




















Teacher Forcing and Networks with Output Recurrence 

• The network with recurrent connections only from the output at one time step to the 

hidden units at the next time step is strictly less powerful because it lacks hidden-to-

hidden recurrent connections. It requires that the output units capture all of the 

information about the past the network will use to predict the future. 

• The advantage of eliminating hidden-to-hidden recurrence is that, for any loss function 

based on comparing the prediction at time  to the training target at time , all the time 

steps are decoupled. 

• Training can thus be parallelized, with the gradient for each step  computed in 

isolation. There is no need to compute the output for the previous time step first, 

because the training set provides the ideal value of that output. 

Models that have recurrent connections from their outputs leading back into the model may be 

trained with teacher forcing. Teacher forcing is a procedure that emerges from the maximum 

likelihood criterion, in which during training the model receives the ground truth output  as 

input time . We can see this by examining a sequence with two time steps. The conditional 

maximum likelihood criterion is 

 

 



 

 

We originally motivated teacher forcing as allowing us to avoid back-propagation through time 

in models that lack hidden-to-hidden connections. 

Teacher forcing may still be applied to models that have hidden-to-hidden connections so long 

as they have connections from the output at one time step to values computed in the next time 

step. 

However, as soon as the hidden units become a function of earlier time steps, the BPTT 

algorithm is necessary. Some models may thus be trained with both teacher forcing and BPTT. 

The disadvantage of strict teacher forcing arises if the network is going to be later used in 

an open-loop mode, with the network outputs fed back as input. 

Computing the Gradient in a Recurrent Neural Network 

To gain some intuition for how the BPTT algorithm behaves, we provide an example of how 

to compute gradients by BPTT for the RNN equations above. The nodes of our computational 

graph include the parameters , , , , and  as well as the sequence of nodes indexed 

by  for , ,  and . 

We start the recursion with the nodes immediately preceding the final loss 



 

In this derivation we assume that the outputs  are used at the argument to the softmax 

function to obtain the vector  of probabilities over the output. We also assume that the loss is 

the negative log-likelihood of the true target  given the input so far. 

 

We work our way backwards, starting from the end of the sequence. At the final time step 

,  only has  as a descendent, so its gradient is simple: 

 

We can then iterate backwards in time to back-propagate gradients through time, 

from  down to , noting that  (for ) has a descendents 

both  and . Its gradient is thus given by 

 

where  indicates the diagonal matrix containing the 

elements . This is the Jacobian of the hyperbolic tangent associated with the 

hidden unit  at time . 

Once the gradients on the internal nodes of the computational graph are obtained, we can obtain 

the gradients on the parameter nodes. Because the parameters are shared across many time 

stamps, we must take some care when denoting calculus operations involving these variables. 



 

We do not need to compute the gradient with respect to  for training because it does not 

have any parameters as ancestors in the computational graph defining the loss. 

Recurrent Networks as Directed Graphical Models 

As with a feedforward network, we usually wish to interpret the output of the RNN as a 

probability distribution, and we usually use the cross-entropy associated with the distribution 

to define the loss. Mean squared error is the cross-entropy loss associated with an output 

distribution that is a unit Gaussian, for example, just as with a feedforward network. 

This may mean that we maximize the log-likelihood 

 
or, if the model includes connections from the output at one time step to the next time step, 

 
Decomposing the joint probability over the sequence of y values as a series of one-step 

probabilistic predictions is one way to capture the full joint distribution across the whole 

sequence. 

As a simple example, let us consider the case where the RNN models only a sequence of scalar 

random variables , with no additional inputs . 



 
where the right-hand side of the bar is empty for , of course. Hence the negative log-

likelihood of a set of values  according to such a model is 

 

where 

 

One way to interpret an RNN as a graphical model is to view the RNN as defining a graphical 

model whose structure is the complete graph, able to represent direct dependencies between 

any pair of  values. The graphical model over the y values with the complete graph structure 

is shown in Fig. 10.7. The complete graph interpretation of the RNN is based on ignoring the 

hidden units  by marginalizing them out of the model. 

 

It is more interesting to consider the graphical model structure of RNNs that results from 

regarding the hidden units  as a random variables. Including the hidden units in the 

graphical model reveals that the RNN provides a very efficient parametrization of the joint 

distribution over discrete values with a tabular representation — an array containing a separate 

entry for each possible assignment of value, with the value of that entry giving the probability 

of that assignment occurring. If  can take on  different values, the tabular representation 

would have  parameters. 



 

The price recurrent networks pay for their reduced number of parameters is that optimizing the 

parameters may be difficult. 

The parameter sharing used in recurrent networks relies on the assumption that the same 

parameters can be used for different time steps. Equivalently, the assumption is that the 

conditional probability distribution over the variables at time  given the variables at 

time  is stationary, meaning that the relationship between the previous time step and the next 

step does not depend on . 

To complete our view of an RNN as a graphical model, we must describe how to draw samples 

from the model. The main operation that we need to perform is simply to sample from the 

conditional distribution at each time step. However, there is one additional complication. The 

RNN must have some mechanism for determining the length of the sequence. This can be 

achieved in various ways. 

• In the case when the output is a symbol taken from a vocabulary, one can add a special 

symbol corresponding to the end of a sequence. When that symbol is generated, the 

sampling process stops. In the training set, we insert this symbol as an extra member of 

the sequence, immediately after  in each training example. 

• Another option is to introduce an extra Bernoulli output to the model that represents the 

decision to either continue generation or halt generation at each time step. This 

approach is more general than the approach of adding an extra symbol to the 

vocabulary, because it may be applied to any RNN, rather than only RNNs that output 

a sequence of symbols. 

• Another way to determine the sequence length  is to add an extra output to the model 

that predicts the integer  itself. The model can sample a value of  and then 

sample  steps worth of data. This approach requires adding an extra input to the 

recurrent update at each time step so that the recurrent update is aware of whether it is 

near the end of the generated sequence. 

 
The strategy of predicting  directly is used for example by Goodfellow et al. 



Modeling Sequences Conditioned on Context with RNNs 

In the previous section we described how an RNN could correspond to a directed graphical 

model over a sequence of random variables  with no inputs . Of course, our development 

of RNNs as in Eq. 10.8 included as a sequence of inputs . 

In general, RNNs allow the extension of the graphical model view to represent not only a joint 

distribution over the  variables but also a conditional distribution over  given . 

As discussed in the context of feedforward networks, any model representing a 

variable  can be reinterpreted as a model representing a conditional 

distribution  with . 

We can extend such a model to represent a distribution  by using the same  as 

before, but making  a function of . In the case of an RNN, this can be achieved in different 

ways. We review here the most common and obvious choices. 

Previously, we have discussed RNNs that take a sequence of 

vectors  for  as input. Another option is to take only a single vector  as 

input. When  is a fixed-size vector, we can simply make it an extra input of the RNN that 

generates the  sequence. Some common ways of providing an extra input to an RNN are: 

1. as an extra input at each time step, or 

2. as the initial state , or 

3. both. 



The first and most common approach is illustrated in Fig. 10.9. 

 
The interaction between the input  and each hidden unit vector  is parameterized by a 

newly introduced weight matrix  that was absent from the model of only the sequence 

of  values. The same product  is added as additional input to the hidden units every time 

step. 

Rather than receiving only a single vector  as input, the RNN may receive a sequence of 

vectors  as input. The RNN described in Eq. 10.8 corresponds to a conditional 

distribution  that makes a conditional independence 

assumption that this distribution factorizes as 

 

To remove the conditional independence assumption, we can add connections from the output 

at time  to the hidden unit at time , as shown in Fig. 10.10. (?) 



 
The model can then represent arbitrary probability distributions over the  sequence. This kind 

of model representing a distribution over a sequence given another sequence still has one 

restriction, which is that the length of both sequences must be the same. 

 

 

 

 

 

 

 

 

 

 

 

 



Encoder-Decoder Sequence-to-Sequence Architectures 

 



 



 

 

Deep Recurrent Networks 

The computation in most recurrent neural networks can be decomposed into three blocks of 

parameters and associated transformations:  

1. From the input to the hidden state  

2. From the previous hidden state to the next hidden state  

3. From the hidden state to the output 

With the RNN architecture shown each of these three blocks is associated with a single weight 

matrix, i.e.,  

• When the network is unfolded, each of these corresponds to a shallow transformation.  

• By a shallow Transformation we mean a transformation that would be represented a single 

layer within a deep MLP.  

• Typically, this is a transformation represented by a learned affine transformation followed by 

a fixed nonlinearity. 



 

Ways of making an RNN deep 

 

Recursive Neural Networks 



 



 

 

The Long Short-Term Memory and Other Gated RNNs 

 



 



 

 

Applications of Recurrent Neural Networks 

Language Modelling and Prediction: 

In this method, the likelihood of a word in a sentence is considered. The probability of the 

output of a particular time-step is used to sample the words in the next iteration(memory). In 

Language Modelling, input is usually a sequence of words from the data and output will be a 

sequence of predicted word by the model. While training we set xt+1 = ot, the output of the 

previous time step will be the input of the present time step. 

Speech Recognition: 

A set of inputs containing phoneme(acoustic signals) from an audio is used as an input. This 

network will compute the phonemes and produce a phonetic segments with the likelihood of 

output. 

Machine Translation: 

In Machine Translation, the input is will be the source language(e.g. Hindi) and the output will 

be in the target language(e.g. English). The main difference between Machine Translation and 

Language modelling is that the output starts only after the complete input has been fed into the 

network. 

Image recognition and characterization: 

Recurrent Neural Network along with a ConvNet work together to recognize an image and give 

a description about it if it is unnamed. This combination of neural network works in a beautiful 

and it produces fascinating results. Here is a visual description about how it goes on doing this, 

the combined model even aligns the generated words with features found in the images. 

 



Advantages and Disadvantages of RNN 

 

 



 



 

 


