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WHAT IS AUTOMATED TEST DATA GENERATION? 

We require some knowledge of the software for generating test data. This knowledge may be 

known in terms of functionality and / or internal structure of the software. All techniques given 

in this book are based on either of the two or any combination of them. We manually write test 

cases on the basis of selected techniques and execute them to see the correctness of the 

software. How can we automate the process of generation of test cases / test data? The simplest 

way is to generate test data randomly, meaning, without considering any internal structure and 

/ or functionality of the software. However, this way may not be an appropriate way to generate 

test data automatically. 

 

 Test Adequacy Criteria 

We may generate a large pool of test data randomly or may use any specified technique. This 

data is used as input(s) for testing the software. We may keep testing the software if we do not 

know when to stop testing. How would we come to know that enough testing is performed? 

This is only possible if we define test adequacy criteria. Once we define this, our goal is to 

generate a test suite that may help us to achieve defined test adequacy criteria. Some of the 

ways to define test adequacy criteria are given as: 

1. Every statement of the source code should be executed at least once (statement coverage). 

2. Every branch of the source code should be executed at least once (branch coverage). 

3. Every condition should be tested at least once (condition coverage). 

4. Every path of the source code should be executed at least once (path coverage). 

5. Every independent path of the source code should be executed at least once (independent 

path coverage). 

6. Every stated requirement should be tested at least once. 

7. Every possible output of the program should be verified at least once. 

8. Every definition use path and definition clear path should be executed at least once. 

There may be many such test adequacy criteria. Effectiveness of testing is dependent on the 

definition of test adequacy criteria because it sets standards to measure the thoroughness of 

testing. Our thrust will only be to achieve the defined standard and thus, the definition of test 

adequacy criteria is very important and significant to ensure the correctness of the software. 

When our test suite fails to meet the defined criteria, we generate another test suite that does 

satisfy the criteria. Many times, it may be difficult to generate a large number of test data 

manually to achieve the criteria and automatic test data generation process may be used to 

satisfy the defined criteria. 

 

 Static and Dynamic Test Data Generation 

Test data can be generated either by statically evaluating the program or by actual execution of 

the program. The techniques which are based on static evaluation are called static test data 

generation techniques. Static test data generation techniques do not require the execution of the 

program. They generally use symbolic execution to identify constraints on input variables for 

the particular test adequacy criterion. The program is examined thoroughly and its paths are 

traversed without executing the program. Static test data generation techniques may not be 

useful for programs containing a large number of paths. The techniques which are based on the 

actual execution of the program for the generation of test data are called dynamic test data 

generation techniques. Test data is generated during the execution of the program. If during 

execution, a desired path is not executed, the program is traced back to find the statement 



 

 

which has diverted the desired flow of the program. A function minimization technique may 

be used to correct the input variables in order to select and execute the desired path. 

 

APPROACHES TO TEST DATA GENERATION 

The approaches to test data generation can be divided into two categories i.e. static and 

dynamic test data generation. One needs execution of the program (dynamic) and other does 

not need the execution of the program (static). We may automate any functional testing 

techniques (boundary value, equivalence partitioning) or structural testing techniques (path 

testing, data flow testing) for the generation of test data. The program will execute automatically 

and test data will be generated on the basis of the selected technique. The program execution 

will continue till the desired test adequacy criterion is achieved. 

 

 Random Testing 

Random testing generates test data arbitrarily and executes the software using that data as 

inputs. The output of the software is compared with the expected output based on the inputs 

generated using random testing. It is the simplest and easiest way to generate test data. For a 

complex test adequacy criterion, it may not be an appropriate technique because it does not 

consider the internal structure and functionality of the source code. Random testing is not 

expensive and needs only a random number generator along with the software to make it 

functional. The disadvantage of this technique is that it may not even generate test data that 

executes every statement of the source code. For any reasonably sized software, it may be 

difficult to attain ‘100% statement coverage’ which is one of the easiest test adequacy criteria. 

It is a fast technique but does not perform well as it merely generates test data based on 

probability and has low chances of finding semantically small bugs. A semantically small bug 

is a bug that is only revealed by a small percentage of the program inputs [EDVA99]. Large 

software or more complex test adequacy criteria may further increase the problems of random 

test data generators. However, in the absence of any other technique, it is the only popular 

technique which is commonly used in practice for the automatic generation of test data. 

 

 Symbolic Execution 

Many early techniques of test data generation used symbolic execution for the generation of 

test data in which symbolic values are assigned to variables instead of actual values. The 

purpose is to generate an expression in terms of input variables. Phil McMinn [MCMI04] has 

explained the concept effectively as: 

“Symbolic execution is not the execution of a program in its true sense, but 

rather the process of assigning expressions to program variables as a path is 

followed through the code structure.” 

We may define a constraint system with the help of input variables which determines the 

conditions that are necessary for the traversal of a given path [CLAR76, RAMA76, BOYE75]. 

We have to find a path and then to identify constraints which will force us to traverse that 

particular path. 



 

 

 

We consider a program for determination of the nature of roots of a quadratic equation. The 

source code and program graph of the program are given Figure 12.1 and 12.2 respectively. We 

select the path (1-7, 13, 25, 28-32) for the purpose of symbolic execution. 

 
#include<stdio.h> 

#include<conio.h> 

 
1. void main() 

2. { 

3. int a,b,c,valid=0,d; 

4. clrscr(); 

5. printf("Enter values of a, b and c:\n"); 

6. scanf("%d\n %d\n %d",&a,&b,&c); 

7. if((a>=0)&&(a<=100)&&(b>=0)&&(b<=100)&&(c>=0)&&(c<=100)){ 

8. valid=1; 

9. if(a==0){ 

10. valid=-1; 

11. } 

12. } 

13. if(valid==1){ 

14. d=b*b-4*a*c; 

15. if(d==0){ 

16. printf("Equal roots"); 

17. } 

18. else if(d>0){ 

19. printf("Real roots"); 

20. } 

21. else{ 

22. printf("Imaginary roots"); 

23. } 

24. } 

25. else if(valid==-1){ 

26. printf("Not quadratic"); 

27. } 

28. else { 

29. printf("The inputs are out of range"); 

30. } 

31. getch(); 

32. } 

Figure 12.1. Program for determination of nature of roots of a quadratic equation 

The input variables a, b and c are assigned the constant variables x, y and z respectively. At 

statement number 7, we have to select a false branch to transfer control to statement number 

13. Hence, the first constraint of the constraint system for this path is: 

(i) (x <= 0 or x > 100 or 

y <= 0 or y > 100 or 

z <= 0 or z > 100) 

and (valid = 0) 



 

 

 

 

Figure 12.2. Program graph of program given in Figure 12.1 

 

The path needs statement number 13 to become false so that control is transferred to 

statement number 25. The second constraint of the constraint system for this path is: 

(ii) valid != 1 

Finally, the path also needs statement number 25 to become false so that control is 

transferred to statement number 28. Hence, the third constraint of the constraint system for this 

path is: 

(iii) valid != -1 

To execute the selected path, all of the above mentioned constraints should be satisfied. One 

of the test cases that traverse the path (1-7, 13, 25, 28-32) may include the following inputs: 



 

 

 

(x = -1, y = 101, z = 101) 

Another set of inputs may be (x = -1, y = 90, z = 60). The same path is traversed with both 

of the test cases. Similarly, if we select x path (1-7, 13, 25-27, 31, 32), constraints of the system 

are identified as: 

(i) (x <= 0 or x > 100 

y <= 0 or y > 100 

z <= 0 or z > 100) 

and (valid = 0) 

(ii) valid != 1 

(iii) valid = -1 

Clearly constraints (i) and (iii) are contradictory, meaning thereby, infeasibility of path. So 

path (1-7, 13, 25-27, 31, 32) is not feasible. Table 12.1 shows the constraints and identifies 

feasible/ unfeasible independent paths of the program given in Figure 12.1. Some paths are not 

feasible, although shown in the program graph for completion of the graph (see row 2 and row 

3 of Table 12.1). Infeasible paths will not have any inputs and expected outputs as shown in 

Table 12.1. 

 

Table 12.1. Constraints and values of paths (feasible/not feasible) of program given in Figure 12.1 

S. No. x y z Expected Output Path Constraints Feasible? 

1. 101 50 50 Input values not 

in range 

1-7, 13, 25, 28-32 (x <= 0 or x > 100 or 

y <= 0 or y > 100 or 
z <= 0 or z > 100) 

and (valid = 0) 

Yes 

      valid != 1  

      valid != -1  

2. - - - - 1-7, 13, 25-27, (x <= 0 or x > 100 No 

     31, 32 y <= 0 or y > 100 

z <= 0 or z > 100) 

and (valid = 0) 

 

      valid != 1  

      valid = -1  

3. - - - - 1-9, 12, 13, 25, (x > 0 and x <= 100 No 

     28-32 and y > 0 and y <= 

100 and z > 0 and z 
<= 100) and x != 0 

and (valid = 1) 

 

      valid != 1  

4. 0 50 50 Not quadratic 1-13, 25-27, 31, (x > 0 and x <= 100 Yes 

     32 and y > 0 and y <= 

100 and z > 0 and z 
<= 100) and x = 0 
and (valid = -1) 

 

      valid != 1  

      valid = -1  

       (Contd.) 



 

 

 
(Contd.)        

S. No x y z Expected Output Path Constraints Feasible? 

5. 99 0 0 Equal roots 1-9, 12-17, 24, (x > 0 and x <= 100 Yes 

     31, 32 and y > 0 and y <= 

100 and z > 0 and z 
<= 100) and x != 0 
and (valid = 1) 

 

      valid = 1  

6. 50 50 1 Real roots 1-9, 12-15, 18-20, (x > 0 and x <= 100 Yes 

     24, 31, 32 and y > 0 and y <= 

100 and z > 0 and z 

<= 100) and x != 0 
and (valid = 1) 

 

      valid = 1  

7. 50 50 50 Imaginary roots 1-9, 12-15, 18, (x > 0 and x <= 100 Yes 

     21-23, 24, 31, 32 and y > 0 and y <= 

100 and z > 0 and z 

<= 100) and x != 0 
and (valid = 1) 

 

      valid = 1  

Therefore, in symbolic execution, constraints are identified for every predicate node of the 

selected path. We may generate test data for selected paths automatically using identified 

constraints. 

Christoph. C. Michael [MICH01] and others have discussed some problems of symbolic 

execution in practice as: 

“One such problem arises in infinite loops, where the number of iterations 

depends on a non constant expression. To obtain a complete picture of what 

the program does, it may be necessary to characterize what happens if the 

loop is never entered, if it iterates once, if it iterates twice, and so on.” 

We may choose a good number of paths by considering various possibilities in a loop. Thus, 

it may be a time consuming activity. We may execute the program symbolically for one path 

at a time. Paths may be selected by a user or by the software using some selection technique. 

In addition to loops, there are other constructs which are not easily evaluated symbolically 

like pointers, linked lists, graphs, trees, etc. There are also problems when the data is referenced 

indirectly as: 

x = (y + k [i]) * 2 

The value of i should be known in advance to decide which element of the array k is being 

referred to by k[i]. Hence, the use of pointers and arrays may complicate the process of 

symbolic execution of a program. Another question that arises is how to handle the function 

calls to modules where there is no access to the source code? Although any program can be 

written without using pointers, arrays and function calls, but in practice, their usage is quite 

popular due to the facilities they offer and may also help to reduce the complexity of the source 

code. The above mentioned limitations may reduce the applicability of symbolic execution to 

any reasonable size of the program. 



 

 

 

 

 Dynamic Test Data Generation 

 

As against symbolic execution, dynamic test data generation techniques require actual execution 

of the program with some selected input(s). The values of variables are known during execution 

of the program. We also determine the program flow with such selected input(s). If the desired 

program flow / path is not executed, we may carefully examine the source code and identify the 

node where the flow took the wrong direction. We may use different types of search methods to 

alter the flow by changing the inputs till the desired path is achieved. This process may be very 

time consuming and may require many trials before a suitable input is identified. When we 

change the flow at a particular node, some other flows at different nodes may also change 

accidentally. Christoph. C. Michael and others [MICH01] have given their views about dynamic 

test data generation as: 

“This paradigm is based on the idea that if some desired test requirement is 

not satisfied, the data collected during execution can still be used to determine 

which tests come closest to satisfying the requirement. With the help of this 

feedback, test inputs are incrementally modified until one of them satisfies 

the requirement.” 

We consider a program given in Figure 12.3 in which statement number 8 contains a condition 

‘if (a >= 10)’. If we want to select the TRUE branch of this condition, we must choose inputs x 

and y in such a way that the value of ‘a’ is greater than or equal to 10, when statement number 8 

is executed. How do we come to know the value of ‘a’? One way is to execute the program up 

to statement number 8 and note the value of ‘a’. The value of ‘a’ noted at statement number 8, 

when inputs given to the program are x and y, is represented as a
8
(x, y). We define the following 

function f(x, y) which is minimal when the TRUE branch is executed at statement number 8. 

f(x, y) = 
10  a8 (x, y)  if a8 (x, y) < 10 

0 otherwise 

#include<stdio.h> 
#include<conio.h> 

1. void main() 
2. { 
3. int x,y,a; 
4. clrscr(); 
5. printf(“Enter values of x and y:\n”); 
6. scanf(“%d\n %d”, &x, &y); 
7. a=x-y; 
8. if(a >= 10) 
9. { 
10. printf(“\nx = %d”,x); 
11. } 
12. else 
13. { 
14. printf(“\ny = %d”,y); 
15. } 
16. getch(); 
17. } 

Figure 12.3. A typical program 



 

 

 

This function is also called objective function and the problem of test data generation is now 

reduced to only function minimization. To get the expected input (say ‘a’ for the program given 

in Figure 12.3), we have to find values of x and y that minimizes f(x,y). The objective function 

gives an indication to the test generator about its closeness to reaching the goal. The test generator 

evaluates function f(x, y) to know how close x and y are to satisfy the present test requirement 

being targeted. The test generator may further change the values of x and y and evaluate the 

function f(x, y) again to know what changes in x and y bring the input closer to satisfy the 

requirement. The test generator may keep on making changes in x and y and evaluates function 

f(x, y) until the requirement is satisfied. Finally, the test generator may find values of x and y that 

satisfy the targeted requirement. This is a heuristic technique and the objective function definition 

is dependent on the goal, which is nothing but the satisfaction of a certain test requirement. The 

program may, at the first time, execute on randomly generated input(s) and its behaviour is used 

as the basis of a search for a satisfactory input. Hence, using different types of search methods, 

the flow can be altered by manipulating the input in a way that the intended branch is taken 

[EDVA99]. It may require many iterations before a suitable input is found. Dynamic test data 

generation techniques generate a large amount of data during execution of the program to find 

expected input(s) for a desired path. Based on test adequacy criteria, a search strategy is adopted 

and the program is executed automatically till the chosen criteria is satisfied. 

 

TEST DATA GENERATION USING GENETIC ALGORITHM 

Evolutionary algorithms provide heuristic search strategy to find a particular solution using 

operators motivated by genetics and natural selection [MCMI04]. The most popular form of 

evolutionary algorithm is genetic algorithm in which search is driven by the use of various 

combinations of input variables in order to satisfy the goal of testing. 

Genetic Algorithm (GA) is based on natural genetics and Darwin’s principle of the survival of 

the fittest. It is used to find solutions for searching and optimization problems. A GA is a search 

procedure with a goal to find a solution in a multidimensional space. GA is generally many times 

faster than exhaustive search procedure and is a computer model of biological evolution. When 

GA is used to solve searching and optimization problems, very good results are obtained. With 

reference to software testing, GA is used to search the domain of input variables and to find those 

input variables which satisfy the desired goal of testing. GA is loosely based on the concept of 

genetics by combining samples to achieve new and fitter individuals [JONE96]. Inputs are 

combined to generate new inputs which are used for further searching of the desired goal. GA 

does not make incremental changes to a single structure, but maintains a population of structures 

from which new structures are created using genetic operators. The evolution is based on two 

primary operators i.e. mutation and crossover. The power of GA is the technique of applying GA 

operators (crossover and mutation) to a population of individuals. Despite their randomized 

nature, GA is not a simple random search. It uses the old knowledge held in a parent population 

to generate new solutions with improved performance. The population undergoes simulated 

evolution at each generation. Good solutions are retained and relatively bad ones are discarded 

and are replaced by fitter new members called offsprings. As given by Ali et al., the significant 

parameters for a genetic algorithm are [ALI10]: 

(i) Initial population 

(ii) Operators such as mutation and crossover with their values. 
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(iii) Fitness function created to guide the search procedure. 

(iv) Selection strategy for parents. 

(v) Stopping criteria. 

 

 Initial Population 

The initial population comprises a set of individuals generated randomly or heuristically. The 

selection of the starting generation has a significant effect on the performance of the next 

generation. Each individual is represented as a chromosome (binary or gray). A binary string 

representation is most popular to represent a chromosome. The chromosomes are composed of 

genes and are subjected to modification by means of mutation and crossover. The process is 

similar to a natural population of biological creatures where successive generations are 

conceived, born and raised until they themselves are ready to reproduce. Fitness of each 

individual is calculated for comparing them and to differentiate their performance. An 

individual who is near an optimum solution gets a higher fitness value than the one who is far 

away. During reproduction, two members (chromosomes) are chosen from the generation. The 

evolutionary process is then based on the GA operators (crossover and mutation), which are 

applied to them to produce two new members (offspring) for the next generation. 

 

 Crossover and Mutation 

There are two basic GA operators  crossover and mutation, which are commonly used in 

practice. However, many variants of both are also designed to find efficient solutions to the 

problem under investigation. Crossover operates at the individual (chromosome) level. 

Individuals are represented in the binary form. Crossover selects bits from parents 

(chromosome) and generates two new offsprings. In crossover operation, two members 

(parents) are selected from the population. A point along the bit string is selected at random, 

and the tails of the two bit strings are exchanged. This is known as one point crossover 

[JONE96]. For example, if two parents are [V
1
, V

2
, ….V

m
] and [W

1
, W

2
,…….W

m
], then 

crossing the chromosomes after the kth gene (1 k m) would produce the offsprings as: [V , 

V
2
,…..V

k
, W

k+1
, ….W

m
] and [W

1
, W

2
…..W

k
, V

k+1
….V

m
]. If parents are [11111111] and 

[00000000] and k = 5, the offsprings (children) after the application of crossover operator are 

[11111000] and [00000111]. A few examples of one point crossover operator are given in Table 

12.2. 

 

Table 12.2. Examples of one point crossover operator 

Sr. No. 
 

P1 

Parents 

P2 

 
Crossover (k) 

 
C1 

Offsprings 

C2 

1. 11001100 10011111 4 11001111 10011100 

2. 11001100 10011111 6 11001111 10011100 

3. 11001100 10011111 2 11011111 10001100 

4. 10000000 11111111 4 10001111 11110000 

5. 10000000 11111111 6 10000011 11111100 



 

 

m 

 

Two point crossover operates by selecting two random genes within the parent strings with 

subsequent swapping of bits between these two genes. If two parents are [V
1
, V

2
….V

m
] and 

[W
1
, W

2
….W

m
], and the first randomly chosen point is k with (1 k m-1) and the second 

random point is n with (k+1 n m) this would produce the offsprings as: 

[(V
1
, V

2
….V

k
), (W

k+1
….W

n
), (V

n+1
….V

m
)] and [(W

1
, W

2
,….W

k
), (V

k+1
, …..V

n
), (W

n+1
…W

m
)]. 

Examples of two point crossover operator is given in Table 12.3. 

 

Table 12.3. Examples of two point crossover operator 

Sr. No. Parents Crossover points Offsprings 

P1 P2 k n C1 C2 

1. 11001100 10011111 2 6 11011100 10001111 

2. 11001100 10011111 1 7 10011110 11001101 

3. 11111111 00000000 2 5 11000111 00111000 

4. 11111111 00000000 7 8 11111110 00000001 

5. 11110000 00001111 2 4 11000000 00110000 

Mutation changes random bits in the binary string. In the binary code, this simply means 

changing the state of a gene from 0 to 1 or vice-versa. Mutation is like a random walk through 

the search space and is used to maintain diversity in the population and to keep the population 

from prematurely converging on one (local) solution. Mutation avoids local optima and creates 

genetic material (say input) that may not be present in the current population. Mutation works 

by randomly changing the chosen bits from 1 to 0 or from 0 to 1. For example, after crossover, 

the generated offspring is [10001111] and the same may be mutated as [10011111] by changing 

the 4th bit from 0 to 1. We may also find optimum mutation probability P  which is the 

reciprocal of the chromosome size(s) and is given as: P
m 

=1/5. It would be unlikely for the code 

to have on average more than one bit of a chromosome mutated. If the mutation probability is 

too low, there will be insufficient global sampling to prevent convergence to a local optimum. 

If the rate of mutation is significantly increased, the location of global optima is delayed. After 

the crossover and mutation operations, we have the original population of parents and the new 

population of offspring. The survival of parents and offspring depends on the fitness value of 

every member of the population and is calculated on the basis of a fitness function. 

 

 Fitness Function 

GA is used to find the best solution of a problem. This is carried out using a fitness function. 

The purpose of the fitness function is simply explained by B.F. Jones and others [JONE96] 

as: 

“Perhaps the most important aspect of using genetic algorithms is the ability 

to define a suitable fitness function, which is a numeric measure of how close 

each sample test set is to the goal.” 

The fitness value is used to compare the individuals and to differentiate their performance. 

An individual who is near an optimum solution gets a higher fitness value than an individual 

who is far away. How do we define a fitness function? Every point in the search space is 

represented by a valid fitness value. 



 

 

 

For example, suppose that the function to optimize is f(A) = A3 where A  [0,10]. The fitness 

function here may be the same and is defined as: 

Fitness = A3 

Table 12.4 gives the chromosomes with their fitness values calculated by the fitness function. 

 
Table 12.4.  

Sr. No. Chromosome A1 Fitness (f
i
) 

1. C1 2 8 

2. C2 4 64 

3. C3 6 216 

4. C4 1 1 

The total fitness of the population is calculated as: 

4 

Fitness=  f
i 
= 289 

i 1 

Our objective is to achieve a higher fitness value of individuals which is expected to be 

closer to the global optimum. In this example, a higher fitness value is achieved when the value 

of A = 10. 

 

 Selection 

The selection operator selects two individuals from a generation to become parents for the 

recombination process (crossover and mutation). This selection may be based on fitness value 

or could be made randomly. If the fitness value is used, then higher value chromosomes will 

be selected. 

 

 Algorithm for Generating Test Data 

1. Genetic algorithm begins with an initial population which is randomly generated where 

each population is represented as a chromosome. 

2. Fitness of each individual is calculated for comparing them and to differentiate their 

performance. 

3. An individual who is near an optimum solution is assigned a higher fitness value. 

4. A stopping criterion is decided for stopping the test data generation process. It may be 

based on coverage criteria, number of iterations or the size of the final population. The 

following steps are repeated until the criterion is satisfied. 

(a) The genetic operators: crossover and mutation are randomly selected. If the 

crossover operator is selected the following steps are followed: 

(i) Parents are selected from the initial population on the basis of their fitness 

value. 

(ii) Crossover is performed to generate offsprings with probably better genes / 

fitness value. 



 

 

 

(a) Otherwise the following steps are followed: 

(i) Each offspring is mutated by occasional random alteration of a bit value with 

changes in some features with unpredictable consequences. 

(a) Data is prepared for the next generation. 

The flow chart of the above steps is given in Figure 12.4. The process will iterate until the 

population has evolved to form an optimum solution of the problems or until a maximum number 

of iterations have taken place. The GA is an evolutionary algorithm where definition of the fitness 

function for any search is very important. If the fitness function is effective, desired inputs will 

be selected early and may help us to traverse the desired path of the program under testing. 

GA generates first generation of data randomly (initial population) and then follows the 

steps of the flow chart given in Figure 12.4 to improve the fitness of individuals. On the basis 

of fitness value, crossover and mutation operators are used to generate offsprings (2nd 

generation individuals). This process continues until all individuals reach the maximum 

fitness. The system performs all operations from initial population to the last generation 

automatically. It does not require user interference. The automated generated test data may 

give better results with reduced effort and time [PRAV09]. 
 

 

Figure 12.4. Flow chart of various steps of genetic algorithm 



 

 

 

Example 12.1: Consider the program to divide two numbers given in Figure 12.5. Generate 

test data using genetic algorithm. 

#include<stdio.h> 
#include<conio.h> 

void main() 
{ 
int a, b, c; 
printf(“Enter value of a and b”); 
scanf(“%d %d”,&a, &b); 
if(b==0) 
{ 

printf(“Invalid Data”); 
} 
else 
{ 
c=a/b; 
} 
printf(“\n a/b= %d”,c); 
getch(); 
} 

 
Figure 12.5. Program to divide two numbers 

 

Solution: 

The fitness function is given below: 

Fitness function 

F(x) = 
 x 

 
y *100 

The criteria for selection of mutation and crossover operators are given below: 

If 

F(x)  0.2, use mutation operator 

0.2 < F(x) < 0.6, use crossover operator 

F(x)  0.6, criteria satisfied 

The steps for generating test data are given in the following tables. The mutation and 

crossover (one-point or two-point) bits are randomly selected. 

1. First Generation 
 

S. No. a b Operator 

1. 5 2 Mutation 

2. 100 3 Crossover 

3. 80 5 Mutation 



 

 

 

a = 5, b=2 

00000101 00000010 

The 2nd bit is selected randomly for mutation 

After mutation 

01000101 00000010 

a = 100, b=3 

01100100 00000011 

Two-point crossover is performed. The first randomly chosen point is 4 and the second is 6. 

After crossover 

01100000 00000111 

a = 80, b=5 

01010000 00000101 

The 7th bit is selected randomly for mutation 

After mutation 

01010010 00000101 

2. Second Generation 

 

S. No. a b Operator 

1. 69 2 Crossover 

2. 96 7 Mutation 

3. 82 5 Mutation 

a = 69, b=2 

01000101 00000010 

One-point crossover is performed with randomly chosen point 5. 

After crossover 

01000010 00000101 

a = 96, b=7 

01100000 00000111 

The 1st bit is selected randomly for mutation 

After mutation 

11100000 00000111 

a = 82, b=5 

01010010 00000101 

The 1st bit is selected randomly for mutation 

After mutation 

11010010 00000101 

3. Third Generation 
 

S. No. a b Operator 

1. 66 5 Mutation 

2. 224 7 Crossover 

3. 210 5 Crossover 



 

 

 

a = 66, b=5 

01000010 00000101 

The 1st bit is selected randomly for mutation 

After mutation 

11000010 00000101 

a = 224, b=7 

11100000 00000111 

Two-point crossover is performed. The first randomly chosen point is 4 and the second is 6. 

After crossover 

11100100 00000011 

a = 210, b=5 

11010010 00000101 

Two-point crossover is performed. The first randomly chosen point is 5 and the second is 7. 

After crossover 

11010100 00000011 

4. Fourth Generation 

 

S. No. A b Operator 

1. 194 5 Crossover 

2. 228 3 
 

 

3. 212 3 
 

 

a = 194, b=5 

11000010 00000101 

Two-point crossover is performed. The first randomly chosen point is 5 and the second is 7. 

After crossover 

11000100 00000011 

5. Fifth Generation 

 

S. No. A b Operator 

1. 196 3 
 

 

2. 228 3 
 

 

3. 212 3 
 

 

The criteria is satisfied after generating 5th generation population. The testing will be stopped 

after achieving the defined criteria. 

Example 12.2: Consider the program given in Figure 12.1. Generate test data using genetic 

algorithm. 

Solution: 

The fitness function is given below: 

F(x) = (10 – a
8
(x, y))/10 if a

8
(x, y) < 10 



 

 

 

The criteria for selection of mutation and crossover operators are given below: 

If 

F(x, y)  0.2, use mutation operator 

0.2 < F(x, y) < 0.6, use crossover operator 

F(x, y)  0.6, criteria satisfied 

The tables below show the steps for generating test data. 

1. First Generation 
 

S. No. x y Operator 

1. 10 7 Crossover 

2. 19 10 Mutation 

x = 10, y=7 

00001010 00000111 

After crossover 

00001011 00000110 

x = 19, y=10 

00010011 00001010 

The 14th bit is selected randomly for mutation 

After mutation 

00010011 00001110 

2. Second Generation 
 

S. No. x y Operator 

1. 11 6 Crossover 

2. 19 14 Crossover 

x = 11, y=6 

00001011 00000110 

Two-point crossover is performed. The first randomly chosen point is 3 and the second is 6. 

After crossover 

00000111 00001010 

x = 19, y=14 

00010011 00001110 

One-point crossover is performed with randomly chosen point 6. 

After crossover 

00010010 00001111 

3. Third Generation 
 

S. No. x y Operator 

1. 7 10  

2. 18 15 
 

 

After the 3rd generation, the criteria are satisfied. Testing will be stopped at this point. 
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Table 12.5. Automated test data generation tools 

 

 
TEST DATA GENERATION TOOLS 

 

The use of tools for the generation of test data is still in its infancy, although some software 

industries have been using their own tools for the generation of test data. The output of such a 

tool is a set of test data, which include a sequence of inputs to the system under test. Some 

tools are also available that accept manually created, automatically generated, predefined test 

sequences and executes the sequences without human intervention and supervision. A few 

examples of such tools are Mercury’s WinRunner, LoadRunner, Rational Robot and Teleogic 

Tau Tester. The purpose of these tools is to execute already generated test cases and not to 

generate test data automatically. We should also not confuse this with modeling tools like 

Rational Rose, Objecteering, Simulink and Autofocus, which are used for modeling various 

software engineering activities. The automated test generation tools are different and designed 

for a specific purpose of test data generation. 

Some of the popular test generation tools are given in Table 12.5. 

 

The software industry is focusing more on the quality of a product instead of increasing 

functionality. Testing is the most popular and useful way to improve several quality aspects 

such as reliability, security, correctness, ease of usage, maintainability, etc. If test data is 

generated automatically, it will reduce the effort and time of testing. Although the process of 

automated test data generation is still in the early stages, some reasonable success has been 

achieved in the industry. Further research is needed to develop effective tools and techniques. 

A special effort is also required to increase the flexibility, user friendliness and ease of use of 

these tools. 


