
Unit – 2 

Part – I – Building Blocks of Deep Learning 

We introduce networks that are considered building blocks of larger deep networks:  

• RBMs  

• Autoencoders 

Both RBMs and autoencoders are characterized by an extra layer-wise step for train‐ ing. They 

are often used for the pretraining phase in other larger deep networks. 

RBMs model probability and are great at feature extraction. They are feed-forward networks 

in which data is fed through them in one direction with two biases rather than one bias as in 

traditional backpropagation feed-forward networks.  

Autoencoders are a variant of feed-forward neural networks that have an extra bias for 

calculating the error of reconstructing the original input. After training, autoencoders are then 

used as a normal feed-forward neural network for activations. 

Deep networks can use either RBMs or autoencoders as building blocks for larger networks. 

RBMs 

Restricted Boltzmann Machine is an undirected graphical model that plays a major role in Deep 

Learning Framework in recent times. 

It is an algorithm which is useful for dimensionality reduction, classification, regression, 

collaborative filtering, feature learning, and topic modeling. 

The “restricted” part of the name “Restricted Boltzmann Machines” means that con‐ nections 

between nodes of the same layer are prohibited (e.g., there are no visible-visible or hidden-

hidden connections along which signal passes). 

 

Network layout 

There are five main parts of a basic RBM:  

• Visible units  

• Hidden units  

• Weights  

• Visible bias units  



• Hidden bias units 

Layers 

Restricted Boltzmann Machines are shallow, two-layer neural nets that constitute the building 

blocks of deep-belief networks. The first layer of the RBM is called the visible, or input layer, 

and the second is the hidden layer. Each circle represents a neuron-like unit called a node. The 

nodes are connected to each other across layers, but no two nodes of the same layer are linked. 

 

Visible and hidden layers. 

In an RBM, every single node of the input (visible) layer is connected by weights to every 

single node of the hidden layer, but no two nodes of the same layer are connected. The second 

layer is known as the “hidden” layer. Hid‐ den units are feature detectors, learning features 

from the input data. 

Each node performs computation based on the input to the node and outputs a result based on 

a stochastic decision whether or not to transmit data through an activation. 

Connections and weights.  

All connections are visible-hidden; none are visible-visible or hidden-hidden. The edges 

represent connections along which signals are passed. Loosely speaking, those circles, or 

nodes, act like human neurons. They make decisions about whether to be on or off through acts 

of computation. “On” means that they pass a signal further through the net; “off” means that 

they don’t.  

Usually, being “on” means the data passing through the node is valuable; it contains 

information that will help the network make a decision. Being “off” means the net‐ work thinks 

that particular input is irrelevant noise. 

Biases.  

There is a set of bias weights (“parameters”) connecting the bias unit for each layer to every 

unit in the layer. Bias nodes help the network better triage and model cases in which an input 

node is always on or always off. 

Training. 



The technique known as pretraining using RBMs means teaching it to reconstruct the original 

data from a limited sample of that data. That is, given a chin, a trained net‐ work could 

approximate (or “reconstruct”) a face. RBMs learn to reconstruct the input dataset. 

Reconstruction  

Deep neural networks with unsupervised pretraining (RBMs, autoencoders) perform feature 

engineering from unlabeled data through reconstruction. In pretraining, the weights learned 

through unsupervised pretrain learning are used for weight initialization in networks such as 

Deep Belief Networks. 

 

Example: 

We can visually explain reconstruction in RBMs by looking at the MNIST dataset. The MNIST 

dataset is a collection of images representing the handwritten numerals 0 through 9. 

 

The training dataset in MNIST has 60,000 records and the test dataset has 10,000 records. If 

we use a RBM to learn the MNIST dataset, we can sample from the trained network to see how 

well it can reconstruct the digits. 

If the training data has a normal distribution, most of them cluster around a central mean, or 

average, and become scarcer the further you stray from that average. It looks like a bell curve. 

If we know the mean and the variance, or sigma, of normal data, we can reconstruct that curve. 

But suppose that we don’t know the mean and variance. Those are parameters we then need to 

guess. Picking them randomly and contrasting the curve they produce with the original data 

can operate similarly to a loss function. We measure the difference between two probability 



distributions much like we measure erroneous classifications, adjust our parameters, and try 

again. 

Other uses of RBMs  

Here are some other places we see RBMs used: • Dimensionality reduction • Classification • 

Regression • Collaborative filtering • Topic modelling 

Training of Restricted Boltzmann Machine 

The training of the Restricted Boltzmann Machine differs from the training of regular neural 

networks via stochastic gradient descent. 

The Two main Training steps are: 

• Gibbs Sampling 

The first part of the training is called Gibbs Sampling. Given an input vector v we use p(h|v)for 

prediction of the hidden values h. Knowing the hidden values we use p(v|h) : 

 

for prediction of new input values v. This process is repeated k times. After k iterations, we 

obtain another input vector v_k which was recreated from original input values v_0. 

 

• Contrastive Divergence step 

The update of the weight matrix happens during the Contrastive Divergence step. 

Vectors v_0 and v_k are used to calculate the activation probabilities for hidden 

values h_0 and h_k : 

 

The difference between the outer products of those probabilities with input 

vectors v_0 and v_k results in the updated matrix : 

 

Using the update matrix the new weights can be calculated with gradient ascent, given by: 

 

 



Autoencoders 

An autoencoder neural network is an Unsupervised Machine learning algorithm that applies 

backpropagation, setting the target values to be equal to the inputs. Autoencoders are used to 

reduce the size of our inputs into a smaller representation. If anyone needs the original data, 

they can reconstruct it from the compressed data. 

Autoencoders are a specific type of feedforward neural networks trained to copy its input to 

output. A bottleneck is imposed in the network to represent a compressed knowledge of the 

original input. The input is compressed into a lower-dimensional code and then the output is 

reconstructed from this representation. The code is also called as latent-space representation 

which is a compact "summary" or "compression" of the input. 

An autoencoder consists of 3 components: encoder, code and decoder. The encoder compresses 

the input and produces the code, the decoder then reconstructs the input only using this code. 

 

We have a similar machine learning algorithm i.e. PCA which does the same task.  

Autoencoders are preferred over PCA because: 

▪ An autoencoder can learn non-linear transformations with a non-linear activation 

function and multiple layers. 

▪ It doesn’t have to learn dense layers. It can use convolutional layers to learn which is 

better for video, image and series data. 

▪ It is more efficient to learn several layers with an autoencoder rather than learn one 

huge transformation with PCA. 

▪ An autoencoder provides a representation of each layer as the output. 

▪ It can make use of pre-trained layers from another model to apply transfer learning to 

enhance the encoder/decoder. 

Architecture 

• Encoder: This part of the network compresses the input into a latent space 

representation. The encoder layer encodes the input image as a compressed 

representation in a reduced dimension. The compressed image is the distorted version 

of the original image. 

• Code: This part of the network represents the compressed input which is fed to the 

decoder. 



• Decoder: This layer decodes the encoded image back to the original dimension. The 

decoded image is a lossy reconstruction of the original image and it is reconstructed 

from the latent space representation. 

 

 

The layer between the encoder and decoder, ie. the code is also known as Bottleneck. This is 

a well-designed approach to decide which aspects of observed data are relevant information 

and what aspects can be discarded. It does this by balancing two criteria: 

• Compactness of representation, measured as the compressibility. 

•  It retains some behaviourally relevant variables from the input.  

Properties of Autoencoders: 

• Data-specific: Autoencoders are only able to compress data similar to what they have 

been trained on. 

• Lossy: The decompressed outputs will be degraded compared to the original inputs. 

• Learned automatically from examples: It is easy to train specialized instances of the 

algorithm that will perform well on a specific type of input. 

Hyperparameters of Autoencoders: 

There are 4 hyperparameters that we need to set before training an autoencoder: 

• Code size: It represents the number of nodes in the middle layer. Smaller size results 

in more compression. 

• Number of layers: The autoencoder can consist of as many layers as we want. 



• Number of nodes per layer: The number of nodes per layer decreases with each 

subsequent layer of the encoder, and increases back in the decoder. The decoder is 

symmetric to the encoder in terms of the layer structure. 

• Loss function: We either use mean squared error or binary cross-entropy. If the input 

values are in the range [0, 1] then we typically use cross-entropy, otherwise, we use the 

mean squared error. 

Applications of Autoencoders 

Image Coloring 

Autoencoders are used for converting any black and white picture into a colored image. 

Depending on what is in the picture, it is possible to tell what the color should be. 

Feature variation 

It extracts only the required features of an image and generates the output by removing any 

noise or unnecessary interruption. 

Dimensionality Reduction 

The reconstructed image is the same as our input but with reduced dimensions. It helps in 

providing the similar image with a reduced pixel value. 

Denoising Image 

The input seen by the autoencoder is not the raw input but a stochastically corrupted version. 

A denoising autoencoder is thus trained to reconstruct the original input from the noisy version. 

Watermark Removal 

It is also used for removing watermarks from images or to remove any object while filming a 

video or a movie. 

Common variants of autoencoders  

Two important variants of autoencoders to note are compression autoencoders and denoising 

autoencoders.  

Compression autoencoders. The network input must pass through a bottleneck region of the 

network before being expanded back into the output representation.  

Denoising autoencoders. The denoising autoencoder is the scenario in which the autoencoder 

is given a corrupted version (e.g., some features are removed randomly) of the input and the 

network is forced to learn the uncorrupted output. 

Comparison with Multilayer perceptron 

Autoencoders differ from multilayer perceptron in a couple of ways:  

• They use unlabeled data in unsupervised learning.  

• They build a compressed representation of the input data 



Unsupervised learning of unlabeled data. The autoencoder learns directly from unlabeled data. 

This is connected to the second major difference between multilayer perceptrons and 

autoencoders.  

Learning to reproduce the input data. The goal of a multilayer perceptron network is to generate 

predictions over a class (e.g., fraud versus not fraud). An autoencoder is trained to reproduce 

its own input data. 

 

Autoencoders vs RBMs 

Autoencoder is a simple 3-layer neural network where output units are directly 

connected back to input units. Typically, the number of hidden units is much less than the 

number of visible ones. The task of training is to minimize an error or reconstruction, i.e. find 

the most efficient compact representation for input data. 

                       

 

RBM shares a similar idea, but it uses stochastic units with particular distribution instead of 

deterministic distribution. The task of training is to find out how these two sets of variables are 

actually connected to each other. 

One aspect that distinguishes RBM from other autoencoders is that it has two biases.  

• The hidden bias helps the RBM produce the activations on the forward pass, while 

• The visible layer’s biases help the RBM learn the reconstructions on the backward 

pass. 

 

Variational Autoencoders 

A more recent type of autoencoder model is the variational autoencoder (VAE) introduced by 

Kingma and Welling. The VAE is similar to compression and denoising autoencoders in that 

they are all trained in an unsupervised manner to reconstruct inputs. 



However, the mechanisms that the VAEs use to perform training are quite different. In a 

compression/denoising autoencoder, activations are mapped to activations throughout the 

layers, as in a standard neural network; comparatively, a VAE uses a probabilistic approach for 

the forward pass. 

Architecture 

 

Autoencoders are a type of neural network that learns the data encodings from the dataset in 

an unsupervised way. It basically contains two parts: the first one is an encoder which is similar 

to the convolution neural network except for the last layer. The aim of the encoder to learn 

efficient data encoding from the dataset and pass it into a bottleneck architecture. The other 

part of the autoencoder is a decoder that uses latent space in the bottleneck layer to regenerate 

the images similar to the dataset. These results backpropagate from the neural network in the 

form of the loss function. 

Variational autoencoder uses KL-divergence as its loss function, the goal of this is to minimize 

the difference between a supposed distribution and original distribution of dataset. 

Suppose we have a distribution z and we want to generate the observation x from it.  In other 

words, we want to calculate  

 

We can do it by following way: 

  

But, the calculation of p(x) can be quite difficult 

  

This usually makes it an intractable distribution. Hence, we need to approximate p(z|x) to q(z|x) 

to make it a tractable distribution. To better approximate p(z|x) to q(z|x), we will minimize the 

KL-divergence loss which calculates how similar two distributions are: 



 

By simplifying, the above minimization problem is equivalent to the following maximization 

problem: 

  

The first term represents the reconstruction likelihood and the other term ensures that our 

learned distribution q is similar to the true prior distribution p. 

Thus, our total loss consists of two terms, one is reconstruction error and other is KL-

divergence loss: 

 

Differences between Autoencoders and VAE 

Autoencoders Variational Autoencoders 

Used to generate a compressed 

transformation of input in a latent space 

Enforces conditions on the latent variable to 

be the unit norm 

The latent variable is not regularized The latent variable in the compressed form is 

mean and variance 

Picking a random latent variable will 

generate garbage output 

A random value of latent variable generates 

meaningful output at the decoder 

The latent variable has a discontinuity The latent variable is smooth and continuous 

Latent variable has deterministic values The input of the decoder is stochastic and is 

sampled from a gaussian with mean and 

variance of the output of the encoder. 

The latent space lacks the generative 

capability 

The latent space has generative capabilities. 

 

 

Part – II - Major Architectures of Deep Networks 

Unsupervised Pretrained Networks 

Unsupervised pre-training initializes a discriminative neural net from one which was trained 

using an unsupervised criterion, such as a deep belief network or a deep autoencoder. This 

method can sometimes help with both the optimization and the overfitting issues. 

In this group, we cover these specific architectures:  

• Deep Belief Networks (DBNs)  

• Generative Adversarial Networks (GANs) 

Deep Belief Networks 



Deep belief networks (DBNs) are a type of deep learning algorithm that addresses the problems 

associated with classic neural networks. They do this by using layers of stochastic latent 

variables, which make up the network. These binary latent variables, or feature detectors and 

hidden units, are binary variables, and they are known as stochastic because they can take on 

any value within a specific range with some probability. 

The top two layers in DBNs have no direction, but the layers above them have directed links 

to lower layers. DBNs differ from traditional neural networks because they can be generative 

and discriminative models. For example, you can only train a conventional neural network to 

classify images. 

Architecture 

DBNs are composed of layers of Restricted Boltzmann Machines (RBMs) for the pre‐ train 

phase and then a feed-forward network for the fine-tune phase. 

 

Feature Extraction with RBM Layers 

We use RBMs to extract higher-level features from the raw input vectors. To do that, we want 

to set the hidden unit states and weights such that when we show the RBM an input record and 

ask the RBM to reconstruct the record the record, it generates something pretty close to the 

original input vector. 

Learning higher-order features automatically.  

Learning these features in an unsupervised fashion is considered the pretrain phase of DBNs. 

Each hidden layer of the RBM in the pretrain phase learns progressively more complex features 

from the distribution of the data. 

Initializing the feed-forward network.  

We then use these layers of features as the initial weights in a traditional backpropagation 

driven feed-forward neural network. These initialization values help the training algorithm 



guide the parameters of the traditional neural network toward better regions of parameter search 

space. This phase is known as the fine-tune phase of DBNs. 

Fine-tuning a DBN with a feed-forward multilayer neural network  

In the fine-tune phase of a DBN we use normal backpropagation with a lower learning rate to 

do “gentle” backpropagation. We consider the pretraining phase to be a general search of the 

parameter space in an unsupervised fashion based on raw data. 

Gentle backpropagation.  

The pretrain phase with RBM learns higher-order features from the data, which we use as good 

initial starting values for our feed-forward net‐ work. We want to take these weights and tune 

them a bit more to find good values for our final neural network model.  

The output layer.  

The normal goal of a deep network is to learn a set of features. The first layer of a deep network 

learns how to reconstruct the original dataset. The subsequent layers learn how to reconstruct 

the probability distributions of the activations of the previous layer. The output layer of a neural 

network is tied to the overall objective. 

Applications 

We employ deep belief networks in place of deep feedforward networks or even convolutional 

neural networks in more sophisticated setups. 

Applications of DBN are as follows: 

• Recognition of images. 

• Sequences of video. 

• Data on mocap. 

• Speech recognition. 

What is the difference between deep belief and deep neural networks? 

Deep belief networks differ from deep neural networks in that they make connections between 

layers that are undirected (not pre-determined), thus varying in topology by definition. 

What type of algorithms are DBNs? 

Greedy learning algorithms are used to train deep belief networks. In the greedy approach, the 

algorithm adds units in top-down layers and learns generative weights that minimize the error 

on training examples. Gibbs sampling is used to understand the top two hidden layers. 

What is a deep belief network used for? 

Deep Belief Networks (DBNs) have been used to address the problems associated with classic 

neural networks, such as slow learning, becoming stuck in local minima owing to poor 

parameter selection, and requiring many training datasets. 

 



Generative Adversarial Networks 

Generative Adversarial Networks (GANs) are a powerful class of neural networks that are used 

for unsupervised learning. It was developed and introduced by Ian J. Goodfellow in 2014. 

GANs are basically made up of a system of two competing neural network models which 

compete with each other and are able to analyze, capture and copy the variations within a 

dataset. 

To understand the term GAN let’s break it into separate three parts 

• Generative – To learn a generative model, which describes how data is generated in 

terms of a probabilistic model. In simple words, it explains how data is generated 

visually. 

• Adversarial – The training of the model is done in an adversarial setting. 

• Networks – use deep neural networks for training purposes. 

GAN consists of 2 models that automatically discover and learn the patterns in input data.  

The two models are known as Generator and Discriminator. 

They compete with each other to scrutinize, capture, and replicate the variations within a 

dataset. GANs can be used to generate new examples that plausibly could have been drawn 

from the original dataset. 

What is a Generator? 

A Generator in GANs is a neural network that creates fake data to be trained on the 

discriminator. It learns to generate plausible data. The generated examples/instances become 

negative training examples for the discriminator. It takes a fixed-length random vector carrying 

noise as input and generates a sample.  

The main aim of the Generator is to make the discriminator classify its output as real. The part 

of the GAN that trains the Generator includes: 

• noisy input vector 

• generator network, which transforms the random input into a data instance 

• discriminator network, which classifies the generated data  

• generator loss, which penalizes the Generator for failing to dolt the discriminator 

 



What is a Discriminator? 

The Discriminator is a neural network that identifies real data from the fake data created by the 

Generator. The discriminator's training data comes from different two sources: 

1. The real data instances, such as real pictures of birds, humans, currency notes, etc., are used 

by the Discriminator as positive samples during training. 

2. The fake data instances created by the Generator are used as negative examples during the 

training process. 

 

 

While training the discriminator, it connects to two loss functions. During discriminator 

training, the discriminator ignores the generator loss and just uses the discriminator loss. 

In the process of training the discriminator, the discriminator classifies both real data and fake 

data from the generator. The discriminator loss penalizes the discriminator for misclassifying 

a real data instance as fake or a fake data instance as real. 

The discriminator updates its weights through backpropagation from the discriminator loss 

through the discriminator network. 

Working of a GAN 

 



In GANs, there is a generator and a discriminator. The Generator generates fake samples of 

data(be it an image, audio, etc.) and tries to fool the Discriminator. The Discriminator, on the 

other hand, tries to distinguish between the real and fake samples. The Generator and the 

Discriminator are both Neural Networks and they both run in competition with each other in 

the training phase. The steps are repeated several times and in this, the Generator and 

Discriminator get better and better in their respective jobs after each repetition. The working 

can be visualized by the diagram given below: 

Here, the generative model captures the distribution of data and is trained in such a manner that 

it tries to maximize the probability of the Discriminator in making a mistake. The 

Discriminator, on the other hand, is based on a model that estimates the probability that the 

sample that it got is received from the training data and not from the Generator. 

The GANs are formulated as a minimax game, where the Discriminator is trying to minimize 

its reward V(D, G) and the Generator is trying to minimize the Discriminator’s reward or in 

other words, maximize its loss.  

It can be mathematically described by the formula below: 

 

where, 

G = Generator 

D = Discriminator 

Pdata(x) = distribution of real data 

P(z) = distribution of generator 

x = sample from Pdata(x) 

z = sample from P(z) 

D(x) = Discriminator network 

G(z) = Generator network 

Variations of GAN 

Deep Convolutional Generative Adversarial Networks 

One variant of GANs is the Deep Convolutional Generative Adversarial Network (DCGAN). 

DCGAN is one of the most popular also the most successful implementation of GAN. It is 

composed of ConvNets in place of multi-layer perceptrons. The ConvNets are implemented 

without max pooling, which is in fact replaced by convolutional stride. Also, the layers are not 

fully connected. 

Conditional GAN (CGAN)  

CGAN can be described as a deep learning method in which some conditional parameters are 

put into place. In CGAN, an additional parameter ‘y’ is added to the Generator for generating 

the corresponding data. Labels are also put into the input to the Discriminator in order for the 

Discriminator to help distinguish the real data from the fake generated data. 



GAN vs Variational Autoencoder 

GANs focus on trying to classify training records as being from the model distribution or the 

real distribution. When the discriminator model makes a prediction in which there is a 

difference between the two distributions, the generator network adjusts its parameters. 

Eventually the generator converges on parameters that reproduce the real data distribution, and 

the discriminator is unable to detect the difference.  

With variational autoencoders (VAEs) we’re setting up this same problem with probabilistic 

graphical models to reconstruct the input in an unsupervised fashion. VAEs attempt to 

maximize a lower bound on the log likelihood of the data such that the generated images look 

more and more real.  

Another interesting difference between GANs and VAEs is how the images are generated. With 

basic GANs the image is generated with arbitrary code and we don’t have a way to generate a 

picture with specific features. VAEs, in contrast, have a specific encode/decode scheme with 

which we can compare the generated image to the original image. This gives us the side effect 

of being able to code for specific types of images to be generated. 

 

Differences between Generative and Discriminative Model 

 

 


