

Teacher Forcing and Networks with Output Recurrence

• The network with recurrent connections only from the output at one time step to the

hidden units at the next time step is strictly less powerful because it lacks hidden-to-

hidden recurrent connections. It requires that the output units capture all of the

information about the past the network will use to predict the future.

• The advantage of eliminating hidden-to-hidden recurrence is that, for any loss function

based on comparing the prediction at time to the training target at time , all the time

steps are decoupled.

• Training can thus be parallelized, with the gradient for each step computed in

isolation. There is no need to compute the output for the previous time step first,

because the training set provides the ideal value of that output.

Models that have recurrent connections from their outputs leading back into the model may be

trained with teacher forcing. Teacher forcing is a procedure that emerges from the maximum

likelihood criterion, in which during training the model receives the ground truth output as

input time . We can see this by examining a sequence with two time steps. The conditional

maximum likelihood criterion is

We originally motivated teacher forcing as allowing us to avoid back-propagation through time

in models that lack hidden-to-hidden connections.

Teacher forcing may still be applied to models that have hidden-to-hidden connections so long

as they have connections from the output at one time step to values computed in the next time

step.

However, as soon as the hidden units become a function of earlier time steps, the BPTT

algorithm is necessary. Some models may thus be trained with both teacher forcing and BPTT.

The disadvantage of strict teacher forcing arises if the network is going to be later used in

an open-loop mode, with the network outputs fed back as input.

Computing the Gradient in a Recurrent Neural Network

To gain some intuition for how the BPTT algorithm behaves, we provide an example of how

to compute gradients by BPTT for the RNN equations above. The nodes of our computational

graph include the parameters , , , , and as well as the sequence of nodes indexed

by for , , and .

We start the recursion with the nodes immediately preceding the final loss

In this derivation we assume that the outputs are used at the argument to the softmax

function to obtain the vector of probabilities over the output. We also assume that the loss is

the negative log-likelihood of the true target given the input so far.

We work our way backwards, starting from the end of the sequence. At the final time step

, only has as a descendent, so its gradient is simple:

We can then iterate backwards in time to back-propagate gradients through time,

from down to , noting that (for) has a descendents

both and . Its gradient is thus given by

where indicates the diagonal matrix containing the

elements . This is the Jacobian of the hyperbolic tangent associated with the

hidden unit at time .

Once the gradients on the internal nodes of the computational graph are obtained, we can obtain

the gradients on the parameter nodes. Because the parameters are shared across many time

stamps, we must take some care when denoting calculus operations involving these variables.

We do not need to compute the gradient with respect to for training because it does not

have any parameters as ancestors in the computational graph defining the loss.

Recurrent Networks as Directed Graphical Models

As with a feedforward network, we usually wish to interpret the output of the RNN as a

probability distribution, and we usually use the cross-entropy associated with the distribution

to define the loss. Mean squared error is the cross-entropy loss associated with an output

distribution that is a unit Gaussian, for example, just as with a feedforward network.

This may mean that we maximize the log-likelihood

or, if the model includes connections from the output at one time step to the next time step,

Decomposing the joint probability over the sequence of y values as a series of one-step

probabilistic predictions is one way to capture the full joint distribution across the whole

sequence.

As a simple example, let us consider the case where the RNN models only a sequence of scalar

random variables , with no additional inputs .

where the right-hand side of the bar is empty for , of course. Hence the negative log-

likelihood of a set of values according to such a model is

where

One way to interpret an RNN as a graphical model is to view the RNN as defining a graphical

model whose structure is the complete graph, able to represent direct dependencies between

any pair of values. The graphical model over the y values with the complete graph structure

is shown in Fig. 10.7. The complete graph interpretation of the RNN is based on ignoring the

hidden units by marginalizing them out of the model.

It is more interesting to consider the graphical model structure of RNNs that results from

regarding the hidden units as a random variables. Including the hidden units in the

graphical model reveals that the RNN provides a very efficient parametrization of the joint

distribution over discrete values with a tabular representation — an array containing a separate

entry for each possible assignment of value, with the value of that entry giving the probability

of that assignment occurring. If can take on different values, the tabular representation

would have parameters.

The price recurrent networks pay for their reduced number of parameters is that optimizing the

parameters may be difficult.

The parameter sharing used in recurrent networks relies on the assumption that the same

parameters can be used for different time steps. Equivalently, the assumption is that the

conditional probability distribution over the variables at time given the variables at

time is stationary, meaning that the relationship between the previous time step and the next

step does not depend on .

To complete our view of an RNN as a graphical model, we must describe how to draw samples

from the model. The main operation that we need to perform is simply to sample from the

conditional distribution at each time step. However, there is one additional complication. The

RNN must have some mechanism for determining the length of the sequence. This can be

achieved in various ways.

• In the case when the output is a symbol taken from a vocabulary, one can add a special

symbol corresponding to the end of a sequence. When that symbol is generated, the

sampling process stops. In the training set, we insert this symbol as an extra member of

the sequence, immediately after in each training example.

• Another option is to introduce an extra Bernoulli output to the model that represents the

decision to either continue generation or halt generation at each time step. This

approach is more general than the approach of adding an extra symbol to the

vocabulary, because it may be applied to any RNN, rather than only RNNs that output

a sequence of symbols.

• Another way to determine the sequence length is to add an extra output to the model

that predicts the integer itself. The model can sample a value of and then

sample steps worth of data. This approach requires adding an extra input to the

recurrent update at each time step so that the recurrent update is aware of whether it is

near the end of the generated sequence.

The strategy of predicting directly is used for example by Goodfellow et al.

Modeling Sequences Conditioned on Context with RNNs

In the previous section we described how an RNN could correspond to a directed graphical

model over a sequence of random variables with no inputs . Of course, our development

of RNNs as in Eq. 10.8 included as a sequence of inputs .

In general, RNNs allow the extension of the graphical model view to represent not only a joint

distribution over the variables but also a conditional distribution over given .

As discussed in the context of feedforward networks, any model representing a

variable can be reinterpreted as a model representing a conditional

distribution with .

We can extend such a model to represent a distribution by using the same as

before, but making a function of . In the case of an RNN, this can be achieved in different

ways. We review here the most common and obvious choices.

Previously, we have discussed RNNs that take a sequence of

vectors for as input. Another option is to take only a single vector as

input. When is a fixed-size vector, we can simply make it an extra input of the RNN that

generates the sequence. Some common ways of providing an extra input to an RNN are:

1. as an extra input at each time step, or

2. as the initial state , or

3. both.

The first and most common approach is illustrated in Fig. 10.9.

The interaction between the input and each hidden unit vector is parameterized by a

newly introduced weight matrix that was absent from the model of only the sequence

of values. The same product is added as additional input to the hidden units every time

step.

Rather than receiving only a single vector as input, the RNN may receive a sequence of

vectors as input. The RNN described in Eq. 10.8 corresponds to a conditional

distribution that makes a conditional independence

assumption that this distribution factorizes as

To remove the conditional independence assumption, we can add connections from the output

at time to the hidden unit at time , as shown in Fig. 10.10. (?)

The model can then represent arbitrary probability distributions over the sequence. This kind

of model representing a distribution over a sequence given another sequence still has one

restriction, which is that the length of both sequences must be the same.

Encoder-Decoder Sequence-to-Sequence Architectures

Deep Recurrent Networks

The computation in most recurrent neural networks can be decomposed into three blocks of

parameters and associated transformations:

1. From the input to the hidden state

2. From the previous hidden state to the next hidden state

3. From the hidden state to the output

With the RNN architecture shown each of these three blocks is associated with a single weight

matrix, i.e.,

• When the network is unfolded, each of these corresponds to a shallow transformation.

• By a shallow Transformation we mean a transformation that would be represented a single

layer within a deep MLP.

• Typically, this is a transformation represented by a learned affine transformation followed by

a fixed nonlinearity.

Ways of making an RNN deep

Recursive Neural Networks

The Long Short-Term Memory and Other Gated RNNs

Applications of Recurrent Neural Networks

Language Modelling and Prediction:

In this method, the likelihood of a word in a sentence is considered. The probability of the

output of a particular time-step is used to sample the words in the next iteration(memory). In

Language Modelling, input is usually a sequence of words from the data and output will be a

sequence of predicted word by the model. While training we set xt+1 = ot, the output of the

previous time step will be the input of the present time step.

Speech Recognition:

A set of inputs containing phoneme(acoustic signals) from an audio is used as an input. This

network will compute the phonemes and produce a phonetic segments with the likelihood of

output.

Machine Translation:

In Machine Translation, the input is will be the source language(e.g. Hindi) and the output will

be in the target language(e.g. English). The main difference between Machine Translation and

Language modelling is that the output starts only after the complete input has been fed into the

network.

Image recognition and characterization:

Recurrent Neural Network along with a ConvNet work together to recognize an image and give

a description about it if it is unnamed. This combination of neural network works in a beautiful

and it produces fascinating results. Here is a visual description about how it goes on doing this,

the combined model even aligns the generated words with features found in the images.

Advantages and Disadvantages of RNN

