Deep Learning

Course Code	20CS4701A	Year	IV	Semester	Ι
	Program Elective - IV	Branch	CSE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Machine Learning
Continuous Internal Evaluation:	30	Semester End Evaluationn:	70	Total Marks:	100

Upon s		
CO1	Understand the fundamental concepts of Deep learning.	
CO2	Apply concepts of deep networks to analyze various architectures.	L3
CO3	Apply deep learning models to build applications in various domains.	L3
CO4	Analyze the given problem and apply suitable deep learning algorithm.	L4

Micro Syllabus						
Unit No	Contents					
I	 Fundamentals of Deep Networks ➢ Defining Deep Learning ➢ What Is Deep Learning 	CO1				
	 Common Architectural Principles of Deep Networks: Parameters, Layers Activation Functions [Linear Function, Sigmoid Function, Tanh Function, Rectified Linear Unit, Leaky ReLU] Loss Functions Loss Vs Accuracy Measures Hyper parameters. 					
II	 Building Blocks of Deep Networks RBMs Phases of RBF Applications of RBF Autoencoders Hyper parameters of Autoencoders 	CO1, CO2, CO4				

		Variational Autoencoders.				
	Major Architectures of Deep Networks					
		Unsupervised pretrained networks				
		Deep Belief Networks				
		Generative Adversarial Networks.				
	Convolutional Neural Networks (CNNs)					
		➤ The Convolution Operation,				
III		Motivation				
		Pooling	CO3, CO4			
		Convolution and Pooling as an Infinitely Strong Prior				
		Variants of the Basic Convolution Function				
		Structured Outputs				
		Data Types				
		Efficient Convolution Algorithms				
		Random or Unsupervised Features				
		➤ The Neuroscientific Basis for Convolutional Networks, Applications.				
	Sequence Modeling – Recurrent and Recursive Nets					
IV		Unfolding Computational Graphs				
1 1		Recurrent Neural Networks	CO1,			
		Encoder-Decoder Sequence-to-Sequence Architectures	CO3, CO4			
		Deep Recurrent Networks				
		Recursive Neural Networks				
		The Long Short-Term Memory and Other Gated RNNs, and				
		Applications.				
\mathbf{v}	Deep Learning applications		GO1			
•		Computer Vision.	CO1,			
		Speech Recognition.	CO3, CO4			
		Natural Language Processing.				
		Other Applications.				

Learning Resources

Text books

- 1. Josh Patterson and Adam Gibson, —Deep learning: A practitioner's approach, O'Reilly Media, First Edition, 2017.
- 2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, —Deep Learningl, MIT Press, 2016.
- 3. Deep learning, Amit Kumar Das, Saptarsi Goswami, Pabitra Mitra, Amlan Chakrabarti, First Edition, 2021, Pearson.

References

- 4. Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O_Reilly, Shroff Publishers, 2019.
- 5. Deep learning Cook Book, Practical recipes to get started Quickly, Douwe Osinga, O_Reilly, Shroff Publishers, 2019.
- 6. Deep learning Illustrated A Visual Interactive Guide to Artificial Intelligence, Jon Krohn, Grant Beyleveld, Aglae Bassens, First Edition, 2020, Pearson.

e-Resources and other Digital Material

- 1. https://www.deeplearningbook.org/
- 2. https://onlinecourses.nptel.ac.in/noc20_cs62/preview
- 3. https://www.udemy.com/share/101X6W/ (or) https://www.udemy.com/course/deep-learning-advanced-nlp/
- 4. https://www.youtube.com/watch?v=5tvmMX8r_OM&list=PLtBw6njQRU-rwp5_7C0oIVt26ZgjG9NI

Course Coordinators

Prof. &Head, Dept. of CSE

P. Naga Srinivasu (Dr. A. Jaya Lakshmi)