PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

II B.Tech- I Sem

DISCRETE MATHEMATICS & GRAPH THEORY

Course Code		Year	II	Semester	I
Course Category	BS&H	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Basic Mathematics
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
	Upon successful completion of the course, the student will be able to				
CO1	Understand the fundamental concepts of discrete mathematics and graph theory. (L2)				
CO2	Apply mathematical techniques to prove arguments / statements. (L3)				
CO3	Apply various method(s) for solving different recurrence relations.(L3)				
CO4	Analyze various graphs by their characteristics to construct a tree. (L4)				

	SYLLABUS				
UnitNo.	Contents	Mapped CO			
I	Mathematical Logic: Introduction-Statements and notations-Connectives (Negation, Conjunction, Disjunction)-Statement formulas and Truth tables, Conditional and Biconditional, Well-Formed Formulas, Tautologies, Equivalence of formulas, Duality law, Tautological Implication, Functionally Complete sets of Connectives, Other Connectives. (NAND, NOR, XOR) Normal Forms: Disjunctive Normal Forms (DNF), Conjunctive Normal Forms (CNF), Principal of Disjunctive Normal Forms (PDNF), Principal of Conjunctive Normal Forms (PCNF).				
	Theory of Inference for Statement Calculus: Validity using truth tables-Rules of Inference – Consistency & Inconsistency of Premises and Indirect method proof. Predicate calculus: Introduction to Predicates - Statement functions, Variable and Quantifiers- Predicate formulas-Free and Bound Variables-Universe of Discourse.	CO1,CO2			
III	Recurrence Relations-Generating functions of sequences – Recurrence relations-Solving recurrence relations by substitution, method of characteristic roots-Solution of Inhomogeneous Recurrence relations.				
•	Relations and Directed Graphs-Special Properties of Binary Relations- Equivalence Relations- Ordering Relations-Poset diagrams, Special elements in Posets-Lattices-Operations on Relations- Representation of relation. Graphs- Basic Concepts- Operations on Graph-Matrix representation of Graph-Adjacency Matrix, Incidence Matrix-Paths and Closures- Warshall's Algorithm-and Sub graphs –Isomorphic Graphs- Directed Graphs	CO1,CO4			
V	Planar Graphs-Euler's Formula- Multi-graphs and Eulerian Graphs-Hamiltonian Graphs-	CO1,CO4			

Chromatic Number.

Trees and Their Properties - Spanning Trees-Breadth First and Depth First Spanning Trees –BFS and DFS algorithms-Minimal Spanning tree-Prim's and Kruskal's algorithms.

Learning Resources

Text Books:

- 1. Discrete Mathematical Structures with Applications to Computer Science , J P Trembly and R Manohar, 1988, McGraw-Hill
- 2. Discrete Mathematics for Computer Scientists & Mathematicians, Joe L. Mott. Abraham Kandel and Theodore P. Baker, Second Edition, 2017, PHI.

Reference Books

- 1. Discrete Mathematics and its Applications, Kenneth H. Rosen, Seventh Edition, 2017, McGraw-Hill.
- 2. Discrete Mathematics, Swapna Kumar Chakraborty, BikashKanti Sarkar, First Edition, 2011, Oxford University Press

E-Resources:

- 1. https://www.geeksforgeeks.org/engineering-mathematics-tutorials/
- 2. https://www.tutorialspoint.com/discrete mathematics/index.htm
- 3. http://www.alas.matf.bg.ac.rs/~mi10164/Materijali/DS.pdf
- 4. https://nptel.ac.in/courses/111107058/