

: . . Wl
ed for a limited number of time steps t by\\

es. For example, if we unfold equation (3.1.1) for t =3 time Steps

=54 (s?. 0)
= £(t™;0);)

dynamical system given by Eq. 3.1.1

t each node at time t is represented and the
state at time t + 1. For each time step,
of used to parameterize f) are applied.

function f translates the st
the same parameters (i.c_ the

| = £ X, g .(3.14)

at the state now contains information about the whole past

constructing recurrent neural networks. Any function
y be seen as a recurrent neural network, much like

is frequently used by recurrent neura

n units. We now rewrite equation (3.14

at the state is the network's hidden unit
s (319

1 features, like output layers tha
ywn in Fig, 3.1.2.

ee to pick what data it wishes to broadcast mampast?
HIUTE as part o ts hidden representation h. Only indirectly, by the predicyo,,. *
e b thept el o e Ul ey)
.,.‘& l;:elut typically lacks crucial historical data. As a result, the RNN in this figur

o CHective, but it might be simpler o train because each time step cy,, ;'

‘rained independently of the others, allowing for more parallel train..
explained in the following section. o

hY - tanh(a'") (32

O“) - c4 th B

Aft J
y" = softmax (") (324

where the weight matrices U, V, and W for input-to-hidden, hidden-to-outpy;
ftidden-to—hidden connections, respectively, are the parameters Thio ..
fnush-atlon of a recurrent network that converts an Input sequence into ..
identically lengthened output sequence. The sum of the losses across all 1he o
steps would thus be the overall loss for a particular series of x value
sequence of y values.

ol For example, if L' is the negative log-likelihood of y"" given x'"', .. " .,
L(‘x(])o s o0p x-‘t)'; ‘y(l), nasy ym]) ¢ 25
= 2ZLY

t

ana
T

= Z10g P (17, ..., x") 327

vhere P, 7"Ix®, .., x")) is given by reading the entry for +" from i

: First, a forward propagation p=*
gation pass from right to left. Becau®
rinsically sequential and each time <P <

g O &m is O(7) and cannot %

Teacher Forcing and Networks with Output Recurrence

e The network with recurrent connections only from the output at one time step to the
hidden units at the next time step is strictly less powerful because it lacks hidden-to-
hidden recurrent connections. It requires that the output units capture all of the
information about the past the network will use to predict the future.

o The advantage of eliminating hidden-to-hidden recurrence is that, for any loss function
based on comparing the prediction at time / to the training target at time , all the time
steps are decoupled.

e Training can thus be parallelized, with the gradient for each step / computed in
isolation. There is no need to compute the output for the previous time step first,
because the training set provides the ideal value of that output.

Models that have recurrent connections from their outputs leading back into the model may be
trained with teacher forcing. Teacher forcing is a procedure that emerges from the maximum

likelihood criterion, in which during training the model receives the ground truth output /' as
inputtime © + 1. We can see this by examining a sequence with two time steps. The conditional
maximum likelihood criterion is

ok (ym_‘y[z] | w::u:wt‘z:l) (10.15)

=logp (yl?] | ym._:r[”.:t:{z]j + log p (y“} £ () :It':j}) (10.16)

Train time Test time

Figure 10.6: Illustration of teacher forcing. Teacher forcing is a training technique that is
applicable to RNNs that have connections from their output to their hidden states at the
next time step. (Left) At train time, we feed the correct outputy't) drawn from the train
set as input to AUV (Right) When the model is deployed, the true output is generally
not known. In this case, we approximate the correct output y'*) with the model’s output
o'", and feed the output back into the model.

We originally motivated teacher forcing as allowing us to avoid back-propagation through time
in models that lack hidden-to-hidden connections.

Teacher forcing may still be applied to models that have hidden-to-hidden connections so long
as they have connections from the output at one time step to values computed in the next time
step.

However, as soon as the hidden units become a function of earlier time steps, the BPTT
algorithm is necessary. Some models may thus be trained with both teacher forcing and BPTT.

The disadvantage of strict teacher forcing arises if the network is going to be later used in
an open-loop mode, with the network outputs fed back as input.

Computing the Gradient in a Recurrent Neural Network

To gain some intuition for how the BPTT algorithm behaves, we provide an example of how
to compute gradients by BPTT for the RNN equations above. The nodes of our computational
graph include the parameters/’, 1", 11", i, and as well as the sequence of nodes indexed
by ¢ for 1", it ol and L'

We start the recursion with the nodes immediately preceding the final loss

oL
AL

= 1. (10.17)

In this derivation we assume that the outputs «'"' are used at the argument to the softmax
function to obtain the vector !/ of probabilities over the output. We also assume that the loss is

the negative log-likelihood of the true target /' given the input so far.

aL oL oL .(t)

V-J-.L — — r — H 1 (t) - 1”18]
{ o }f E_I.J“f(r.} HL(t) U”E” Y, i gt ()

We work our way backwards, starting from the end of the sequence. At the final time step 7
, "7 only has o' "' as a descendent, so its gradient is simple:

VL=V 'V L. (10.19)

We can then iterate backwards in time to back-propagate gradients through time,

from?/ — 7 — ldown tof— 1, noting that/i'"(for’ < 7) has a descendents
both o' and /" . Its gradient is thus given by
T |
Oh(t+1) do't)
thL — (W) (vh(url'lL) + ((,)h“}> (VO:I',-L) (1()._)())

=W (VL) diag (1 = (h“"“)") +VT (VL) (1021)

where 4122 L — (/'"""“Jindicates the diagonal matrix containing the
elements | — (/")°. This is the Jacobian of the hyperbolic tangent associated with the
hidden unit 7 at time + 1.

Once the gradients on the internal nodes of the computational graph are obtained, we can obtain
the gradients on the parameter nodes. Because the parameters are shared across many time
stamps, we must take some care when denoting calculus operations involving these variables.

. do'" S
Vel = < = VO,I_ZVOHI (10.22)

9ht) 2
i = < ') Viol= Y (ling(l—(h(-”))\7,1.‘,;.1,(1().23)

ab®
VvL = (‘)(L,) oy = (V{).,:.L)h“)T (10.24)
Vil = ((H(‘, >v wh' (10.25)
_ dmu(1“))) (Vp L) RED (10.26)

Vul = (0) Vyoh? (10.27)
C)

(
s (lld«»((h“)) (VniL) (10.28)

We do not need to compute the gradient with respect to .+'*' for training because it does not
have any parameters as ancestors in the computational graph defining the loss.

Recurrent Networks as Directed Graphical Models

As with a feedforward network, we usually wish to interpret the output of the RNN as a
probability distribution, and we usually use the cross-entropy associated with the distribution
to define the loss. Mean squared error is the cross-entropy loss associated with an output
distribution that is a unit Gaussian, for example, just as with a feedforward network.

This may mean that we maximize the log-likelihood
logp(y® | 2, ..., 2®), (10.29)

or, if the model includes connections from the output at one time step to the next time step,
log p(y'" | AR N G e 710 yt=1)), (10.30)

Decomposing the joint probability over the sequence of y values as a series of one-step
probabilistic predictions is one way to capture the full joint distribution across the whole
sequence.

As asimple example let us consider the case where the RNN models only a sequence of scalar

random variables © = 1Y -7 I with no additional inputs

P(Y) = P(y®,..., HP{:;“‘-' | yt=D), yt=2) (1)) (10.31)

where the right-hand side of the bar is empty for { = 1, of course. Hence the negative log-
likelihood of a set of values 1/ -~ - /' "/ according to such a model is

II- 1\-'. 7 T

F

where

One way to interpret an RNN as a graphical model is to view the RNN as defining a graphical
model whose structure is the complete graph, able to represent direct dependencies between
any pair of ¥ values. The graphical model over the y values with the complete graph structure
is shown in Fig. 10.7. The complete graph interpretation of the RNN is based on ignoring the
hidden units /1'"' by marginalizing them out of the model.

- -

Figure 10.7: Fully connected graphical model for a sequence y By @ y\’,...: every

past observation 3*) may influence the conditional (ll\tnl)utmn of some y't) (for ¢ > i),

given the previous values. Parametrizing the graphical model directly according to this
graph (as in Eq. 10.6) might be very inefficient, with an ever growing number of inputs
and parameters for each element of the sequence. RNNs obtain the same full connectivity
but efficient parametrization, as illustrated in Fig. 10.8.

It is more interesting to consider the graphical model structure of RNNs that results from
regarding the hidden units /i'" as a random variables. Including the hidden units in the
graphical model reveals that the RNN provides a very efficient parametrization of the joint
distribution over discrete values with a tabular representation — an array containing a separate
entry for each possible assignment of value, With the value of that entry giving the probability
of that aSS|gnment occurring. If // can take on /- different values, the tabular representation

would have /(") parameters.

Figure 10.8: Introducing the state variable in the graphical model of the RNN, even
though it is a deterministic function of its inputs, helps to see how we can obtain a very
efficient parametrization, based on Eq. 10.5. Every stage in the sequence (forh'" and
y'")) involves the same structure (the same number of inputs for each node) and can share

the same parameters with the other stages.

The price recurrent networks pay for their reduced number of parameters is that optimizing the
parameters may be difficult.

The parameter sharing used in recurrent networks relies on the assumption that the same
parameters can be used for different time steps. Equivalently, the assumption is that the
conditional probability distribution over the variables at time ! + | given the variables at
time / is stationary, meaning that the relationship between the previous time step and the next
step does not depend on 1.

To complete our view of an RNN as a graphical model, we must describe how to draw samples
from the model. The main operation that we need to perform is simply to sample from the
conditional distribution at each time step. However, there is one additional complication. The
RNN must have some mechanism for determining the length of the sequence. This can be
achieved in various ways.

o Inthe case when the output is a symbol taken from a vocabulary, one can add a special
symbol corresponding to the end of a sequence. When that symbol is generated, the
sampling process stops. In the training set, we insert this symbol as an extra member of
the sequence, immediately after '™ in each training example.

« Another option is to introduce an extra Bernoulli output to the model that represents the
decision to either continue generation or halt generation at each time step. This
approach is more general than the approach of adding an extra symbol to the
vocabulary, because it may be applied to any RNN, rather than only RNNs that output
a sequence of symbols.

e Another way to determine the sequence length 7 is to add an extra output to the model
that predicts the integer 7 itself. The model can sample a value of 7~ and then
sample 7 steps worth of data. This approach requires adding an extra input to the
recurrent update at each time step so that the recurrent update is aware of whether it is
near the end of the generated sequence.

Pz ..., 2™ = P(r)P(xW),... 2 | 7). (10.34)

The strategy of predicting 7 directly is used for example by Goodfellow et al.

Modeling Sequences Conditioned on Context with RNNs

In the previous section we described how an RNN could correspond to a directed graphical
model over a sequence of random variables /" with no inputs .r. Of course, our development
of RNNs as in Eq. 10.8 included as a sequence of inputs "+ - o

In general, RNNs allow the extension of the graphical model view to represent not only a joint
distribution over the !/ variables but also a conditional distribution over !/ given .

As discussed in the context of feedforward networks, any model representing a

variable /("% can be reinterpreted as a model representing a conditional
distribution © (/1) with .
We can extend such a model to represent a distribution /’(%/|") by using the same /() as

before, but making .- a function of . In the case of an RNN, this can be achieved in different
ways. We review here the most common and obvious choices.

Previously, =~ we have discussed RNNs that take a sequence of
vectors /(1) for = 1. " as input. Another option is to take only a single vector as
input. When 1 is a fixed-size vector, we can simply make it an extra input of the RNN that
generates the !/ sequence. Some common ways of providing an extra input to an RNN are:

1. asan extra input at each time step, or
2. asthe initial state /i'", or

3. both.

The first and most common approach is illustrated in Fig. 10.9.

Figure 10.9: An RNN that maps a fixed-length vectorz into a distribution over sequences
Y. This RNN is appropriate for tasks such as image captioning, where a single image is
used as input to a model that then produces a sequence of words describing the image.
Each element ") of the observed output sequence serves both as input (for the current
time step) and, during training, as target (for the previous time step).

The interaction between the input - and each hidden unit vector /i'"' is parameterized by a
newly introduced weight matrix & that was absent from the model of only the sequence
of !/ values. The same product ' /7 is added as additional input to the hidden units every time

step.

Rather than receiving only a single vector . as input, the RNN may receive a sequence of
vectors "' as input. The RNN described in Eg. 10.8 corresponds to a conditional

distribution £yt L " 'that makes a conditional independence
assumption that this distribution factorizes as

[[P@®|=2W,...,2%) (10.35)
t

To remove the conditional independence assumption, we can add connections from the output
at time / to the hidden unit at time + 1, as shown in Fig. 10.10. (?)

Figure 10.10: A conditional recurrent neural network mapping a variable-length sequence
of @ values into a distribution over sequences of y values of the same length. Compared

to Fig. 10.3, this RNN contains connections from the previous output to the current state.
These connections allow this RNN to model an arbitrary distribution over sequences ofy

given sequences of @ of the same length. The RNN of Fig. 10.3 is only able to represent
distributions in which the y values are conditionally independent from each other given

the @ values.

The model can then represent arbitrary probability distributions over the !/ sequence. This kind
of model representing a distribution over a sequence given another sequence still has one
restriction, which is that the length of both sequences must be the same.

Encoder-Decoder Sequence-to-Sequence Architectures

Deep Recurrent Networks

The computation in most recurrent neural networks can be decomposed into three blocks of
parameters and associated transformations:

1. From the input to the hidden state
2. From the previous hidden state to the next hidden state
3. From the hidden state to the output

With the RNN architecture shown each of these three blocks is associated with a single weight
matrix, i.e.,

» When the network is unfolded, each of these corresponds to a shallow transformation.

* By a shallow Transformation we mean a transformation that would be represented a single
layer within a deep MLP.

« Typically, this is a transformation represented by a learned affine transformation followed by
a fixed nonlinearity.

Ways of making an RNN deep

1. Hidden recurrent state | | 2. Deeper computation can be 3. The path-

can be broken down into | | introduced in the input-hidden, lengthening effect

groups organized hidden-hidden and hidden-output | | can be mitigated by

hierarchically parts. This may lengthen the shortest | | introducing skip
path linking different time steps connections.

Recursive Neural Networks

Short-Term Memory and Other Gated RNNs

Applications of Recurrent Neural Networks

Lanquage Modelling and Prediction:

In this method, the likelihood of a word in a sentence is considered. The probability of the
output of a particular time-step is used to sample the words in the next iteration(memory). In
Language Modelling, input is usually a sequence of words from the data and output will be a
sequence of predicted word by the model. While training we set xt+1 = ot, the output of the
previous time step will be the input of the present time step.

Speech Recognition:

A set of inputs containing phoneme(acoustic signals) from an audio is used as an input. This
network will compute the phonemes and produce a phonetic segments with the likelihood of
output.

Machine Translation:

In Machine Translation, the input is will be the source language(e.g. Hindi) and the output will
be in the target language(e.g. English). The main difference between Machine Translation and
Language modelling is that the output starts only after the complete input has been fed into the
network.

Image recognition and characterization:

Recurrent Neural Network along with a ConvNet work together to recognize an image and give
a description about it if it is unnamed. This combination of neural network works in a beautiful
and it produces fascinating results. Here is a visual description about how it goes on doing this,
the combined model even aligns the generated words with features found in the images.

Advantages and Disadvantages of RNN

