
871

C H A P T E R 2 6

Standard Client-Server
Protocols

fter introducing the application layer in the previous chapter, we discuss some
standard application-layer protocols in this chapter. During the lifetime of the

Internet, several client-server application programs have been developed. We do not
have to redefine them, but we need to understand what they do. For each application,
we also need to know the options available to us. The study of these applications and
the ways they provide different services can help us to create customized applications
in the future.

 We have selected six standard application programs in this section. Some other
applications have been or will be discussed in other chapters. Dynamic Host Configura-
tion Protocol (DHCP) was discussed in Chapter 18 and Simple Network Management
Protocol (SNMP) will be discussed in Chapter 27.

This chapter is made of six sections:

❑ The first section introduces the World Wide Web. It then discusses the HyperText
Transfer Protocol, the most common client-server application program used in
relation to the World Wide Web.

❑ The second section discusses the File Transfer Protocol, which is the standard
protocol provided by TCP/IP for copying a file from one host to another.

❑ The third section discusses electronic mail, which involves two protocols: SMPT
and POP. As we will see, the nature of this application is different from the other
two previous applications. We need two different protocols to handle electronic
mail.

❑ The fourth section discusses TELNET, a general client-server program that allows
users to log in to a remote machine and use any application available on the remote
host.

❑ The fifth section discusses Secure Shell, which can be used as a secured TELNET,
but it can also provide a secure tunnel for other applications.

❑ The sixth section talks about the Domain Name System, which acts as the direc-
tory system in the Internet. It maps the name of an entity to its IP address.

A

872 PART VI APPLICATION LAYER

26.1 WORLD WIDE WEB AND HTTP
In this section, we first introduce the World Wide Web (abbreviated WWW or Web).
We then discuss the HyperText Transfer Protocol (HTTP), the most common client-
server application program used in relation to the Web.

26.1.1 World Wide Web
The idea of the Web was first proposed by Tim Berners-Lee in 1989 at CERN†, the
European Organization for Nuclear Research, to allow several researchers at different
locations throughout Europe to access each others’ researches. The commercial Web
started in the early 1990s.

The Web today is a repository of information in which the documents, called web
pages, are distributed all over the world and related documents are linked together. The
popularity and growth of the Web can be related to two terms in the above statement:
distributed and linked. Distribution allows the growth of the Web. Each web server in
the world can add a new web page to the repository and announce it to all Internet users
without overloading a few servers. Linking allows one web page to refer to another web
page stored in another server somewhere else in the world. The linking of web pages
was achieved using a concept called hypertext, which was introduced many years
before the advent of the Internet. The idea was to use a machine that automatically
retrieved another document stored in the system when a link to it appeared in the docu-
ment. The Web implemented this idea electronically to allow the linked document to be
retrieved when the link was clicked by the user. Today, the term hypertext, coined to
mean linked text documents, has been changed to hypermedia, to show that a web page
can be a text document, an image, an audio file, or a video file.

The purpose of the Web has gone beyond the simple retrieving of linked docu-
ments. Today, the Web is used to provide electronic shopping and gaming. One can use
the Web to listen to radio programs or view television programs whenever one desires
without being forced to listen to or view these programs when they are broadcast.

Architecture

The WWW today is a distributed client-server service, in which a client using a
browser can access a service using a server. However, the service provided is distrib-
uted over many locations called sites. Each site holds one or more web pages. Each
web page, however, can contain some links to other web pages in the same or other
sites. In other words, a web page can be simple or composite. A simple web page has
no links to other web pages; a composite web page has one or more links to other web
pages. Each web page is a file with a name and address.

Example 26.1

Assume we need to retrieve a scientific document that contains one reference to another text file
and one reference to a large image. Figure 26.1 shows the situation.

The main document and the image are stored in two separate files (file A and file B) in the
same site; the referenced text file (file C) is stored in another site. Since we are dealing with three

† In French: Conseil Européen pour la Recherche Nucléaire

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 873

different files, we need three transactions if we want to see the whole document. The first transac-
tion (request/response) retrieves a copy of the main document (file A), which has references (point-
ers) to the second and third files. When a copy of the main document is retrieved and browsed, the
user can click on the reference to the image to invoke the second transaction and retrieve a copy of
the image (file B). If the user needs to see the contents of the referenced text file, she can click on its
reference (pointer) invoking the third transaction and retrieving a copy of file C. Note that although
files A and B both are stored in site I, they are independent files with different names and addresses.
Two transactions are needed to retrieve them. A very important point we need to remember is that
file A, file B, and file C in Example 26.1 are independent web pages, each with independent names
and addresses. Although references to file B or C are included in file A, it does not mean that each
of these files cannot be retrieved independently. A second user can retrieve file B with one transac-
tion. A third user can retrieve file C with one transaction.

Web Client (Browser)
A variety of vendors offer commercial browsers that interpret and display a web
page, and all of them use nearly the same architecture. Each browser usually consists
of three parts: a controller, client protocols, and interpreters. (see Figure 26.2).

Figure 26.1 Example 26.1

Figure 26.2 Browser

Site I Site II
Client

Request 1

Response 1

Request 2

Response 2

Request 3

Response 3

A

A: Original document
B: Image
C: Referenced file

CB

2

1

3

5

6

4

Browser

Controller

HTTP FTP SSH SMTP
Interpreters

Java

JavaScript

HTML

874 PART VI APPLICATION LAYER

The controller receives input from the keyboard or the mouse and uses the client
programs to access the document. After the document has been accessed, the controller
uses one of the interpreters to display the document on the screen. The client protocol
can be one of the protocols described later, such as HTTP or FTP. The interpreter can
be HTML, Java, or JavaScript, depending on the type of document. Some commercial
browsers include Internet Explorer, Netscape Navigator, and Firefox.

Web Server
The web page is stored at the server. Each time a request arrives, the corresponding
document is sent to the client. To improve efficiency, servers normally store requested
files in a cache in memory; memory is faster to access than a disk. A server can also
become more efficient through multithreading or multiprocessing. In this case, a server
can answer more than one request at a time. Some popular web servers include Apache
and Microsoft Internet Information Server.

Uniform Resource Locator (URL)

A web page, as a file, needs to have a unique identifier to distinguish it from other
web pages. To define a web page, we need three identifiers: host, port, and path.
However, before defining the web page, we need to tell the browser what client-
server application we want to use, which is called the protocol. This means we need
four identifiers to define the web page. The first is the type of vehicle to be used to
fetch the web page; the last three make up the combination that defines the destina-
tion object (web page).

❑ Protocol. The first identifier is the abbreviation for the client-server program that
we need in order to access the web page. Although most of the time the protocol is
HTTP (HyperText Transfer Protocol), which we will discuss shortly, we can also
use other protocols such as FTP (File Transfer Protocol).

❑ Host. The host identifier can be the IP address of the server or the unique name
given to the server. IP addresses can be defined in dotted decimal notation, as
described in Chapter 18 (such as 64.23.56.17); the name is normally the domain
name that uniquely defines the host, such as forouzan.com, which we discuss in
Domain Name System (DNS) later in this chapter.

❑ Port. The port, a 16-bit integer, is normally predefined for the client-server appli-
cation. For example, if the HTTP protocol is used for accessing the web page, the
well-known port number is 80. However, if a different port is used, the number can
be explicitly given.

❑ Path. The path identifies the location and the name of the file in the underlying
operating system. The format of this identifier normally depends on the operat-
ing system. In UNIX, a path is a set of directory names followed by the file
name, all separated by a slash. For example, /top/next/last/myfile is a path that
uniquely defines a file named myfile, stored in the directory last, which itself is
part of the directory next, which itself is under the directory top. In other words,
the path lists the directories from the top to the bottom, followed by the file
name.

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 875

To combine these four pieces together, the uniform resource locator (URL) has
been designed; it uses three different separators between the four pieces as shown
below:

Example 26.2

The URL http://www.mhhe.com/compsci/forouzan/ defines the web page related to one of the
authors of this book. The string www.mhhe.com is the name of the computer in the McGraw-Hill
company (the three letters www are part of the host name and are added to the commercial host).
The path is compsci/forouzan/, which defines Forouzan’s web page under the directory compsci
(computer science).

Web Documents
The documents in the WWW can be grouped into three broad categories: static, dynamic,
and active.

Static Documents
Static documents are fixed-content documents that are created and stored in a server.
The client can get a copy of the document only. In other words, the contents of the file
are determined when the file is created, not when it is used. Of course, the contents in
the server can be changed, but the user cannot change them. When a client accesses the
document, a copy of the document is sent. The user can then use a browser to see the
document. Static documents are prepared using one of several languages: HyperText
Markup Language (HTML), Extensible Markup Language (XML), Extensible Style
Language (XSL), and Extensible Hypertext Markup Language (XHTML). We discuss
these languages in Appendix C.

Dynamic Documents
A dynamic document is created by a web server whenever a browser requests the docu-
ment. When a request arrives, the web server runs an application program or a script that
creates the dynamic document. The server returns the result of the program or script as a
response to the browser that requested the document. Because a fresh document is created
for each request, the contents of a dynamic document may vary from one request to
another. A very simple example of a dynamic document is the retrieval of the time and
date from a server. Time and date are kinds of information that are dynamic in that they
change from moment to moment. The client can ask the server to run a program such as
the date program in UNIX and send the result of the program to the client. Although the
Common Gateway Interface (CGI) was used to retrieve a dynamic document in the past,
today’s options include one of the scripting languages such as Java Server Pages (JSP),
which uses the Java language for scripting, or Active Server Pages (ASP), a Microsoft
product that uses Visual Basic language for scripting, or ColdFusion, which embeds que-
ries in a Structured Query Language (SQL) database in the HTML document.

Active Documents
For many applications, we need a program or a script to be run at the client site. These are
called active documents. For example, suppose we want to run a program that creates
animated graphics on the screen or a program that interacts with the user. The program

protocol://host/path Used most of the time
protocol://host:port/path Used when port number is needed

876 PART VI APPLICATION LAYER

definitely needs to be run at the client site where the animation or interaction takes place.
When a browser requests an active document, the server sends a copy of the document or
a script. The document is then run at the client (browser) site. One way to create an active
document is to use Java applets, a program written in Java on the server. It is compiled
and ready to be run. The document is in bytecode (binary) format. Another way is to use
JavaScripts but download and run the script at the client site.

26.1.2 HyperText Transfer Protocol (HTTP)
The HyperText Transfer Protocol (HTTP) is used to define how the client-server
programs can be written to retrieve web pages from the Web. An HTTP client sends a
request; an HTTP server returns a response. The server uses the port number 80; the cli-
ent uses a temporary port number. HTTP uses the services of TCP, which, as discussed
before, is a connection-oriented and reliable protocol. This means that, before any
transaction between the client and the server can take place, a connection needs to be
established between them. After the transaction, the connection should be terminated.
The client and server, however, do not need to worry about errors in messages
exchanged or loss of any message, because the TCP is reliable and will take care of this
matter, as we saw in Chapter 24.

Nonpersistent versus Persistent Connections

As we discussed in the previous section, the hypertext concept embedded in web page
documents may require several requests and responses. If the web pages, objects to be
retrieved, are located on different servers, we do not have any other choice than to cre-
ate a new TCP connection for retrieving each object. However, if some of the objects
are located on the same server, we have two choices: to retrieve each object using a new
TCP connection or to make a TCP connection and retrieve them all. The first method is
referred to as a nonpersistent connection, the second as a persistent connection. HTTP,
prior to version 1.1, specified nonpersistent connections, while persistent connections
are the default in version 1.1, but it can be changed by the user.

Nonpersistent Connections
In a nonpersistent connection, one TCP connection is made for each request/response.
The following lists the steps in this strategy:

1. The client opens a TCP connection and sends a request.

2. The server sends the response and closes the connection.

3. The client reads the data until it encounters an end-of-file marker; it then closes the
connection.

In this strategy, if a file contains links to N different pictures in different files (all
located on the same server), the connection must be opened and closed N + 1 times.
The nonpersistent strategy imposes high overhead on the server because the server
needs N + 1 different buffers each time a connection is opened.

Example 26.3

Figure 26.3 shows an example of a nonpersistent connection. The client needs to access a file that
contains one link to an image. The text file and image are located on the same server. Here we
need two connections. For each connection, TCP requires at least three handshake messages to

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 877

establish the connection, but the request can be sent with the third one. After the connection is
established, the object can be transferred. After receiving an object, another three handshake
messages are needed to terminate the connection, as we saw in Chapter 24. This means that the

client and server are involved in two connection establishments and two connection terminations.
If the transaction involves retrieving 10 or 20 objects, the round trip times spent for these hand-
shakes add up to a big overhead. When we describe the client-server programming at the end of
the chapter, we will show that for each connection the client and server need to allocate extra
resources such as buffers and variables. This is another burden on both sites, but especially on the
server site.

Persistent Connections
HTTP version 1.1 specifies a persistent connection by default. In a persistent connec-
tion, the server leaves the connection open for more requests after sending a response.

Figure 26.3 Example 26.3

Client

C
on

ne
ct

io
n

C
on

ne
ct

io
n

File

Image

Image

First handshake

First handshake

Second handshake

Second handshake

Third handshake + request

Third handshake

Response

First handshake

First handshake

Second handshake

Second handshake

Third handshake + request

Third handshake

Response

Time Time

Server
File

878 PART VI APPLICATION LAYER

The server can close the connection at the request of a client or if a time-out has been
reached. The sender usually sends the length of the data with each response. However,
there are some occasions when the sender does not know the length of the data. This is
the case when a document is created dynamically or actively. In these cases, the server
informs the client that the length is not known and closes the connection after sending
the data so the client knows that the end of the data has been reached. Time and
resources are saved using persistent connections. Only one set of buffers and variables
needs to be set for the connection at each site. The round trip time for connection estab-
lishment and connection termination is saved.

Example 26.4

Figure 26.4 shows the same scenario as in Example 26.3, but using a persistent connection.
Only one connection establishment and connection termination is used, but the request for the
image is sent separately.

Message Formats

The HTTP protocol defines the format of the request and response messages, as shown
in Figure 26.5. We have put the two formats next to each other for comparison. Each
message is made of four sections. The first section in the request message is called the
request line; the first section in the response message is called the status line. The other
three sections have the same names in the request and response messages. However, the

Figure 26.4 Example 26.4

C
on

ne
ct

io
n

First handshake

First handshake

Second handshake

Second handshake

Third handshake + request

Request

Third handshake

Response

Response

Time Time

Image
Server

FileClient

File

Image

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 879

similarities between these sections are only in the names; they may have different con-
tents. We discuss each message type separately.

Request Message
As we said before, the first line in a request message is called a request line. There are
three fields in this line separated by one space and terminated by two characters (car-
riage return and line feed) as shown in Figure 26.5. The fields are called method, URL,
and version.

The method field defines the request types. In version 1.1 of HTTP, several
methods are defined, as shown in Table 26.1. Most of the time, the client uses the
GET method to send a request. In this case, the body of the message is empty. The
HEAD method is used when the client needs only some information about the web
page from the server, such as the last time it was modified. It can also be used to test
the validity of a URL. The response message in this case has only the header section;
the body section is empty. The PUT method is the inverse of the GET method; it
allows the client to post a new web page on the server (if permitted). The POST
method is similar to the PUT method, but it is used to send some information to the
server to be added to the web page or to modify the web page. The TRACE method is
used for debugging; the client asks the server to echo back the request to check
whether the server is getting the requests. The DELETE method allows the client to
delete a web page on the server if the client has permission to do so. The CONNECT
method was originally made as a reserve method; it may be used by proxy servers, as
discussed later. Finally, the OPTIONS method allows the client to ask about the prop-
erties of a web page.

The second field, URL, was discussed earlier in the chapter. It defines the address
and name of the corresponding web page. The third field, version, gives the version of
the protocol; the most current version of HTTP is 1.1.

Figure 26.5 Formats of the request and response messages

Request
line

Header
lines

Legend

Request message Response message

Blank
line

Body

sp: Space cr: Carriage Return lf: Line Feed

cr lf

sp sp cr lfMethod URL Version

sp

sp

cr lf:Header name Value

cr lf:Header name Value

Status
line

Header
lines

Variable number of lines
(Present only in some messages)

Variable number of lines
(Present only in some messages)

Blank
line

Body

cr lf

sp sp cr lfVersion Phrase

sp

sp

cr lf:

:

Header name Value

cr lfHeader name Value

Status
code

880 PART VI APPLICATION LAYER

After the request line, we can have zero or more request header lines. Each
header line sends additional information from the client to the server. For example,
the client can request that the document be sent in a special format. Each header line
has a header name, a colon, a space, and a header value (see Figure 26.5). Table 26.2
shows some header names commonly used in a request. The value field defines the
values associated with each header name. The list of values can be found in the corre-
sponding RFCs.

The body can be present in a request message. Usually, it contains the comment
to be sent or the file to be published on the website when the method is PUT or
POST.

Response Message
The format of the response message is also shown in Figure 26.5. A response mes-
sage consists of a status line, header lines, a blank line, and sometimes a body. The
first line in a response message is called the status line. There are three fields in this
line separated by spaces and terminated by a carriage return and line feed. The first
field defines the version of HTTP protocol, currently 1.1. The status code field
defines the status of the request. It consists of three digits. Whereas the codes in the
100 range are only informational, the codes in the 200 range indicate a successful
request. The codes in the 300 range redirect the client to another URL, and the codes

Table 26.1 Methods

Method Action
GET Requests a document from the server
HEAD Requests information about a document but not the document itself
PUT Sends a document from the client to the server
POST Sends some information from the client to the server
TRACE Echoes the incoming request
DELETE Removes the web page
CONNECT Reserved
OPTIONS Inquires about available options

Table 26.2 Request header names

Header Description
User-agent Identifies the client program
Accept Shows the media format the client can accept
Accept-charset Shows the character set the client can handle
Accept-encoding Shows the encoding scheme the client can handle
Accept-language Shows the language the client can accept
Authorization Shows what permissions the client has
Host Shows the host and port number of the client
Date Shows the current date
Upgrade Specifies the preferred communication protocol
Cookie Returns the cookie to the server (explained later)
If-Modified-Since If the file is modified since a specific date

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 881

in the 400 range indicate an error at the client site. Finally, the codes in the 500 range
indicate an error at the server site. The status phrase explains the status code in text
form.

After the status line, we can have zero or more response header lines. Each header
line sends additional information from the server to the client. For example, the sender
can send extra information about the document. Each header line has a header name, a
colon, a space, and a header value. We will show some header lines in the examples at
the end of this section. Table 26.3 shows some header names commonly used in a
response message.

The body contains the document to be sent from the server to the client. The body
is present unless the response is an error message.

Example 26.5

This example retrieves a document (see Figure 26.6). We use the GET method to retrieve an
image with the path /usr/bin/image1. The request line shows the method (GET), the URL, and
the HTTP version (1.1). The header has two lines that show that the client can accept images in
the GIF or JPEG format. The request does not have a body. The response message contains the
status line and four lines of header. The header lines define the date, server, content encoding
(MIME version, which will be described in electronic mail), and length of the document. The
body of the document follows the header.

Example 26.6

In this example, the client wants to send a web page to be posted on the server. We use the PUT
method. The request line shows the method (PUT), URL, and HTTP version (1.1). There are four
lines of headers. The request body contains the web page to be posted. The response message
contains the status line and four lines of headers. The created document, which is a CGI docu-
ment, is included as the body (see Figure 26.7).

Conditional Request

A client can add a condition in its request. In this case, the server will send the
requested web page if the condition is met or inform the client otherwise. One of
the most common conditions imposed by the client is the time and date the web

Table 26.3 Response header names

Header Description
Date Shows the current date
Upgrade Specifies the preferred communication protocol
Server Gives information about the server
Set-Cookie The server asks the client to save a cookie
Content-Encoding Specifies the encoding scheme
Content-Language Specifies the language
Content-Length Shows the length of the document
Content-Type Specifies the media type
Location To ask the client to send the request to another site
Accept-Ranges The server will accept the requested byte-ranges
Last-modified Gives the date and time of the last change

882 PART VI APPLICATION LAYER

page is modified. The client can send the header line If-Modified-Since with the
request to tell the server that it needs the page only if it is modified after a certain
point in time.

Figure 26.6 Example 26.5

Figure 26.7 Example 26.6

Request

Response

GET /usr/bin/image1 HTTP/1.1

Accept: image/gif
Accept: image/jpeg

HTTP/1.1 200 OK

Date: Mon, 10-Jan-2011 13:15:14 GMT
Server: Challenger
Content-encoding: MIME-version 1.0
Content-length: 2048

(Body of the document)

Client
Server

2

1

Time Time

Request

Response

(Body of the document)

Client
Server

PUT /cgi-bin/doc.pl HTTP/1.1

Accept: */*
Accept: image/gif
Accept: image/jpeg
Content-length: 50

(Input information)

HTTP/1.1 200 OK

Date: Mon, 10-Jan-2011 13:15:14 GMT
Server: Challenger
Content-encoding: MIME-version 1.0
Content-length: 2000

1

2

Time Time

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 883

Example 26.7

The following shows how a client imposes the modification data and time condition on
a request.

The status line in the response shows the file was not modified after the defined point in
time. The body of the response message is also empty.

Cookies

The World Wide Web was originally designed as a stateless entity. A client sends a request;
a server responds. Their relationship is over. The original purpose of the Web, retrieving
publicly available documents, exactly fits this design. Today the Web has other functions
that need to remember some information about the clients; some are listed below:

❑ Websites are being used as electronic stores that allow users to browse through the
store, select wanted items, put them in an electronic cart, and pay at the end with a
credit card.

❑ Some websites need to allow access to registered clients only.

❑ Some websites are used as portals: the user selects the web pages he wants to see.

❑ Some websites are just advertising agencies.

For these purposes, the cookie mechanism was devised.

Creating and Storing Cookies
The creation and storing of cookies depend on the implementation; however, the princi-
ple is the same.

1. When a server receives a request from a client, it stores information about the client
in a file or a string. The information may include the domain name of the client, the
contents of the cookie (information the server has gathered about the client such as
name, registration number, and so on), a timestamp, and other information depend-
ing on the implementation.

2. The server includes the cookie in the response that it sends to the client.

3. When the client receives the response, the browser stores the cookie in the cookie
directory, which is sorted by the server domain name.

Using Cookies
When a client sends a request to a server, the browser looks in the cookie directory to
see if it can find a cookie sent by that server. If found, the cookie is included in the

GET http://www.commonServer.com/information/file1 HTTP/1.1 Request line
If-Modified-Since: Thu, Sept 04 00:00:00 GMT Header line

Blank line

HTTP/1.1 304 Not Modified Status line
Date: Sat, Sept 06 08 16:22:46 GMT First header line
Server: commonServer.com Second header line

Blank line
(Empty Body) Empty body

884 PART VI APPLICATION LAYER

request. When the server receives the request, it knows that this is an old client, not a
new one. Note that the contents of the cookie are never read by the browser or disclosed
to the user. It is a cookie made by the server and eaten by the server. Now let us see how
a cookie is used for the four previously mentioned purposes:

❑ An electronic store (e-commerce) can use a cookie for its client shoppers. When a
client selects an item and inserts it in a cart, a cookie that contains information
about the item, such as its number and unit price, is sent to the browser. If the client
selects a second item, the cookie is updated with the new selection information,
and so on. When the client finishes shopping and wants to check out, the last
cookie is retrieved and the total charge is calculated.

❑ The site that restricts access to registered clients only sends a cookie to the client
when the client registers for the first time. For any repeated access, only those cli-
ents that send the appropriate cookie are allowed.

❑ A web portal uses the cookie in a similar way. When a user selects her favorite
pages, a cookie is made and sent. If the site is accessed again, the cookie is sent to
the server to show what the client is looking for.

❑ A cookie is also used by advertising agencies. An advertising agency can place ban-
ner ads on some main website that is often visited by users. The advertising agency
supplies only a URL that gives the advertising agency’s address instead of the ban-
ner itself. When a user visits the main website and clicks the icon of a corporation, a
request is sent to the advertising agency. The advertising agency sends the requested
banner, but it also includes a cookie with the ID of the user. Any future use of
the banners adds to the database that profiles the Web behavior of the user. The
advertising agency has compiled the interests of the user and can sell this informa-
tion to other parties. This use of cookies has made them very controversial. Hope-
fully, some new regulations will be devised to preserve the privacy of users.

Example 26.8

Figure 26.8 shows a scenario in which an electronic store can benefit from the use of cookies.
Assume a shopper wants to buy a toy from an electronic store named BestToys. The shopper
browser (client) sends a request to the BestToys server. The server creates an empty shopping cart
(a list) for the client and assigns an ID to the cart (for example, 12343). The server then sends a
response message, which contains the images of all toys available, with a link under each toy that
selects the toy if it is being clicked. This response message also includes the Set-Cookie header
line whose value is 12343. The client displays the images and stores the cookie value in a file
named BestToys. The cookie is not revealed to the shopper. Now the shopper selects one of the
toys and clicks on it. The client sends a request, but includes the ID 12343 in the Cookie header
line. Although the server may have been busy and forgotten about this shopper, when it receives
the request and checks the header, it finds the value 12343 as the cookie. The server knows that
the customer is not new; it searches for a shopping cart with ID 12343. The shopping cart (list) is
opened and the selected toy is inserted in the list. The server now sends another response to the
shopper to tell her the total price and ask her to provide payment. The shopper provides
information about her credit card and sends a new request with the ID 12343 as the cookie value.
When the request arrives at the server, it again sees the ID 12343, and accepts the order and the
payment and sends a confirmation in a response. Other information about the client is stored in

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 885

the server. If the shopper accesses the store sometime in the future, the client sends the cookie
again; the store retrieves the file and has all the information about the client.

Web Caching: Proxy Servers

HTTP supports proxy servers. A proxy server is a computer that keeps copies of
responses to recent requests. The HTTP client sends a request to the proxy server. The
proxy server checks its cache. If the response is not stored in the cache, the proxy
server sends the request to the corresponding server. Incoming responses are sent to the
proxy server and stored for future requests from other clients.

The proxy server reduces the load on the original server, decreases traffic, and
improves latency. However, to use the proxy server, the client must be configured to
access the proxy instead of the target server.

Figure 26.8 Example 26.8

Time Time

A customer file is
created with ID: 12343

Update

Update

Update

Request

Response

GET BestToys.com HTTP/1.1

HTTP/1.1 200 OK

Page representing the toys

Client Server

2

3

4

5

6

1

Request

Request

GET image HTTP/1.1

Set-Cookie: 12343

Response
HTTP/1.1 200 OK

Page representing the price

Response

Order confirmation

Cookie: 12343

GET image HTTP/1.1

Cookie: 12343

Information about the payment

A vendor file is created
with cookie: 12343

Cookie

Cookie

HTTP/1.1 200 OK

886 PART VI APPLICATION LAYER

Note that the proxy server acts as both server and client. When it receives a request
from a client for which it has a response, it acts as a server and sends the response to the
client. When it receives a request from a client for which it does not have a response, it
first acts as a client and sends a request to the target server. When the response has been
received, it acts again as a server and sends the response to the client.

Proxy Server Location
The proxy servers are normally located at the client site. This means that we can have a
hierarchy of proxy servers, as shown below:

1. A client computer can also be used as a proxy server, in a small capacity, that
stores responses to requests often invoked by the client.

2. In a company, a proxy server may be installed on the computer LAN to reduce the
load going out of and coming into the LAN.

3. An ISP with many customers can install a proxy server to reduce the load going
out of and coming into the ISP network.

Example 26.9

Figure 26.9 shows an example of a use of a proxy server in a local network, such as the network

on a campus or in a company. The proxy server is installed in the local network. When an HTTP
request is created by any of the clients (browsers), the request is first directed to the proxy server.
If the proxy server already has the corresponding web page, it sends the response to the client.
Otherwise, the proxy server acts as a client and sends the request to the web server in the Internet.
When the response is returned, the proxy server makes a copy and stores it in its cache before
sending it to the requesting client.

Cache Update
A very important question is how long a response should remain in the proxy server
before being deleted and replaced. Several different strategies are used for this purpose.
One solution is to store the list of sites whose information remains the same for a while.
For example, a news agency may change its news page every morning. This means that

Figure 26.9 Example of a proxy server

Web
server

Web
server

Web
server

Web
server

Client Client Client

 Proxy
server

WAN

Local Network

Internet

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 887

a proxy server can get the news early in the morning and keep it until the next day.
Another recommendation is to add some headers to show the last modification time of
the information. The proxy server can then use the information in this header to guess
how long the information would be valid.

HTTP Security

HTTP per se does not provide security. However, as we show in Chapter 32, HTTP can
be run over the Secure Socket Layer (SSL). In this case, HTTP is referred to as HTTPS.
HTTPS provides confidentiality, client and server authentication, and data integrity.

26.2 FTP
File Transfer Protocol (FTP) is the standard protocol provided by TCP/IP for copy-
ing a file from one host to another. Although transferring files from one system to
another seems simple and straightforward, some problems must be dealt with first.
For example, two systems may use different file name conventions. Two systems may
have different ways to represent data. Two systems may have different directory
structures. All of these problems have been solved by FTP in a very simple and ele-
gant approach. Although we can transfer files using HTTP, FTP is a better choice to
transfer large files or to transfer files using different formats. Figure 26.10 shows the

basic model of FTP. The client has three components: the user interface, the client
control process, and the client data transfer process. The server has two components:
the server control process and the server data transfer process. The control connec-
tion is made between the control processes. The data connection is made between the
data transfer processes.

Separation of commands and data transfer makes FTP more efficient. The control
connection uses very simple rules of communication. We need to transfer only a line of
command or a line of response at a time. The data connection, on the other hand, needs
more complex rules due to the variety of data types transferred.

Figure 26.10 FTP

Data
connection

Control
connection

User
interface

Control
process

Data transfer
process

Client

Server

Control
process

Data transfer
process

Local
file system

Remote
file system

888 PART VI APPLICATION LAYER

26.2.1 Two Connections
The two connections in FTP have different lifetimes. The control connection remains
connected during the entire interactive FTP session. The data connection is opened and
then closed for each file transfer activity. It opens each time commands that involve
transferring files are used, and it closes when the file is transferred. In other words,
when a user starts an FTP session, the control connection opens. While the control con-
nection is open, the data connection can be opened and closed multiple times if several
files are transferred. FTP uses two well-known TCP ports: port 21 is used for the con-
trol connection, and port 20 is used for the data connection.

26.2.2 Control Connection
For control communication, FTP uses the same approach as TELNET (discussed later).
It uses the NVT ASCII character set as used by TELNET. Communication is achieved
through commands and responses. This simple method is adequate for the control con-
nection because we send one command (or response) at a time. Each line is terminated
with a two-character (carriage return and line feed) end-of-line token.

During this control connection, commands are sent from the client to the server and
responses are sent from the server to the client. Commands, which are sent from the FTP
client control process, are in the form of ASCII uppercase, which may or may not be fol-
lowed by an argument. Some of the most common commands are shown in Table 26.4.

Table 26.4 Some FTP commands

Command Argument(s) Description
ABOR Abort the previous command
CDUP Change to parent directory
CWD Directory name Change to another directory
DELE File name Delete a file
LIST Directory name List subdirectories or files
MKD Directory name Create a new directory
PASS User password Password
PASV Server chooses a port
PORT Port identifier Client chooses a port
PWD Display name of current directory
QUIT Log out of the system
RETR File name(s) Retrieve files; files are transferred from server to client
RMD Directory name Delete a directory
RNFR File name (old) Identify a file to be renamed
RNTO File name (new) Rename the file
STOR File name(s) Store files; file(s) are transferred from client to server
STRU F, R, or P Define data organization (F: file, R: record, or P: page)
TYPE A, E, I Default file type (A: ASCII, E: EBCDIC, I: image)
USER User ID User information
MODE S, B, or C Define transmission mode (S: stream, B: block, or C:

compressed

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 889

Every FTP command generates at least one response. A response has two parts: a
three-digit number followed by text. The numeric part defines the code; the text part
defines needed parameters or further explanations. The first digit defines the status of
the command. The second digit defines the area in which the status applies. The third
digit provides additional information. Table 26.5 shows some common responses.

26.2.3 Data Connection
The data connection uses the well-known port 20 at the server site. However, the cre-
ation of a data connection is different from the control connection. The following
shows the steps:

1. The client, not the server, issues a passive open using an ephemeral port. This must be
done by the client because it is the client that issues the commands for transferring files.

2. Using the PORT command the client sends this port number to the server.

3. The server receives the port number and issues an active open using the well-
known port 20 and the received ephemeral port number.

Communication over Data Connection

The purpose and implementation of the data connection are different from those of the con-
trol connection. We want to transfer files through the data connection. The client must
define the type of file to be transferred, the structure of the data, and the transmission mode.
Before sending the file through the data connection, we prepare for transmission through
the control connection. The heterogeneity problem is resolved by defining three attributes
of communication: file type, data structure, and transmission mode.

File Type
FTP can transfer one of the following file types across the data connection: ASCII file,
EBCDIC file, or image file.

Data Structure
FTP can transfer a file across the data connection using one of the following interpreta-
tions of the structure of the data: file structure, record structure, or page structure. The
file structure format (used by default) has no structure. It is a continuous stream of
bytes. In the record structure, the file is divided into records. This can be used only with
text files. In the page structure, the file is divided into pages, with each page having a
page number and a page header. The pages can be stored and accessed randomly or
sequentially.

Table 26.5 Some responses in FTP

Code Description Code Description
125 Data connection open 250 Request file action OK
150 File status OK 331 User name OK; password is needed
200 Command OK 425 Cannot open data connection
220 Service ready 450 File action not taken; file not available
221 Service closing 452 Action aborted; insufficient storage
225 Data connection open 500 Syntax error; unrecognized command
226 Closing data connection 501 Syntax error in parameters or arguments
230 User login OK 530 User not logged in

890 PART VI APPLICATION LAYER

Transmission Mode
FTP can transfer a file across the data connection using one of the following three
transmission modes: stream mode, block mode, or compressed mode. The stream mode
is the default mode; data are delivered from FTP to TCP as a continuous stream of
bytes. In the block mode, data can be delivered from FTP to TCP in blocks. In this case,
each block is preceded by a 3-byte header. The first byte is called the block descriptor;
the next two bytes define the size of the block in bytes.

File Transfer
File transfer occurs over the data connection under the control of the commands sent
over the control connection. However, we should remember that file transfer in FTP
means one of three things: retrieving a file (server to client), storing a file (client to
server), and directory listing (server to client).

Example 26.10

Figure 26.11 shows an example of using FTP for retrieving a file. The figure shows only one file
to be transferred. The control connection remains open all the time, but the data connection is

Figure 26.11 Example 26.10

220 (Service ready)

USER forouzan

TYPE EBCDIC

STRU R

RETR/usr/user/forouzan/reports/file1

PASS xxxxxx

200 (OK)

200 (OK)

250 (OK)

QUIT

226 (Closing data connection)

221 (Service closing)

331 (User name OK. Password?)

PORT 1267

150 (Data connection opens shortly)

230 (User login OK)

Records of file

Records of file

1

2

3

4

5

6

7

8

9

10

11

12

21

13

19

20

22

Client

Control process (port 21)

Data tranfer
process (port 20)

Command

Response

Data transfer

Legend

Server

14

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 891

opened and closed repeatedly. We assume the file is transferred in six sections. After all records
have been transferred, the server control process announces that the file transfer is done. Since
the client control process has no file to retrieve, it issues the QUIT command, which causes the
service connection to be closed.

Example 26.11

The following shows an actual FTP session that lists the directories. The colored lines show the
responses from the server control connection; the black lines show the commands sent by the cli-
ent. The lines in white with black background show data transfer.

26.2.4 Security for FTP
The FTP protocol was designed when security was not a big issue. Although FTP requires
a password, the password is sent in plaintext (unencrypted), which means it can be inter-
cepted and used by an attacker. The data transfer connection also transfers data in plain-
text, which is insecure. To be secure, one can add a Secure Socket Layer between the FTP
application layer and the TCP layer. In this case FTP is called SSL-FTP. We also explore
some secure file transfer applications when we discuss SSH later in the chapter.

26.3 ELECTRONIC MAIL
Electronic mail (or e-mail) allows users to exchange messages. The nature of this
application, however, is different from other applications discussed so far. In an appli-
cation such as HTTP or FTP, the server program is running all the time, waiting for a
request from a client. When the request arrives, the server provides the service. There
is a request and there is a response. In the case of electronic mail, the situation is

$ ftp voyager.deanza.fhda.edu

Connected to voyager.deanza.fhda.edu.

220 (vsFTPd 1.2.1)
530 Please login with USER and PASS.
Name (voyager.deanza.fhda.edu:forouzan): forouzan

331 Please specify the password.
Password:*********

230 Login successful.
Remote system type is UNIX.

Using binary mode to transfer files.

227 Entering Passive Mode (153,18,17,11,238,169)
150 Here comes the directory listing.
drwxr-xr-x 2 3027 411 4096 Sep 24 2002 business

drwxr-xr-x 2 3027 411 4096 Sep 24 2002 personal

drwxr-xr-x 2 3027 411 4096 Sep 24 2002 school

226 Directory send OK.
ftp> quit

221 Goodbye.

892 PART VI APPLICATION LAYER

different. First, e-mail is considered a one-way transaction. When Alice sends an e-
mail to Bob, she may expect a response, but this is not a mandate. Bob may or may not
respond. If he does respond, it is another one-way transaction. Second, it is neither
feasible nor logical for Bob to run a server program and wait until someone sends an
e-mail to him. Bob may turn off his computer when he is not using it. This means that
the idea of client/server programming should be implemented in another way: using
some intermediate computers (servers). The users run only client programs when they
want and the intermediate servers apply the client/server paradigm, as we discuss in
the next section.

26.3.1 Architecture
To explain the architecture of e-mail, we give a common scenario, as shown in Fig-
ure 26.12. Another possibility is the case in which Alice or Bob is directly connected to
the corresponding mail server, in which LAN or WAN connection is not required, but this
variation in the scenario does not affect our discussion.

In the common scenario, the sender and the receiver of the e-mail, Alice and Bob
respectively, are connected via a LAN or a WAN to two mail servers. The administrator
has created one mailbox for each user where the received messages are stored. A mail-
box is part of a server hard drive, a special file with permission restrictions. Only the
owner of the mailbox has access to it. The administrator has also created a queue
(spool) to store messages waiting to be sent.

A simple e-mail from Alice to Bob takes nine different steps, as shown in the figure.
Alice and Bob use three different agents: a user agent (UA), a message transfer agent
(MTA), and a message access agent (MAA). When Alice needs to send a message to

Figure 26.12 Common scenario

UA: user agent
MTA: message transfer agent
MAA: message access agent

LAN or WAN LAN or WAN

Mail server Mail server

UA

Sp
oo

l

B
ox

es

Alice Bob

MTA
client

MTA
client

MTA
server

MTA
server

5 6

73

4

1 MAA
client 9

2 8

Internet

UA

MAA
server

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 893

Bob, she runs a UA program to prepare the message and send it to her mail server. The
mail server at her site uses a queue (spool) to store messages waiting to be sent. The mes-
sage, however, needs to be sent through the Internet from Alice’s site to Bob’s site using
an MTA. Here two message transfer agents are needed: one client and one server. Like
most client-server programs on the Internet, the server needs to run all the time because it
does not know when a client will ask for a connection. The client, on the other hand, can
be triggered by the system when there is a message in the queue to be sent. The user agent
at the Bob site allows Bob to read the received message. Bob later uses an MAA client to
retrieve the message from an MAA server running on the second server.

There are two important points we need to emphasize here. First, Bob cannot
bypass the mail server and use the MTA server directly. To use the MTA server
directly, Bob would need to run the MTA server all the time because he does not
know when a message will arrive. This implies that Bob must keep his computer on
all the time if he is connected to his system through a LAN. If he is connected
through a WAN, he must keep the connection up all the time. Neither of these situa-
tions is feasible today.

Second, note that Bob needs another pair of client-server programs: message
access programs. This is because an MTA client-server program is a push program: the
client pushes the message to the server. Bob needs a pull program. The client needs to
pull the message from the server. We discuss more about MAAs shortly.

User Agent

The first component of an electronic mail system is the user agent (UA). It provides
service to the user to make the process of sending and receiving a message easier. A
user agent is a software package (program) that composes, reads, replies to, and for-
wards messages. It also handles local mailboxes on the user computers.

There are two types of user agents: command-driven and GUI-based. Command-
driven user agents belong to the early days of electronic mail. They are still present as
the underlying user agents. A command-driven user agent normally accepts a one-
character command from the keyboard to perform its task. For example, a user can type
the character r, at the command prompt, to reply to the sender of the message, or type
the character R to reply to the sender and all recipients. Some examples of command-
driven user agents are mail, pine, and elm.

Modern user agents are GUI-based. They contain graphical user interface (GUI)
components that allow the user to interact with the software by using both the keyboard
and the mouse. They have graphical components such as icons, menu bars, and win-
dows that make the services easy to access. Some examples of GUI-based user agents
are Eudora and Outlook.

Sending Mail
To send mail, the user, through the UA, creates mail that looks very similar to postal
mail. It has an envelope and a message (see Figure 26.13). The envelope usually
contains the sender address, the receiver address, and other information. The message

The electronic mail system needs two UAs, two pairs of MTAs
(client and server), and a pair of MAAs (client and server).

894 PART VI APPLICATION LAYER

contains the header and the body. The header of the message defines the sender, the
receiver, the subject of the message, and some other information. The body of the mes-
sage contains the actual information to be read by the recipient.

Receiving Mail
The user agent is triggered by the user (or a timer). If a user has mail, the UA informs
the user with a notice. If the user is ready to read the mail, a list is displayed in which
each line contains a summary of the information about a particular message in the mail-
box. The summary usually includes the sender mail address, the subject, and the time
the mail was sent or received. The user can select any of the messages and display its
contents on the screen.

Addresses
To deliver mail, a mail handling system must use an addressing system with unique
addresses. In the Internet, the address consists of two parts: a local part and a domain
name, separated by an @ sign (see Figure 26.14).

Figure 26.13 Format of an e-mail

Figure 26.14 E-mail address

William Shane
1400 Los Gatos Street
San Louis, CA 91005

Behrouz Forouzan
20122 Olive Street
Bellbury, CA 91000

Behrouz Forouzan
20122 Olive Street
Bellbury, CA 91000
Jan. 10, 2011

Subject: Network

Dear Mr. Shane
We want to inform you that
our network is working pro-
perly after the last repair.

Yours truly,
Behrouz Forouzan

Mail From: forouzan@some.com
RCPT To: shanew@aNetwork.com

From: Behrouz Forouzan
To: William Shane
Date: 1/10/2011
Subject: Network

Postal mail Electronic mail

Dear Mr. Shane
We want to inform you that
our network is working pro-
perly after the last repair.

Yours truly,
Behrouz Forouzan

E
nv

el
op

e
M

es
sa

ge

H
ea

de
r

B
od

y

Mailbox address of the recipient

Local part

The domain name of the mail server

Domain name@

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 895

The local part defines the name of a special file, called the user mailbox, where all
the mail received for a user is stored for retrieval by the message access agent. The sec-
ond part of the address is the domain name. An organization usually selects one or
more hosts to receive and send e-mail; they are sometimes called mail servers or
exchangers. The domain name assigned to each mail exchanger either comes from
the DNS database or is a logical name (for example, the name of the organization).

Mailing List or Group List
Electronic mail allows one name, an alias, to represent several different e-mail
addresses; this is called a mailing list. Every time a message is to be sent, the system
checks the recipient’s name against the alias database; if there is a mailing list for the
defined alias, separate messages, one for each entry in the list, must be prepared and
handed to the MTA.

Message Transfer Agent: SMTP

Based on the common scenario (Figure 26.12), we can say that the e-mail is one of those
applications that needs three uses of client-server paradigms to accomplish its task. It is
important that we distinguish these three when we are dealing with e-mail. Figure 26.15
shows these three client-server applications. We refer to the first and the second as
Message Transfer Agents (MTAs), the third as Message Access Agent (MAA).

 The formal protocol that defines the MTA client and server in the Internet is called
Simple Mail Transfer Protocol (SMTP). SMTP is used two times, between the sender
and the sender’s mail server and between the two mail servers. As we will see shortly,
another protocol is needed between the mail server and the receiver. SMTP simply
defines how commands and responses must be sent back and forth.

Commands and Responses
SMTP uses commands and responses to transfer messages between an MTA client and
an MTA server. The command is from an MTA client to an MTA server; the response is
from an MTA server to the MTA client. Each command or reply is terminated by a two-
character (carriage return and line feed) end-of-line token.

Commands Commands are sent from the client to the server. The format of a command
is shown below:

Figure 26.15 Protocols used in electronic mail

Keyword: argument(s)

SMTP protocol SMTP protocol POP or IMAP protocol

Client

Alice:
e-mail sender

Bob:
e-mail receiver

ClientClientServer Server Server

LAN/WAN LAN/WAN

Mail server Mail server

MTA1 MTA2 MAA3

Internet

896 PART VI APPLICATION LAYER

It consists of a keyword followed by zero or more arguments. SMTP defines 14 com-
mands, listed in Table 26.6.

Responses Responses are sent from the server to the client. A response is a three-
digit code that may be followed by additional textual information. Table 26.7 shows the
most common response types.

Table 26.6 SMTP commands

Keyword Argument(s) Description
HELO Sender’s host name Identifies itself
MAIL FROM Sender of the message Identifies the sender of the message
RCPT TO Intended recipient Identifies the recipient of the message
DATA Body of the mail Sends the actual message
QUIT Terminates the message
RSET Aborts the current mail transaction
VRFY Name of recipient Verifies the address of the recipient
NOOP Checks the status of the recipient
TURN Switches the sender and the recipient
EXPN Mailing list Asks the recipient to expand the mailing list
HELP Command name Asks the recipient to send information about

the command sent as the argument
SEND FROM Intended recipient Specifies that the mail be delivered only to

the terminal of the recipient, and not to the
mailbox

SMOL FROM Intended recipient Specifies that the mail be delivered to the
terminal or the mailbox of the recipient

SMAL FROM Intended recipient Specifies that the mail be delivered to the
terminal and the mailbox of the recipient

Table 26.7 Responses

Code Description
Positive Completion Reply

211 System status or help reply
214 Help message
220 Service ready
221 Service closing transmission channel
250 Request command completed
251 User not local; the message will be forwarded

Positive Intermediate Reply
354 Start mail input

Transient Negative Completion Reply
421 Service not available
450 Mailbox not available
451 Command aborted: local error
452 Command aborted; insufficient storage

Permanent Negative Completion Reply
500 Syntax error; unrecognized command

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 897

Mail Transfer Phases
The process of transferring a mail message occurs in three phases: connection estab-
lishment, mail transfer, and connection termination.

Connection Establishment After a client has made a TCP connection to the well-
known port 25, the SMTP server starts the connection phase. This phase involves the
following three steps:

1. The server sends code 220 (service ready) to tell the client that it is ready to receive
mail. If the server is not ready, it sends code 421 (service not available).

2. The client sends the HELO message to identify itself, using its domain name
address. This step is necessary to inform the server of the domain name of the client.

3. The server responds with code 250 (request command completed) or some other
code depending on the situation.

Message Transfer After connection has been established between the SMTP client
and server, a single message between a sender and one or more recipients can be
exchanged. This phase involves eight steps. Steps 3 and 4 are repeated if there is more
than one recipient.

1. The client sends the MAIL FROM message to introduce the sender of the message.
It includes the mail address of the sender (mailbox and the domain name). This
step is needed to give the server the return mail address for returning errors and
reporting messages.

2. The server responds with code 250 or some other appropriate code.

3. The client sends the RCPT TO (recipient) message, which includes the mail address
of the recipient.

4. The server responds with code 250 or some other appropriate code.

5. The client sends the DATA message to initialize the message transfer.

6. The server responds with code 354 (start mail input) or some other appropriate
message.

7. The client sends the contents of the message in consecutive lines. Each line is ter-
minated by a two-character end-of-line token (carriage return and line feed). The
message is terminated by a line containing just one period.

8. The server responds with code 250 (OK) or some other appropriate code.

501 Syntax error in parameters or arguments
502 Command not implemented
503 Bad sequence of commands
504 Command temporarily not implemented
550 Command is not executed; mailbox unavailable
551 User not local
552 Requested action aborted; exceeded storage location
553 Requested action not taken; mailbox name not allowed
554 Transaction failed

Table 26.7 Responses (continued)

Code Description

898 PART VI APPLICATION LAYER

Connection Termination After the message is transferred successfully, the client ter-
minates the connection. This phase involves two steps.

1. The client sends the QUIT command.

2. The server responds with code 221 or some other appropriate code.

Example 26.12

To show the three mail transfer phases, we show all of the steps described above using the
information depicted in Figure 26.16. In the figure, we have separated the messages related to
the envelope, header, and body in the data transfer section. Note that the steps in this figure are
repeated two times in each e-mail transfer: once from the e-mail sender to the local mail server
and once from the local mail server to the remote mail server. The local mail server, after
receiving the whole e-mail message, may spool it and send it to the remote mail server at
another time.

Figure 26.16 Example 26.12

HELO: some.com

SMTP serverSMTP client

Connection
establishment

Envelope

Body

Header

Data
transfer

Connection
termination

250 OK

220 service ready

MAIL FROM: forouzan@some.com

RCPT TO: william@aNetwork.com

Subject: Network

Dear Mr. Shane

We want to inform you that

From: Behrouz Forouzan

To: William Shane

DATA

250 OK

250 OK

250 OK

354 start mail input

Blank line

(A dot)

QUIT
221 service closed

Date: 1/10/2011

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 899

Message Access Agent: POP and IMAP

The first and second stages of mail delivery use SMTP. However, SMTP is not involved
in the third stage because SMTP is a push protocol; it pushes the message from the cli-
ent to the server. In other words, the direction of the bulk data (messages) is from the
client to the server. On the other hand, the third stage needs a pull protocol; the client
must pull messages from the server. The direction of the bulk data is from the server to
the client. The third stage uses a message access agent.

Currently two message access protocols are available: Post Office Protocol, version 3
(POP3) and Internet Mail Access Protocol, version 4 (IMAP4). Figure 26.15 shows the
position of these two protocols.

POP3
Post Office Protocol, version 3 (POP3) is simple but limited in functionality. The cli-
ent POP3 software is installed on the recipient computer; the server POP3 software is
installed on the mail server.

Mail access starts with the client when the user needs to download its e-mail from the
mailbox on the mail server. The client opens a connection to the server on TCP port 110.

It then sends its user name and password to access the mailbox. The user can then
list and retrieve the mail messages, one by one. Figure 26.17 shows an example of
downloading using POP3. Unlike other figures in this chapter, we have put the client on
the right hand side because the e-mail receiver (Bob) is running the client process to
pull messages from the remote mail server.

POP3 has two modes: the delete mode and the keep mode. In the delete mode, the
mail is deleted from the mailbox after each retrieval. In the keep mode, the mail
remains in the mailbox after retrieval. The delete mode is normally used when the user

Figure 26.17 POP3

POP client:
 e-mail receiver (Bob)

e-mail 1

retrieve 1

e-mail numbers and their sizes

OK

list

OK

password

user name

retrieve N

e-mail N

POP server:
remote mail server

Messages are pulled

900 PART VI APPLICATION LAYER

is working at her permanent computer and can save and organize the received mail after
reading or replying. The keep mode is normally used when the user accesses her mail
away from her primary computer (for example, from a laptop). The mail is read but
kept in the system for later retrieval and organizing.

IMAP4
Another mail access protocol is Internet Mail Access Protocol, version 4 (IMAP4).
IMAP4 is similar to POP3, but it has more features; IMAP4 is more powerful and more
complex.

POP3 is deficient in several ways. It does not allow the user to organize her mail on
the server; the user cannot have different folders on the server. In addition, POP3 does
not allow the user to partially check the contents of the mail before downloading.
IMAP4 provides the following extra functions:

❑ A user can check the e-mail header prior to downloading.

❑ A user can search the contents of the e-mail for a specific string of characters prior
to downloading.

❑ A user can partially download e-mail. This is especially useful if bandwidth is lim-
ited and the e-mail contains multimedia with high bandwidth requirements.

❑ A user can create, delete, or rename mailboxes on the mail server.

❑ A user can create a hierarchy of mailboxes in a folder for e-mail storage.

MIME

Electronic mail has a simple structure. Its simplicity, however, comes with a price. It
can send messages only in NVT 7-bit ASCII format. In other words, it has some
limitations. It cannot be used for languages other than English (such as French,
German, Hebrew, Russian, Chinese, and Japanese). Also, it cannot be used to send
binary files or video or audio data.

Multipurpose Internet Mail Extensions (MIME) is a supplementary protocol that
allows non-ASCII data to be sent through e-mail. MIME transforms non-ASCII data at
the sender site to NVT ASCII data and delivers it to the client MTA to be sent through the
Internet. The message at the receiving site is transformed back to the original data.

We can think of MIME as a set of software functions that transforms non-ASCII
data to ASCII data and vice versa, as shown in Figure 26.18.

Figure 26.18 MIME

MIME MIME

7-bit NVT
ASCII

Non-ASCII
code

UA

Alice Bob

Non-ASCII
code

7-bit NVT
ASCII

E-mail System

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 901

MIME Headers
MIME defines five headers, as shown in Figure 26.19, which can be added to the origi-
nal e-mail header section to define the transformation parameters:

MIME-Version This header defines the version of MIME used. The current version
is 1.1.

Content-Type This header defines the type of data used in the body of the message.
The content type and the content subtype are separated by a slash. Depending on the
subtype, the header may contain other parameters. MIME allows seven different types
of data, listed in Table 26.8.

Content-Transfer-Encoding This header defines the method used to encode the mes-
sages into 0s and 1s for transport. The five types of encoding methods are listed in
Table 26.9.

Figure 26.19 MIME header

Table 26.8 Data types and subtypes in MIME

Type Subtype Description

Text
Plain Unformatted
HTML HTML format (see Appendix C)

Multipart

Mixed Body contains ordered parts of different data types
Parallel Same as above, but no order
Digest Similar to Mixed, but the default is message/RFC822
Alternative Parts are different versions of the same message

Message

RFC822 Body is an encapsulated message
Partial Body is a fragment of a bigger message
External-Body Body is a reference to another message

Image
JPEG Image is in JPEG format
GIF Image is in GIF format

Video MPEG Video is in MPEG format
Audio Basic Single channel encoding of voice at 8 KHz

Application
PostScript Adobe PostScript
Octet-stream General binary data (eight-bit bytes)

MIME-Version: 1.1
Content-Type: type/subtype
Content-Transfer-Encoding: encoding type
Content-ID: message ID
Content-Description: textual explanation of nontextual contents

E-mail header

E-mail body

MIME headers

902 PART VI APPLICATION LAYER

The last two encoding methods are interesting. In the Base64 encoding, data, as a
string of bits, is first divided into 6-bit chunks as shown in Figure 26.20.

Each 6-bit section is then converted into an ASCII character according to Table 26.10.

Base64 is a redundant encoding scheme; that is, every six bits become one ASCII
character and are sent as eight bits. We have an overhead of 25 percent. If the data
consist mostly of ASCII characters with a small non-ASCII portion, we can use
quoted-printable encoding. In quoted-printable, if a character is ASCII, it is sent as is.

Table 26.9 Methods for Content-Transfer-Encoding

Type Description
7-bit NVT ASCII characters with each line less than 1000 characters
8-bit Non-ASCII characters with each line less than 1000 characters
Binary Non-ASCII characters with unlimited-length lines
Base64 6-bit blocks of data encoded into 8-bit ASCII characters
Quoted-printable Non-ASCII characters encoded as an equal sign plus an ASCII code

Figure 26.20 Base64 conversion

Table 26.10 Base64 converting table

Value Code Value Code Value Code Value Code Value Code Value Code
0 A 11 L 22 W 33 h 44 s 55 3
1 B 12 M 23 X 34 i 45 t 56 4
2 C 13 N 24 Y 35 j 46 u 57 5
3 D 14 O 25 Z 36 k 47 v 58 6
4 E 15 P 26 a 37 l 48 w 59 7
5 F 16 Q 27 b 38 m 49 x 60 8
6 G 17 R 28 c 39 n 50 y 61 9
7 H 18 S 29 d 40 o 51 z 62 +
8 I 19 T 30 e 41 p 52 0 63 /
9 J 20 U 31 f 42 q 53 1

10 K 21 V 32 g 43 r 54 2

11001100

z

51 578 4

10000001

I E

00111001

110011 001000 000100 111001

5

Non-ASCII data
A set of bits

Combine and split

Four 6-bit chunks

Four characters
ASCII data

Base64 converter

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 903

If a character is not ASCII, it is sent as three characters. The first character is the equal
sign (=). The next two characters are the hexadecimal representations of the byte.
Figure 26.21 shows an example. In the example, the third character is a non-ASCII
because it starts with bit 1. It is interpreted as two hexadecimal digits (9D16), which is
replaced by three ASCII characters (=, 9, and D).

Content-ID This header uniquely identifies the whole message in a multiple message
environment.

Content-Description This header defines whether the body is image, audio, or video.

26.3.2 Web-Based Mail
E-mail is such a common application that some websites today provide this service to
anyone who accesses the site. Three common sites are Hotmail, Yahoo, and Google
mail. The idea is very simple. Figure 26.22 shows two cases:

Case I

In the first case, Alice, the sender, uses a traditional mail server; Bob, the receiver, has an
account on a web-based server. Mail transfer from Alice’s browser to her mail server is
done through SMTP. The transfer of the message from the sending mail server to the
receiving mail server is still through SMTP. However, the message from the receiving
server (the web server) to Bob’s browser is done through HTTP. In other words, instead of
using POP3 or IMAP4, HTTP is normally used. When Bob needs to retrieve his e-mails,
he sends a request HTTP message to the website (Hotmail, for example). The website
sends a form to be filled in by Bob, which includes the log-in name and the password. If
the log-in name and password match, the list of e-mails is transferred from the web server
to Bob’s browser in HTML format. Now Bob can browse through his received e-mails
and then, using more HTTP transactions, can get his e-mails one by one.

Case II

In the second case, both Alice and Bob use web servers, but not necessarily the same
server. Alice sends the message to the web server using HTTP transactions. Alice sends
an HTTP request message to her web server using the name and address of Bob’s mail-
box as the URL. The server at the Alice site passes the message to the SMTP client and

Figure 26.21 Quoted-printable

01001100
L

1001 1101
9D

00111001
9

Mixed ASCII and
non-ASCII data

Non-ASCII

ASCII data

00100110
&

01001011
K

00100110
&

01001011
K

01001100
L

00111001
9

00111101
=

01000100
D

00111001
9

Quoted-printable

904 PART VI APPLICATION LAYER

sends it to the server at the Bob site using SMTP protocol. Bob receives the message
using HTTP transactions. However, the message from the server at the Alice site to the
server at the Bob site still takes place using SMTP protocol.

26.3.3 E-Mail Security
The protocol discussed in this chapter does not provide any security provisions per se.
However, e-mail exchanges can be secured using two application-layer securities
designed in particular for e-mail systems. Two of these protocols, Pretty Good Privacy
(PGP) and Secure/Multipurpose Internet Mail Extensions (S/MIME), are discussed in
Chapter 32 after we have discussed basic network security.

26.4 TELNET
A server program can provide a specific service to its corresponding client program. For
example, the FTP server is designed to let the FTP client store or retrieve files on the
server site. However, it is impossible to have a client/server pair for each type of service
we need; the number of servers soon becomes intractable. The idea is not scalable.
Another solution is to have a specific client/server program for a set of common scenar-
ios, but to have some generic client/server programs that allow a user on the client site to
log into the computer at the server site and use the services available there. For example,
if a student needs to use the Java compiler program at her university lab, there is no need
for a Java compiler client and a Java compiler server. The student can use a client

Figure 26.22 Web-based e-mail, cases I and II

HTTP
transactions

Alice

Alice site Bob site

Bob

SMTP
client

SMTP
server

SMTP
server

SMTP
client

32 4

1

Internet

HTTP
transactions

Case 1: Only receiver uses HTTP

HTTP
transactions

Alice

Alice site Bob site

Bob

HTTP
client

SMTP
server

SMTP
client

HTTP
server

HTTP
client

21 3

Internet

Case 2: Both sender and receiver use HTTP

HTTP
server

HTTP
client

HTTP
server

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 905

logging program to log into the university server and use the compiler program at the
university. We refer to these generic client/server pairs as remote logging applications.

One of the original remote logging protocols is TELNET, which is an abbreviation
for TErminaL NETwork. Although TELNET requires a logging name and password, it
is vulnerable to hacking because it sends all data including the password in plaintext
(not encrypted). A hacker can eavesdrop and obtain the logging name and password.
Because of this security issue, the use of TELNET has diminished in favor of another
protocol, Secure Shell (SSH), which we describe in the next section. Although
TELNET is almost replaced by SSH, we briefly discuss TELNET here for two reasons:

1. The simple plaintext architecture of TELNET allows us to explain the issues and
challenges related to the concept of remote logging, which is also used in SSH
when it serves as a remote logging protocol.

2. Network administrators often use TELNET for diagnostic and debugging purposes.

26.4.1 Local versus Remote Logging
We first discuss the concept of local and remote logging as shown in Figure 26.23.

When a user logs into a local system, it is called local logging. As a user types at a
terminal or at a workstation running a terminal emulator, the keystrokes are accepted by
the terminal driver. The terminal driver passes the characters to the operating system.
The operating system, in turn, interprets the combination of characters and invokes the
desired application program or utility.

Figure 26.23 Local versus remote logging

a. Local logging

b. Remote logging

Application programs

Operating
system

Terminal

Terminal driver

Operating
system

Operating
system

IP
TCP

Data-link
Physical

IP
TCP

Data-link
Physical

Internet

Terminal
Pseudoterminal

driver
Terminal

driver

TELNET
server

TELNET
client

Application programs

906 PART VI APPLICATION LAYER

However, when a user wants to access an application program or utility located on
a remote machine, she performs remote logging. Here the TELNET client and server
programs come into use. The user sends the keystrokes to the terminal driver where the
local operating system accepts the characters but does not interpret them. The charac-
ters are sent to the TELNET client, which transforms the characters into a universal
character set called Network Virtual Terminal (NVT) characters (discussed below) and
delivers them to the local TCP/IP stack.

The commands or text, in NVT form, travel through the Internet and arrive at the
TCP/IP stack at the remote machine. Here the characters are delivered to the operating
system and passed to the TELNET server, which changes the characters to the
corresponding characters understandable by the remote computer. However, the charac-
ters cannot be passed directly to the operating system because the remote operating sys-
tem is not designed to receive characters from a TELNET server; it is designed to receive
characters from a terminal driver. The solution is to add a piece of software called
a pseudoterminal driver, which pretends that the characters are coming from a terminal.
The operating system then passes the characters to the appropriate application program.

Network Virtual Terminal (NVT)

The mechanism to access a remote computer is complex. This is because every com-
puter and its operating system accepts a special combination of characters as tokens.
For example, the end-of-file token in a computer running the DOS operating system is
Ctrl+z, while the UNIX operating system recognizes Ctrl+d.

We are dealing with heterogeneous systems. If we want to access any remote com-
puter in the world, we must first know what type of computer we will be connected to,
and we must also install the specific terminal emulator used by that computer. TELNET
solves this problem by defining a universal interface called the Network Virtual
Terminal (NVT) character set. Via this interface, the client TELNET translates charac-
ters (data or commands) that come from the local terminal into NVT form and delivers
them to the network. The server TELNET, on the other hand, translates data and com-
mands from NVT form into the form acceptable by the remote computer. Figure 26.24
shows the concept.

Figure 26.24 Concept of NVT

TELNET
client

TELNET
serverTerminal

Remote computer
character set

NVT character setLocal computer
character set

Pseudoterminal
driver

Internet

0

a. Data character

1

b. Control character
NVT character format

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 907

NVT uses two sets of characters, one for data and one for control. Both are 8-bit
bytes as shown in Figure 26.24. For data, NVT normally uses what is called NVT
ASCII. This is an 8-bit character set in which the seven lowest order bits are the same as
US ASCII and the highest order bit is 0. To send control characters between computers
(from client to server or vice versa), NVT uses an 8-bit character set in which the high-
est order bit is set to 1.

Options

TELNET lets the client and server negotiate options before or during the use of the ser-
vice. Options are extra features available to a user with a more sophisticated terminal.
Users with simpler terminals can use default features.

User Interface

The operating system (UNIX, for example) defines an interface with user-friendly com-
mands. An example of such a set of commands can be found in Table 26.11.

26.5 SECURE SHELL (SSH)
Although Secure Shell (SSH) is a secure application program that can be used today
for several purposes such as remote logging and file transfer, it was originally designed
to replace TELNET. There are two versions of SSH: SSH-1 and SSH-2, which are
totally incompatible. The first version, SSH-1, is now deprecated because of security
flaws in it. In this section, we discuss only SSH-2.

26.5.1 Components
SSH is an application-layer protocol with three components, as shown in Figure 26.25.

SSH Transport-Layer Protocol (SSH-TRANS)

Since TCP is not a secured transport-layer protocol, SSH first uses a protocol that cre-
ates a secured channel on top of the TCP. This new layer is an independent protocol
referred to as SSH-TRANS. When the procedure implementing this protocol is called,
the client and server first use the TCP protocol to establish an insecure connection.
Then they exchange several security parameters to establish a secure channel on top of
the TCP. We discuss transport-layer security in Chapter 32, but here we briefly list the
services provided by this protocol:

1. Privacy or confidentiality of the message exchanged

2. Data integrity, which means that it is guaranteed that the messages exchanged
between the client and server are not changed by an intruder

Table 26.11 Examples of interface commands

Command Meaning Command Meaning
open Connect to a remote computer set Set the operating parameters
close Close the connection status Display the status information
display Show the operating parameters send Send special characters
mode Change to line or character mode quit Exit TELNET

908 PART VI APPLICATION LAYER

3. Server authentication, which means that the client is now sure that the server is the
one that it claims to be

4. Compression of the messages, which improves the efficiency of the system and
makes attack more difficult

SSH Authentication Protocol (SSH-AUTH)

After a secure channel is established between the client and the server and the server
is authenticated for the client, SSH can call another procedure that can authenticate
the client for the server. The client authentication process in SSH is very similar to
what is done in Secure Socket Layer (SSL), which we discuss in Chapter 32. This
layer defines a number of authentication tools similar to the ones used in SSL.
Authentication starts with the client, which sends a request message to the server.
The request includes the user name, server name, the method of authentication, and
the required data. The server responds with either a success message, which con-
firms that the client is authenticated, or a failed message, which means that the pro-
cess needs to be repeated with a new request message.

SSH Connection Protocol (SSH-CONN)

After the secured channel is established and both server and client are authenticated for
each other, SSH can call a piece of software that implements the third protocol, SSH-
CONN. One of the services provided by the SSH-CONN protocol is multiplexing.
SSH-CONN takes the secure channel established by the two previous protocols and lets
the client create multiple logical channels over it. Each channel can be used for a differ-
ent purpose, such as remote logging, file transfer, and so on.

26.5.2 Applications
Although SSH is often thought of as a replacement for TELNET, SSH is, in fact, a
general-purpose protocol that provides a secure connection between a client and server.

SSH for Remote Logging

Several free and commercial applications use SSH for remote logging. Among them,
we can mention PuTTy, by Simon Tatham, which is a client SSH program that can be

Figure 26.25 Components of SSH

SSH-CONN

Application

SSH-AUTH

SSH-TRANS

TCP

SSH

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 909

used for remote logging. Another application program is Tectia, which can be used on
several platforms.

SSH for File Transfer

One of the application programs that is built on top of SSH for file transfer is the Secure
File Transfer Program (sftp). The sftp application program uses one of the channels pro-
vided by the SSH to transfer files. Another common application is called Secure Copy
(scp). This application uses the same format as the UNIX copy command, cp, to copy files.

Port Forwarding

One of the interesting services provided by the SSH protocol is port forwarding. We
can use the secured channels available in SSH to access an application program that
does not provide security services. Applications such as TELNET and Simple Mail
Transfer Protocol (SMTP), which are discussed above, can use the services of the SSH
port forwarding mechanism. The SSH port forwarding mechanism creates a tunnel
through which the messages belonging to other protocols can travel. For this reason,
this mechanism is sometimes referred to as SSH tunneling. Figure 26.26 shows the
concept of port forwarding for securing the FTP application.

The FTP client can use the SSH client on the local site to make a secure connection
with the SSH server on the remote site. Any request from the FTP client to the FTP
server is carried through the tunnel provided by the SSH client and server. Any
response from the FTP server to the FTP client is also carried through the tunnel pro-
vided by the SSH client and server.

Format of the SSH Packets

Figure 26.27 shows the format of packets used by the SSH protocols.

Figure 26.26 Port forwarding

Figure 26.27 SSH packet format

Secure
connection

Local site Remote site

Tunnel

FTP
client

SSH
client

SSH
server

FTP
server

Encrypted for confidentiality

Length Padding Data

4 bytes4 bytes 1–8 bytes 1 Variable

CRCType

910 PART VI APPLICATION LAYER

The length field defines the length of the packet but does not include the padding.
One to eight bytes of padding is added to the packet to make the attack on the security
provision more difficult. The cyclic redundancy check (CRC) field is used for error
detection. The type field designates the type of the packet used in different SSH proto-
cols. The data field is the data transferred by the packet in different protocols.

26.6 DOMAIN NAME SYSTEM (DNS)
The last client-server application program we discuss has been designed to help other
application programs. To identify an entity, TCP/IP protocols use the IP address, which
uniquely identifies the connection of a host to the Internet. However, people prefer to
use names instead of numeric addresses. Therefore, the Internet needs to have a direc-
tory system that can map a name to an address. This is analogous to the telephone net-
work. A telephone network is designed to use telephone numbers, not names. People
can either keep a private file to map a name to the corresponding telephone number or
can call the telephone directory to do so. We discuss how this directory system in the
Internet can map names to IP addresses.

Since the Internet is so huge today, a central directory system cannot hold all the
mapping. In addition, if the central computer fails, the whole communication network
will collapse. A better solution is to distribute the information among many computers
in the world. In this method, the host that needs mapping can contact the closest com-
puter holding the needed information. This method is used by the Domain Name
System (DNS). We first discuss the concepts and ideas behind the DNS. We then
describe the DNS protocol itself.

Figure 26.28 shows how TCP/IP uses a DNS client and a DNS server to map a
name to an address. A user wants to use a file transfer client to access the correspond-
ing file transfer server running on a remote host. The user knows only the file transfer

Figure 26.28 Purpose of DNS

File
transfer
client

DNS
client

DNS
server

Application
layer

Network layer

User

Host
name

Host
name

IP
address

IP address

Query

Response

1

2 3

45

6

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 911

server name, such as afilesource.com. However, the TCP/IP suite needs the IP address
of the file transfer server to make the connection. The following six steps map the host
name to an IP address:

1. The user passes the host name to the file transfer client.

2. The file transfer client passes the host name to the DNS client.

3. Each computer, after being booted, knows the address of one DNS server. The
DNS client sends a message to a DNS server with a query that gives the file trans-
fer server name using the known IP address of the DNS server.

4. The DNS server responds with the IP address of the desired file transfer server.

5. The DNS server passes the IP address to the file transfer client.

6. The file transfer client now uses the received IP address to access the file transfer
server.

Note that the purpose of accessing the Internet is to make a connection between the file
transfer client and server, but before this can happen, another connection needs to be
made between the DNS client and DNS server. In other words, we need at least two
connections in this case. The first is for mapping the name to an IP address; the second
is for transferring files. We will see later that the mapping may need more than one
connection.

26.6.1 Name Space
To be unambiguous, the names assigned to machines must be carefully selected from
a name space with complete control over the binding between the names and IP
addresses. In other words, the names must be unique because the addresses are
unique. A name space that maps each address to a unique name can be organized in
two ways: flat or hierarchical. In a flat name space, a name is assigned to an address.
A name in this space is a sequence of characters without structure. The names may or
may not have a common section; if they do, it has no meaning. The main disadvan-
tage of a flat name space is that it cannot be used in a large system such as the Inter-
net because it must be centrally controlled to avoid ambiguity and duplication. In a
hierarchical name space, each name is made of several parts. The first part can define
the nature of the organization, the second part can define the name of an organiza-
tion, the third part can define departments in the organization, and so on. In this case,
the authority to assign and control the name spaces can be decentralized. A central
authority can assign the part of the name that defines the nature of the organization
and the name of the organization. The responsibility for the rest of the name can be
given to the organization itself. The organization can add suffixes (or prefixes) to the
name to define its host or resources. The management of the organization need not
worry that the prefix chosen for a host is taken by another organization because, even
if part of an address is the same, the whole address is different. For example, assume
two organizations call one of their computers caesar. The first organization is given a
name by the central authority, such as first.com, the second organization is given the
name second.com. When each of these organizations adds the name caesar to the
name they have already been given, the end result is two distinguishable names:
ceasar.first.com and ceasar.second.com. The names are unique.

912 PART VI APPLICATION LAYER

Domain Name Space

To have a hierarchical name space, a domain name space was designed. In this design
the names are defined in an inverted-tree structure with the root at the top. The tree
can have only 128 levels: level 0 (root) to level 127 (see Figure 26.29).

Label
Each node in the tree has a label, which is a string with a maximum of 63 characters.
The root label is a null string (empty string). DNS requires that children of a node
(nodes that branch from the same node) have different labels, which guarantees the
uniqueness of the domain names.

Domain Name
Each node in the tree has a domain name. A full domain name is a sequence of labels
separated by dots (.). The domain names are always read from the node up to the root.
The last label is the label of the root (null). This means that a full domain name always
ends in a null label, which means the last character is a dot because the null string is
nothing. Figure 26.30 shows some domain names.

If a label is terminated by a null string, it is called a fully qualified domain name
(FQDN). The name must end with a null label, but because null means nothing, the
label ends with a dot. If a label is not terminated by a null string, it is called a partially
qualified domain name (PQDN). A PQDN starts from a node, but it does not reach
the root. It is used when the name to be resolved belongs to the same site as the client.
Here the resolver can supply the missing part, called the suffix, to create an FQDN.

Domain

A domain is a subtree of the domain name space. The name of the domain is the name
of the node at the top of the subtree. Figure 26.31 shows some domains. Note that a
domain may itself be divided into domains.

Distribution of Name Space

The information contained in the domain name space must be stored. However, it
is very inefficient and also not reliable to have just one computer store such a huge

Figure 26.29 Domain name space

Root

Top-level nodes

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 913

amount of information. It is inefficient because responding to requests from all over the
world places a heavy load on the system. It is not reliable because any failure makes the
data inaccessible.

Hierarchy of Name Servers
The solution to these problems is to distribute the information among many computers
called DNS servers. One way to do this is to divide the whole space into many domains
based on the first level. In other words, we let the root stand alone and create as many
domains (subtrees) as there are first-level nodes. Because a domain created this way
could be very large, DNS allows domains to be divided further into smaller domains
(subdomains). Each server can be responsible (authoritative) for either a large or small
domain. In other words, we have a hierarchy of servers in the same way that we have a
hierarchy of names (see Figure 26.32).

Figure 26.30 Domain names and labels

Figure 26.31 Domains

edu

Domain name

Domain name

Domain name

Domain
name

aComputer.bDept.topUniversity.edu.

bDept.topUniversity.edu.

topUniversity.edu.

edu.

Root

bDept

topUniversity

aComputer

Label

Label

Label

Label

com
edu

Domain

Domain
Domain

Root

Domain

Domain

914 PART VI APPLICATION LAYER

Zone

Since the complete domain name hierarchy cannot be stored on a single server, it is
divided among many servers. What a server is responsible for or has authority over is
called a zone. We can define a zone as a contiguous part of the entire tree. If a server
accepts responsibility for a domain and does not divide the domain into smaller
domains, the “domain” and the “zone” refer to the same thing. The server makes a data-
base called a zone file and keeps all the information for every node under that domain.
However, if a server divides its domain into subdomains and delegates part of its
authority to other servers, “domain” and “zone” refer to different things. The informa-
tion about the nodes in the subdomains is stored in the servers at the lower levels, with
the original server keeping some sort of reference to these lower-level servers. Of
course, the original server does not free itself from responsibility totally. It still has a
zone, but the detailed information is kept by the lower-level servers (see Figure 26.33).

Root Server

A root server is a server whose zone consists of the whole tree. A root server usually
does not store any information about domains but delegates its authority to other servers,
keeping references to those servers. There are several root servers, each covering the
whole domain name space. The root servers are distributed all around the world.

Figure 26.32 Hierarchy of name servers

Figure 26.33 Zone

Root
server

fhda.edu bk.edu mcgraw.com irwin.com

edu
server

com
server

us
server

com

mhhe

Root

Zone

Domain

Zone and
domain

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 915

Primary and Secondary Servers
DNS defines two types of servers: primary and secondary. A primary server is a server
that stores a file about the zone for which it is an authority. It is responsible for creating,
maintaining, and updating the zone file. It stores the zone file on a local disk.

A secondary server is a server that transfers the complete information about a zone
from another server (primary or secondary) and stores the file on its local disk. The sec-
ondary server neither creates nor updates the zone files. If updating is required, it must
be done by the primary server, which sends the updated version to the secondary.

The primary and secondary servers are both authoritative for the zones they serve.
The idea is not to put the secondary server at a lower level of authority but to create
redundancy for the data so that if one server fails, the other can continue serving clients.
Note also that a server can be a primary server for a specific zone and a secondary server
for another zone. Therefore, when we refer to a server as a primary or secondary server,
we should be careful about which zone we refer to.

26.6.2 DNS in the Internet
DNS is a protocol that can be used in different platforms. In the Internet, the domain
name space (tree) was originally divided into three different sections: generic domains,
country domains, and the inverse domains. However, due to the rapid growth of the
Internet, it became extremely difficult to keep track of the inverse domains, which
could be used to find the name of a host when given the IP address. The inverse domains
are now deprecated (see RFC 3425). We, therefore, concentrate on the first two.

Generic Domains

The generic domains define registered hosts according to their generic behavior. Each
node in the tree defines a domain, which is an index to the domain name space database
(see Figure 26.34).

A primary server loads all information from the disk file;
the secondary server loads all information from the primary server.

Figure 26.34 Generic domains

uci

aero biz com coop edu gov info int mil mus-
eum name net org pro

Generic domains

Root level

uci.edu. Index to addresses

916 PART VI APPLICATION LAYER

Looking at the tree, we see that the first level in the generic domains section allows
14 possible labels. These labels describe the organization types as listed in Table 26.12.

Country Domains

The country domains section uses two-character country abbreviations (e.g., us for
United States). Second labels can be organizational, or they can be more specific
national designations. The United States, for example, uses state abbreviations as a sub-
division of us (e.g., ca.us.). Figure 26.35 shows the country domains section. The
address uci.ca.us. can be translated to University of California, Irvine, in the state of
California in the United States.

26.6.3 Resolution
Mapping a name to an address is called name-address resolution. DNS is designed as a
client-server application. A host that needs to map an address to a name or a name to an
address calls a DNS client called a resolver. The resolver accesses the closest DNS
server with a mapping request. If the server has the information, it satisfies the resolver;
otherwise, it either refers the resolver to other servers or asks other servers to provide
the information. After the resolver receives the mapping, it interprets the response to
see if it is a real resolution or an error, and finally delivers the result to the process that
requested it. A resolution can be either recursive or iterative.

Table 26.12 Generic domain labels

Label Description Label Description
aero Airlines and aerospace int International organizations
biz Businesses or firms mil Military groups
com Commercial organizations museum Museums
coop Cooperative organizations name Personal names (individuals)
edu Educational institutions net Network support centers
gov Government institutions org Nonprofit organizations
info Information service providers pro Professional organizations

Figure 26.35 Country domains

ae fr us

Country
domains

Root level

Index to addresses

ca

uci

zw

uci.ca.us.

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 917

Recursive Resolution

Figure 26.36 shows a simple example of a recursive resolution. We assume that an
application program running on a host named some.anet.com needs to find the IP
address of another host named engineering.mcgraw-hill.com to send a message to.
The source host is connected to the Anet ISP; the destination host is connected to the
McGraw-Hill network.

The application program on the source host calls the DNS resolver (client) to
find the IP address of the destination host. The resolver, which does not know this
address, sends the query to the local DNS server (for example, dns.anet.com) running
at the Anet ISP site (event 1). We assume that this server does not know the IP
address of the destination host either. It sends the query to a root DNS server, whose
IP address is supposed to be known to this local DNS server (event 2). Root servers
do not normally keep the mapping between names and IP addresses, but a root server
should at least know about one server at each top level domain (in this case, a server
responsible for com domain). The query is sent to this top-level-domain server (event 3).
We assume that this server does not know the name-address mapping of this specific
destination, but it knows the IP address of the local DNS server in the McGraw-Hill
company (for example, dns.mcgraw-hill.com). The query is sent to this server (event 4),
which knows the IP address of the destination host. The IP address is now sent back
to the top-level DNS server (event 5), then back to the root server (event 6), then back
to the ISP DNS server, which may cache it for the future queries (event 7), and finally
back to the source host (event 8).

Iterative Resolution

In iterative resolution, each server that does not know the mapping sends the IP
address of the next server back to the one that requested it. Figure 26.37 shows the
flow of information in an iterative resolution in the same scenario as the one depicted
in Figure 26.36. Normally the iterative resolution takes place between two local
servers; the original resolver gets the final answer from the local server. Note that
the messages shown by events 2, 4, and 6 contain the same query. However, the mes-
sage shown by event 3 contains the IP address of the top-level domain server, the
message shown by event 5 contains the IP address of the McGraw-Hill local DNS

Figure 26.36 Recursive resolution

McGraw-Hill Network

Source: some.anet.com

Source Destination

Destination: engineering.mcgraw-hill.com

dns.anet.com

Root
server

Local
server

Local
server

Top-level
domain server

Anet ISP

.com Server dns.mcgraw-hill.com

1

3

4
8

7

5
6

2

918 PART VI APPLICATION LAYER

server, and the message shown by event 7 contains the IP address of the destination.
When the Anet local DNS server receives the IP address of the destination, it sends it
to the resolver (event 8).

26.6.4 Caching
Each time a server receives a query for a name that is not in its domain, it needs to
search its database for a server IP address. Reduction of this search time would increase
efficiency. DNS handles this with a mechanism called caching. When a server asks for
a mapping from another server and receives the response, it stores this information in
its cache memory before sending it to the client. If the same or another client asks for
the same mapping, it can check its cache memory and resolve the problem. However, to
inform the client that the response is coming from the cache memory and not from an
authoritative source, the server marks the response as unauthoritative.

Caching speeds up resolution, but it can also be problematic. If a server caches a
mapping for a long time, it may send an outdated mapping to the client. To counter this,
two techniques are used. First, the authoritative server always adds information to the
mapping called time to live (TTL). It defines the time in seconds that the receiving
server can cache the information. After that time, the mapping is invalid and any query
must be sent again to the authoritative server. Second, DNS requires that each server
keep a TTL counter for each mapping it caches. The cache memory must be searched
periodically and those mappings with an expired TTL must be purged.

26.6.5 Resource Records
The zone information associated with a server is implemented as a set of resource
records. In other words, a name server stores a database of resource records. A resource
record is a 5-tuple structure, as shown below:

The domain name field is what identifies the resource record. The value defines
the information kept about the domain name. The TTL defines the number of

Figure 26.37 Iterative resolution

(Domain Name, Type, Class, TTL, Value)

5
4

6 7

McGraw-Hill Network

Source: some.anet.com

Resolver Destination

Destination: engineering.mcgraw-hill.com

dns.anet.com

Root
server

Local
server

Local
server

Top-level
domain server

Anet ISP

.com Server dns.mcgraw-hill.com

1
8

3

2

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 919

seconds for which the information is valid. The class defines the type of network;
we are only interested in the class IN (Internet). The type defines how the value
should be interpreted. Table 26.13 lists the common types and how the value is
interpreted for each type.

26.6.6 DNS Messages
To retrieve information about hosts, DNS uses two types of messages: query and
response. Both types have the same format as shown in Figure 26.38.

We briefly discuss the fields in a DNS message. The identification field is used by
the client to match the response with the query. The flag field defines whether the
message is a query or response. It also includes status of error. The next four fields in
the header define the number of each record type in the message. The question section
consists of one or more question records. It is present in both query and response mes-
sages. The answer section consists of one or more resource records. It is present only in
response messages. The authoritative section gives information (domain name) about
one or more authoritative servers for the query. The additional information section pro-
vides additional information that may help the resolver.

Table 26.13 Types

Type Interpretation of value
A A 32-bit IPv4 address (see Chapter 18)
NS Identifies the authoritative servers for a zone
CNAME Defines an alias for the official name of a host
SOA Marks the beginning of a zone
MX Redirects mail to a mail server
AAAA An IPv6 address (see Chapter 22)

Figure 26.38 DNS message

Header

Question section

Answer section (Resource Records)

Authoritative section

Additional section

Note:
The query message contains only the question section.
The response message includes the question section,
the answer section, and possibly two other sections.

0 16 31

Identification Flags

Number of question records

Number of additional records
(All 0s in query message)

Number of answer records
(All 0s in query message)

Number of authoritative records
(All 0s in query message)

920 PART VI APPLICATION LAYER

Example 26.13

In UNIX and Windows, the nslookup utility can be used to retrieve address/name mapping. The
following shows how we can retrieve an address when the domain name is given.

Encapsulation

DNS can use either UDP or TCP. In both cases the well-known port used by the server
is port 53. UDP is used when the size of the response message is less than 512 bytes
because most UDP packages have a 512-byte packet size limit. If the size of the
response message is more than 512 bytes, a TCP connection is used. In that case, one of
two scenarios can occur:

❑ If the resolver has prior knowledge that the size of the response message is more
than 512 bytes, it uses the TCP connection. For example, if a secondary name
server (acting as a client) needs a zone transfer from a primary server, it uses the
TCP connection because the size of the information being transferred usually
exceeds 512 bytes.

❑ If the resolver does not know the size of the response message, it can use the
UDP port. However, if the size of the response message is more than 512 bytes,
the server truncates the message and turns on the TC bit. The resolver now
opens a TCP connection and repeats the request to get a full response from the
server.

26.6.7 Registrars
How are new domains added to DNS? This is done through a registrar, a commercial
entity accredited by ICANN. A registrar first verifies that the requested domain name is
unique and then enters it into the DNS database. A fee is charged. Today, there are
many registrars; their names and addresses can be found at

To register, the organization needs to give the name of its server and the IP address
of the server. For example, a new commercial organization named wonderful with a
server named ws and IP address 200.200.200.5 needs to give the following information
to one of the registrars:

26.6.8 DDNS
When the DNS was designed, no one predicted that there would be so many address
changes. In DNS, when there is a change, such as adding a new host, removing a host,
or changing an IP address, the change must be made to the DNS master file. These
types of changes involve a lot of manual updating. The size of today’s Internet does not
allow for this kind of manual operation.

$nslookup www.forouzan.biz
Name: www.forouzan.biz
Address: 198.170.240.179

http://www.intenic.net

Domain name: ws.wonderful.com IP address: 200.200.200.5

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 921

The DNS master file must be updated dynamically. The Dynamic Domain
Name System (DDNS) therefore was devised to respond to this need. In DDNS,
when a binding between a name and an address is determined, the information is
sent, usually by DHCP (discussed in Chapter 18) to a primary DNS server. The pri-
mary server updates the zone. The secondary servers are notified either actively or
passively. In active notification, the primary server sends a message to the secondary
servers about the change in the zone, whereas in passive notification, the secondary
servers periodically check for any changes. In either case, after being notified about
the change, the secondary server requests information about the entire zone (called
the zone transfer).

To provide security and prevent unauthorized changes in the DNS records, DDNS
can use an authentication mechanism.

26.6.9 Security of DNS
DNS is one of the most important systems in the Internet infrastructure; it provides cru-
cial services to Internet users. Applications such as Web access or e-mail are heavily
dependent on the proper operation of DNS. DNS can be attacked in several ways
including:

1. The attacker may read the response of a DNS server to find the nature or names of sites
the user mostly accesses. This type of information can be used to find the user’s profile.
To prevent this attack, DNS messages need to be confidential (see Chapters 31 and 32).

2. The attacker may intercept the response of a DNS server and change it or create a
totally new bogus response to direct the user to the site or domain the attacker
wishes the user to access. This type of attack can be prevented using message ori-
gin authentication and message integrity (see Chapters 31 and 32).

3. The attacker may flood the DNS server to overwhelm it or eventually crash it. This
type of attack can be prevented using the provision against denial-of-service attack.

To protect DNS, IETF has devised a technology named DNS Security (DNSSEC) that
provides message origin authentication and message integrity using a security service
called digital signature (see Chapter 31). DNSSEC, however, does not provide confi-
dentiality for the DNS messages. There is no specific protection against the denial-of-
service attack in the specification of DNSSEC. However, the caching system protects
the upper-level servers against this attack to some extent.

26.7 END-CHAPTER MATERIALS
26.7.1 Recommended Reading
For more details about subjects discussed in this chapter, we recommend the following
books and RFCs. The items enclosed in brackets refer to the reference list at the end of
the book.

Books

Several books give thorough coverage of materials discussed in this chapter including
[Com 06], [Mir 07], [Ste 94], [Tan 03], [Bar et al. 05].

922 PART VI APPLICATION LAYER

RFCs

HTTP is discussed in RFCs 2068, 2109, and 2616. FTP is discussed in RFCs 959,
2577, and 2585. TELNET is discussed in RFCs 854, 855, 856, 1041, 1091, 1372, and
1572. SSH is discussed in RFCs 4250, 4251, 4252, 4253, 4254, and 4344. DNS is dis-
cussed in RFCs 1034, 1035, 1996, 2535, 3008, 3342, 3396, 3658, 3755, 3757, and
3845. SMTP is discussed in RFCs 2821 and 2822. POP3 is explained in RFC 1939.
MIME is discussed in RFCs 2046, 2047, 2048, and 2049.

26.7.2 Key Terms

26.7.3 Summary
The World Wide Web (WWW) is a repository of information linked together from
points all over the world. Hypertext and hypermedia documents are linked to one
another through pointers. HyperText Transfer Protocol (HTTP) is the main protocol
used to access data on the Web.

File Transfer Protocol (FTP) is a TCP/IP client-server application for copying files
from one host to another. FTP requires two connections for data transfer: a control con-
nection and a data connection. FTP employs NVT ASCII for communication between
dissimilar systems.

Electronic mail is one of the most common applications on the Internet. The e-mail
architecture consists of several components such as user agent (UA), message transfer
agent (MTA), and message access agent (MAA). The protocol that implements MTA is
called Simple Mail Transfer Protocol (SMTP). Two protocols are used to implement
MAA: Post Office Protocol, version 3 (POP3) and Internet Mail Access Protocol, ver-
sion 4 (IMAP4).

active document
browser
cookie
country domain
DNS Server
domain
domain name
domain name space
Domain Name System (DNS)
dynamic document
Dynamic Domain Name System (DDNS)
File Transfer Protocol (FTP)
fully qualified domain name (FQDN)
generic domain
hypermedia
hypertext
HyperText Transfer Protocol (HTTP)
Internet Mail Access Protocol, version 4

(IMAP4)
iterative resolution
label
local logging
message access agent (MAA)

message transfer agent (MTA)
Multipurpose Internet Mail Extensions (MIME)
name space
Network Virtual Terminal (NVT)
nonpersistent connection
partially qualified domain name (PQDN)
persistent connection
port forwarding
Post Office Protocol, version 3 (POP3)
proxy server
recursive resolution
remote logging
resolver
root server
Secure Shell (SSH)
Simple Mail Transfer Protocol (SMTP)
static document
terminal network (TELNET)
uniform resource locator (URL)
user agent (UA)
web page
World Wide Web (WWW, the web)
zone

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 923

TELNET is a client-server application that allows a user to log into a remote
machine, giving the user access to the remote system. When a user accesses a remote
system via the TELNET process, this is comparable to a time-sharing environment.
SSH is the secured version of TELNET that is very common today.

The Domain Name System (DNS) is a client-server application that identifies each
host on the Internet with a unique name. DNS organizes the name space in a hierarchi-
cal structure to decentralize the responsibilities involved in naming.

26.8 PRACTICE SET
26.8.1 Quizzes
A set of interactive quizzes for this chapter can be found on the book website. It is
strongly recommended that the student take the quizzes to check his/her understanding
of the materials before continuing with the practice set.

26.8.2 Questions
Q26-1. During the weekend, Alice often needs to access files stored on her office

desktop from her home laptop. Last week, she installed a copy of the FTP
server process on her desktop at her office and a copy of the FTP client pro-
cess on her laptop at home. She was disappointed when she could not access
her files during the weekend. What could have gone wrong?

Q26-2. Alice has a video clip that Bob is interested in getting; Bob has another
video clip that Alice is interested in getting. Bob creates a web page and
runs an HTTP server. How can Alice get Bob’s clip? How can Bob get
Alice’s clip?

Q26-3. When an HTTP server receives a request message from an HTTP client, how
does the server know when all headers have arrived and the body of the mes-
sage is to follow?

Q26-4. In a nonpersistent HTTP connection, how can HTTP inform the TCP protocol
that the end of the message has been reached?

Q26-5. Can you find an analogy in our daily life as to when we use two separate con-
nections in communication similar to the control and data connections in
FTP?

Q26-6. FTP uses two separate well-known port numbers for control and data connec-
tion. Does this mean that two separate TCP connections are created for
exchanging control information and data?

Q26-7. FTP uses the services of TCP for exchanging control information and data
transfer. Could FTP have used the services of UDP for either of these two con-
nections? Explain.

Q26-8. In FTP, which entity (client or server) starts (actively opens) the control con-
nection? Which entity starts (actively opens) the data transfer connection?

Q26-9. What do you think would happen if the control connection were severed
before the end of an FTP session? Would it affect the data connection?

924 PART VI APPLICATION LAYER

Q26-10. In FTP, if the client needs to retrieve one file from the server site and store one
file on the server site, how many control connections and how many data-
transfer connections are needed?

Q26-11. In FTP, can a server retrieve a file from the client site?

Q26-12. In FTP, can a server get the list of the files or directories from the client?

Q26-13. FTP can transfer files between two hosts using different operating systems
with different file formats. What is the reason?

Q26-14. Does FTP have a message format for exchanging commands and responses
during control connection?

Q26-15. Does FTP have a message format for exchanging files or a list of directories/
files during the file-transfer connection?

Q26-16. Can we have a control connection without a data-transfer connection in FTP?
Explain.

Q26-17. Can we have a data-transfer connection without a control connection in FTP?
Explain.

Q26-18. Assume we need to download an audio using FTP. What file type should we
specify in our command?

Q26-19. Both HTTP and FTP can retrieve a file from a server. Which protocol should
we use to download a file?

Q26-20. Are the HELO and MAIL FROM commands both necessary in SMTP? Why
or why not?

Q26-21. In Figure 26.13 in the text, what is the difference between the MAIL FROM in
the envelope and the FROM in the header?

Q26-22. Alice has been on a long trip without checking her e-mail. She then finds out
that she has lost some e-mails or attachments her friends claim they have sent
to her. What can be the problem?

Q26-23. Assume a TELNET client uses ASCII to represent characters, but the TELNET
server uses EBCDIC to represent characters. How can the client log into the
server when character representations are different?

Q26-24. The TELNET application has no commands such as those found in FTP or
HTTP to allow the user to do something such as transfer a file or access a web
page. In what way can this application be useful?

Q26-25. Can a host use a TELNET client to get services provided by other client-
server applications such as FTP or HTTP?

Q26-26. In DNS, which of the following are FQDNs and which are PQDNs?

26.8.3 Problems
P26-1. Assume there is a server with the domain name www.common.com.

a. Show an HTTP request that needs to retrieve the document /usr/users/doc.
The client accepts MIME version 1, GIF or JPEG images, but the docu-
ment should not be more than 4 days old.

b. Show the HTTP response to part a for a successful request.

a. xxx b. xxx.yyy.net c. zzz.yyy.xxx.edu.

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 925

P26-2. In HTTP, draw a figure to show the application of cookies in a scenario in
which the server allows only the registered customer to access the server.

P26-3. In HTTP, draw a figure to show the application of cookies in a web portal
using two sites.

P26-4. In HTTP, draw a figure to show the application of cookies in a scenario in
which the server uses cookies for advertisement. Use only three sites.

P26-5. Draw a diagram to show the use of a proxy server that is part of the client network:

a. Show the transactions between the client, proxy server, and the target
server when the response is stored in the proxy server.

b. Show the transactions between the client, proxy server, and the target
server when the response is not stored in the proxy server.

P26-6. In Chapter 1, we mentioned that the TCP/IP suite, unlike the OSI model, has
no presentation layer. But an application-layer protocol can include some of
the features defined in this layer if needed. Does HTTP have any presentation-
layer features?

P26-7. In Chapter 1, we mentioned that the TCP/IP suite, unlike the OSI model, has no
session layer. But an application-layer protocol can include some of the features
defined in this layer if needed. Does HTTP have any session-layer features?

P26-8. HTTP version 1.1 defines the persistent connection as the default connection.
Using RFC 2616, find out how a client or server can change this default situa-
tion to nonpersistent.

P26-9. In SMTP, a sender sends unformatted text. Show the MIME header.

P26-10. Write concurrent TCP client-server programs to simulate a simplified version
of HTTP using only a nonpersistent connection. The client sends an HTTP
message; the server responds with the requested file. Use only two types of
methods, GET and PUT, and only a few simple headers. Note that after test-
ing, you should be able to test your program with a web browser.

P26-11. Write concurrent TCP client-server programs to simulate a simplified version
of POP. The client sends a request to receive an e-mail in its mailbox; the
server responds with the e-mail.

P26-12. In SMTP,

a. a non-ASCII message of 1000 bytes is encoded using base64. How many
bytes are in the encoded message? How many bytes are redundant? What is
the ratio of redundant bytes to the total message?

b. a message of 1000 bytes is encoded using quoted-printable. The message
consists of 90 percent ASCII and 10 percent non-ASCII characters. How
many bytes are in the encoded message? How many bytes are redundant?
What is the ratio of redundant bytes to the total message?

c. Compare the results of the two previous cases. How much is the efficiency
improved if the message is a combination of ASCII and non-ASCII characters?

P26-13. Encode the following message in base64:

01010111 00001111 11110000

926 PART VI APPLICATION LAYER

P26-14. Encode the following message in quoted-printable:

P26-15. According to RFC 1939, a POP3 session is in one of the following four states:
closed, authorization, transaction, or update. Draw a diagram to show these
four states and how POP3 moves between them.

P26-16. POP3 protocol has some basic commands (that each client/server needs to
implement). Using the information in RFC 1939, find the meaning and the use
of the following basic commands:

P26-17. POP3 protocol has some optional commands (that a client/server can imple-
ment). Using the information in RFC 1939, find the meaning and the use of
the following optional commands:

P26-18. Using RFC 1939, assume a POP3 client is in the download-and-keep mode.
Show the transaction between the client and the server if the client has only
two messages of 192 and 300 bytes to download from the server.

P26-19. Using RFC 1939, assume a POP3 client is in the download-and-delete mode.
Show the transaction between the client and the server if the client has only
two messages of 230 and 400 bytes to download from the server.

P26-20. In Chapter 1, we mentioned that the TCP/IP suite, unlike the OSI model, has
no presentation layer. But an application-layer protocol can include some of
the features defined in this layer if needed. Does SMTP have any presentation-
layer features?

P26-21. In Chapter 1, we mentioned that the TCP/IP suite, unlike the OSI model, has
no session layer. But an application-layer protocol can include some of the
features defined in this layer if needed. Does SMTP or POP3 have any session
layer features?

P26-22. In FTP, assume a client with user name John needs to store a video clip called
video2 on the directory /top/videos/general on the server. Show the commands
and responses exchanged between the client and the server if the client
chooses ephemeral port number 56002.

P26-23. In FTP, a user (Jane) wants to retrieve an EBCDIC file named huge from /usr/
users/report directory using the ephemeral port 61017. The file is so large that
the user wants to compress it before it is transferred. Show all the commands
and responses.

P26-24. In FTP, a user (Jan) wants to make a new directory called Jan under the direc-
tory /usr/usrs/letters. Show all of the commands and responses.

P26-25. In FTP, a user (Maria) wants to move a file named file1 from /usr/users/report
directory to the directory /usr/top/letters. Note that this is a case of renaming a
file. We first need to give the name of the old file and then define the new
name. Show all of the commands and responses.

 01001111 10101111 01110001

a. STAT b. LIST c. DELE 4

a. UIDL b. TOP 1 15 c. USER d. PASS

CHAPTER 26 STANDARD CLIENT-SERVER PROTOCOLS 927

26.9 SIMULATION EXPERIMENTS
26.9.1 Applets
We have created some Java applets to show some of the main concepts discussed in this
chapter. It is strongly recommended that the students activate these applets on the book
website and carefully examine the protocols in action.

26.9.2 Lab Assignments
In Chapter 1, we downloaded and installed Wireshark and learned about its basic fea-
tures. In this chapter, we use Wireshark to capture and investigate some application-
layer protocols. We use Wireshark to simulate six protocols: HTTP, FTP, TELNET,
SMTP, POP3, and DNS.

Lab26-1. In the first lab, we retrieve web pages using HTTP. We use Wireshark to cap-
ture packets for analysis. We learn about the most common HTTP messages.
We also capture response messages and analyze them. During the lab ses-
sion, some HTTP headers are also examined and analyzed.

Lab26-2. In the second lab, we use FTP to transfer some files. We use Wireshark to cap-
ture some packets. We show that FTP uses two separate connections: a control
connection and a data-transfer connection. The data connection is opened and
then closed for each file transfer activity. We also show that FTP is an insecure
file transfer protocol because the transaction is done in plaintext.

Lab26-3. In the third lab, we use Wireshark to capture packets exchanged by the TEL-
NET protocol. As in FTP, we are able to observe commands and responses in
the captured packets during the session. Like FTP, TELNET is vulnerable to
hacking because it sends all data including the password in plaintext.

Lab26-4. In the fourth lab, we investigate SMTP protocol in action. We send an e-mail
and, using Wireshark, we investigate the contents and the format of the
SMTP packet exchanged between the client and the server. We check that the
three phases we discussed in the text exist in this SMTP session.

Lab26-5. In the fifth lab, we investigate the state and behavior of the POP3 protocol.
We retrieve the mails stored in our mailbox at the POP3 server and observe
and analyze the states of the POP3 and the type and the contents of the mes-
sages exchanged, by analyzing the packets through Wireshark.

Lab26-6. In the sixth lab, we analyze the behavior of the DNS protocol. In addition to
Wireshark, several network utilities are available for finding some informa-
tion stored in the DNS servers. In this lab, we use the dig utilities (which has
replaced nslookup). We also use ipconfig to manage the cached DNS records
in the host computer. When we use these utilities, we set Wireshark to cap-
ture the packets sent by these utilities.

