characters (called a pattern) within a larger text or dataset.
Applications of Pattern Matching: Any two applications
1. Text Search Engines (e.g., Google Search):
2. DNA/Protein Sequence Analysis (Bioinformatics):
3. Spam Filtering and Intrusion Detection:
4. Plagiarism Detection:
5. Compiler Design (Lexical Analysis):
[image:]2 A) Apply all pairs shortest path algorithm on the given graph CO3, L3 4M
				

Initial Setup

A = 0, B = 1, C = 2, D = 3, E = 4

We initialize the distance matrix D[5][5] using the weights from the graph. If there's no direct edge, we use ∞ (infinity). If i = j, the distance is 0.

Initial Distance Matrix (D₀):

	From\To
	A(0)
	B(1)
	C(2)
	D(3)
	E(4)

	A
	0
	4
	2
	5
	1

	B
	∞
	0
	∞
	∞
	6

	C
	1
	∞
	0
	3
	∞

	D
	∞
	∞
	1
	0
	2

	E
	∞
	∞
	∞
	4
	0

Iteration with Intermediate Node A (k = 0):
Try improving paths via node A.
Update rule: D[i][j] = min(D[i][j], D[i][0] + D[0][j])
Updated matrix D₁:
	From\To
	A
	B
	C
	D
	E

	A
	0
	4
	2
	5
	1

	B
	∞
	0
	∞
	∞
	6

	C
	1
	5
	0
	3
	2

	D
	∞
	∞
	1
	0
	2

	E
	∞
	∞
	∞
	4
	0

C → A → B: 1 + 4 = 5
C → A → E: 1 + 1 = 2

Iteration with Intermediate Node B (k = 1):
Try improving paths via node B.
D[i][j] = min(D[i][j], D[i][1] + D[1][j])
Only updates from nodes that can reach B (A and C), but B has no outgoing paths except to E.

Updated matrix D₂:
No change in most rows, except:

	From\To
	A
	B
	C
	D
	E

	B
	∞
	0
	∞
	∞
	6

	C
	1
	5
	0
	3
	2

	A
	0
	4
	2
	5
	1

No further improvements using B as intermediate.

Iteration with Intermediate Node C (k = 2):
Now use C to check if paths improve. D[i][j] = min(D[i][j], D[i][2] + D[2][j])

	From\To
	A
	B
	C
	D
	E

	A
	0
	4
	2
	5
	1

	B
	∞
	0
	∞
	∞
	6

	C
	1
	5
	0
	3
	2

	D
	2
	6
	1
	0
	2

	E
	∞
	∞
	∞
	4
	0

Updated matrix D₃:

D → C → A: 1 + 1 = 2
D → C → B: 1 + 5 = 6
Iteration with Intermediate Node D (k = 3):
Use D as intermediate node.
D[i][j] = min(D[i][j], D[i][3] + D[3][j])
Updated matrix D₄:

	From\To
	A
	B
	C
	D
	E

	A
	0
	4
	2
	5
	1

	B
	∞
	0
	∞
	∞
	6

	C
	1
	5
	0
	3
	2

	D
	2
	6
	1
	0
	2

	E
	6
	10
	7
	4
	0

E → D → A: 4 + 2 = 6
 E → D → B: 4 + 6 = 10
 E → D → C: 4 + 1 = 5 (but no direct path yet — updated next)

Iteration with Intermediate Node E (k = 4):
Use E as intermediate node.
D[i][j] = min(D[i][j], D[i][4] + D[4][j])

Final Distance Matrix D₅:

	From\To
	A
	B
	C
	D
	E

	A
	0
	4
	2
	5
	1

	B
	7
	0
	9
	12
	6

	C
	1
	5
	0
	3
	2

	D
	2
	6
	1
	0
	2

	E
	6
	10
	7
	4
	0

B → E → D: 6 + 4 = 10
 B → E → C: 6 + 7 = 13 (but B→C was ∞, now 9 via other paths)

B) Which algorithm will be suitable on the graph below to find shortest path from a single source to all other vertices CO1, L2 1M

The graph contains negative edge weights (e.g., edge 3 → 1 has weight -4, edge 5 → 4 has weight -3, etc.).
Therefore, the best algorithm to find the shortest path from a single source to all other vertices in such a graph is: Bellman-Ford Algorithm

3 A) Organize the ordering of vertices produced by topological sort when it is run on the below graph
										CO4, L4 1.5M

To produce a topological sort of the given Directed Acyclic Graph (DAG), we must arrange the vertices in linear order such that for every directed edge u → v, u comes before v in the ordering.
Step 1: Calculate In-degrees of All Vertices

	Vertex
	In-Degree

	0
	0

	1
	1 (from 0)

	2
	2 (from 0, 1)

	3
	1 (from 2)

	4
	1 (from 5)

	5
	2 (from 1, 6)

	6
	0

Start with nodes of in-degree 0 → [0, 6]
Let’s process them in this order:
 Pop 0 → result = [0]
· 0 → 1 → decrease in-degree of 1 → now 0
· 0 → 2 → decrease in-degree of 2 → now 1
· Queue: [6, 1]
 Pop 6 → result = [0, 6]
· 6 → 5 → in-degree of 5 becomes 1
· Queue: [1]
Pop 1 → result = [0, 6, 1]
· 1 → 2 → in-degree of 2 becomes 0
· 1 → 5 → in-degree of 5 becomes 0
· Queue: [2, 5]
 Pop 2 → result = [0, 6, 1, 2]
· 2 → 3 → in-degree of 3 becomes 0
· Queue: [5, 3]
 Pop 5 → result = [0, 6, 1, 2, 5]
· 5 → 4 → in-degree of 4 becomes 0
· Queue: [3, 4]
 Pop 3 → result = [0, 6, 1, 2, 5, 3]
· No outgoing edge
· Queue: [4]
Pop 4 → result = [0, 6, 1, 2, 5, 3, 4]
· Done
0 → 6 → 1 → 2 → 5 → 3 → 4
Note: Topological sort is not unique. Other valid orders are possible as long as the rule “parents come before children” is satisfied.

B) Analyze the KMP algorithm that will effectively search for a given text – abcabcabdabc for a given pattern- abcabdabc	 CO4, L4 1.5M

Text (T) = abcabcabdabc
Pattern (P) = abcabdabc
Goal: Use KMP to search the pattern in the text efficiently.
Step 1: Build the LPS Array (Longest Prefix Suffix)
The LPS array helps avoid unnecessary comparisons by storing the length of the longest proper prefix which is also a suffix for the pattern.
Pattern: a b c a b d a b c
	Index (i)
	P[i]
	LPS[i]

	0
	a
	0

	1
	b
	0

	2
	c
	0

	3
	a
	1

	4
	b
	2

	5
	d
	0

	6
	a
	1

	7
	b
	2

	8
	c
	3

Final LPS array: [0, 0, 0, 1, 2, 0, 1, 2, 3]

Step 2: Apply KMP Matching
Let:
· i = 0 → index for text T
· j = 0 → index for pattern P
We compare characters at T[i] and P[j], and do the following:
1. If T[i] == P[j], increment both i and j.
2. If mismatch and j > 0, then j = LPS[j-1]
3. If mismatch and j == 0, just increment i.
 Matching Process:
	Text Index (i)
	Text Char
	Pattern Index (j)
	Pattern Char
	Action

	0
	a
	0
	a
	match → i=1, j=1

	1
	b
	1
	b
	match → i=2, j=2

	2
	c
	2
	c
	match → i=3, j=3

	3
	a
	3
	a
	match → i=4, j=4

	4
	b
	4
	b
	match → i=5, j=5

	5
	c
	5
	d
	mismatch → j=LPS[4]=2

	5
	c
	2
	c
	match → i=6, j=3

	6
	a
	3
	a
	match → i=7, j=4

	7
	b
	4
	b
	match → i=8, j=5

	8
	d
	5
	d
	match → i=9, j=6

	9
	a
	6
	a
	match → i=10, j=7

	10
	b
	7
	b
	match → i=11, j=8

	11
	c
	8
	c
	match → i=12, j=9 (pattern matched fully) ✅

Pattern found at index 3 in the text.
C) Explain in detail how to find the 11 in the below data structure using smart find algorithm

 CO2, L2 2M		
The Smart Find algorithm is used in Disjoint Set Union (DSU) or Union-Find data structures to efficiently determine the representative/root of the set a node belongs to. It compresses the path from the node to the root so that all nodes on that path directly point to the root. This improves future query speed to nearly constant time.

Follow the parent pointers for 11:
11 → 10 → 8 → 0
11’s parent = 10
10’s parent = 9
9’s parent = 6
6’s parent = 8
8’s parent = 0 (root)
So, the root (representative) of 11 is 0.
Path Compression
We now update parent pointers of all nodes in the path (11, 10, 9, 6, 8) to point directly to the root 0.

After Path Compression
11 → 0
10 → 0
 9 → 0
 6 → 0
 8 → 0
This flattens the tree structure for this path.

Final Updated Tree (Simplified View)
After compression, the tree will look like this:
 0
 / /|\ \ \ \
 1 2 4 6 8 12 14
 |
 9 10 11
All now directly or indirectly point to 0 as their parent, resulting in a flatter tree.
image6.png

image7.png

image8.png

image1.jpg
1 A)
\AW‘“\ b 0Qeel vy e e By

- £ Yo
Iven 6, ; 3 31,35 A 4y, 5, 3 K, 2500,

Wiy v 3

) insenk 9

Eigjﬁi) v lew ol

|

‘l) 9 Mw;\ 1

image2.jpg

image3.jpg
‘(,} AN 0]

(=D T 1D
N ' | -
D e

) \

[Gm) T80 0] v l U) [) o) (an Eden B

niv '\r

19) ek 1 O
=l D
e

gif‘v H Ay “ 31

)‘,) (ndd 1Q

image4.png

image5.jpeg

