

UNIT-4

Selection, Minimization and Prioritization of Test

Cases for Regression Testing

Table 7.1. Comparison of regression and development testing

S.No. Development Testing Regression Testing

1. We write test cases. We may use already available test cases.

2. We want to test all portions of the

source code. source code and the portion affected by the

3.

4.

We do development testing just We may have to do regression testing many

once in the lifetime of the software. times in the lifetime of the software.

We do development testing to obtain

5.

6.

the software. the software.

Performed under the pressure of Performed in crisis situations, under greater time

release date. constraints.

Separate allocation of budget and Practically no time and generally no separate

time. budget allocation.

Focus is on the whole software with 7.

affected portions with the objective of ensuring

8. Time and effort consuming activity Not much time and effort is consumed as com-

(40% to 70%). pared to development testing.

WHAT IS REGRESSION TESTING?

When we develop software, we use development testing to obtain confidence in the correctness

of the software. Development testing involves constructing a test plan that describes how we

should test the software and then, designing and running a suite of test cases that satisfy the
requirements of the test plan. When we modify software, we typically re-test it. This process

of re-testing is called regression testing.

Hence, regression testing is the process of re-testing the modified parts of the software and

ensuring that no new errors have been introduced into previously tested source code due to

these modifications. Therefore, regression testing tests both the modified source code and other

parts of the source code that may be affected by the change. It serves several purposes like:

Increases confidence in the correctness of the modified program.

Locates errors in the modified program.

Preserves the quality and reliability of the software.

Ensures the software’s continued operation.

We typically think of regression testing as a software maintenance activity; however, we

also perform regression testing during the latter stage of software development. This latter

stage starts after we have developed test plans and test suites and used them initially to test the

software. During this stage of development, we fine-tune the source code and correct errors in

it, hence these activities resemble maintenance activities. The comparison of development

testing and regression testing is given in Table 7.1.

 Regression Testing Process

Regression testing is a very costly process and consumes a significant amount of resources.

The question is “how to reduce this cost?” Whenever a failure is experienced, it is reported to

the software team. The team may like to debug the source code to know the reason(s) for this

failure. After identification of the reason(s), the source code is modified and we generally do

not expect the same failure again. In order to ensure this correctness, we re-test the source code

with a focus on modified portion(s) of the source code and also on affected portion(s) of the

source code due to modifications. We need test cases that target the modified and affected

portions of the source code. We may write new test cases, which may be a ‘time and effort

consuming’ activity. We neither have enough time nor reasonable resources to write new test

cases for every failure. Another option is to use the existing test cases which were designed for

development testing and some of them might have been used during development testing. The

existing test suite may be useful and may reduce the cost of regression testing. As we all know,

the size of the existing test suite may be very large and it may not be possible to execute all

tests. The greatest challenge is to reduce the size of the existing test suite for a particular

failure. The various steps are shown in Figure 7.1. Hence, test case selection for a failure is the

main key for regression testing.

Figure 7.1. Steps of regression testing process

 Selection of Test Cases

We want to use the existing test suite for regression testing. How should we select an appropriate

number of test cases for a failure? The range is from “one test case” to “all test cases”. A ‘regression

test cases’ selection technique may help us to do this selection process. The effectiveness of the

selection technique may decide the selection of the most appropriate test cases from the test suite.

Many techniques have been developed for procedural and object oriented programming languages.

Testing professionals are, however, reluctant to omit any test case from a test suite that might expose

a fault in the modified program. We consider a program given in Figure 7.2 along with its modified

version where the modification is in line 6 (replacing operator ‘*’ by ‘-‘). A test suite is also given

in Table 7.2.

1. main() 1. main ()

2. { 2. {

3. int a, b, x, y, z; 3. int a, b, x, y, z;

4. scanf (“%d, %d”, &a, &b); 4. scanf (“%d, %d”, &a, &b);

5. x = a + b ; 5. x = a + b;

6. y = a* b; 6. y = a – b;

8. z = x / y ; 8. z = x / y ;

9. } 9. }

10. else { 10. else {

11. z = x * y ; 11. z = x * y ;

12. } 12. }

13. printf (“z = %d \ n”, z); 13. printf (“z = %d \ n“, z);

14.

(a)

}

Original program with fault in line 6.

14.

}

Figure 7.2. Program for printing value of z

Table 7.2. Test suite for program given in Figure 7.2

Set of Test Cases

S. No. Inputs Execution History

 a b

1 2 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14

2 1 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14

3 3 2 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14

4 3 3 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14

In this case, the modified line is line number 6 where ‘a*b’ is replaced by ‘a-b’. All four test

cases of the test suite execute this modified line 6. We may decide to execute all four tests for

the modified program. If we do so, test case 2 with inputs a = 1 and b = 1 will experience a

‘divide by zero’ problem, whereas others will not. However, we may like to reduce the number

of test cases for the modified program. We may select all test cases which are executing the

modified line. Here, line number 6 is modified. All four test cases are executing the modified

line (line number 6) and hence are selected. There is no reduction in terms of the number of

test cases. If we see the execution history, we find that test case 1 and test case 2 have the same

execution history. Similarly, test case 3 and test case 4 have the same execution history. We

choose any one test case of the same execution history to avoid repetition. For execution

history 1 (i.e. 1, 2, 3, 4, 5, 6, 7, 8, 10, 11), if we select test case 1, the program will execute

well, but if we select test case 2, the program will experience ‘divide by zero’ problem. If

several test cases execute a particular modified line, and all of these test cases reach a particular

affected source code segment, minimization methods require selection of only one such test

case, unless they select the others for coverage elsewhere. Therefore, either test case 1 or test

case 2 may have to be selected. If we select test case 1, we miss the opportunity to detect the

fault that test case 2 detects. Minimization techniques may omit some test cases that might

expose fault(s) in the modified program. Hence, we should be very careful in the process of

minimization of test cases and always try to use safe regression test selection technique (if at

all it is possible). A safe regression test selection technique should select all test cases that can

expose faults in the modified program.

REGRESSION TEST CASES SELECTION

Test suite design is an expensive process and its size can grow quite large. Most of the times,

running an entire test suite is not possible as it requires a significant amount of time to run all

test cases. Many techniques are available for the selection of test cases for the purpose of

regression testing.

 Select All Test Cases

This is the simplest technique where we do not want to take any risk. We want to run all test

cases for any change in the program. This is the safest technique, without any risk. A program

may fail many times and every time we will execute the entire test suite. This technique is

practical only when the size of the test suite is small. For any reasonable or large sized test

suite, it becomes impractical to execute all test cases.

 Select Test Cases Randomly

We may select test cases randomly to reduce the size of the test suite. We decide how many

test cases are required to be selected depending upon time and available resources. When we

decide the number, the same number of test cases is selected randomly. If the number is large,

we may get a good number of test cases for execution and testing may be of some use. But, if

the number is small, testing may not be useful at all. In this technique, our assumption is that

all test cases are equally good in their fault detection ability. However, in most of the situations,

this assumption may not be true. We want to re-test the source code for the purpose of checking

the correctness of the modified portion of the program. Many randomly selected test cases may

not have any relationship with the modified portion of the program. However, random selection

may be better than no regression testing at all.

 Select Modification Traversing Test Cases

We select only those test cases that execute the modified portion of the program and the portion

which is affected by the modification(s). Other test cases of the test suite are discarded.

Actually, we want to select all those test cases that reveal faults in the modified program.

These test cases are known as fault revealing test cases. There is no effective technique by

which we can find fault revealing test cases for the modified program. This is the best selection

approach, which we want, but we do not have techniques for the same. Another lower objective

may be to select those test cases that reveal the difference in the output of the original program

and the modified program. These test cases are known as modification revealing test cases.

These test cases target that portion of the source code which makes the output of the original

program and the modified program differ. Unfortunately, we do not have any effective

technique to do this. Therefore, it is difficult to find fault revealing test cases and modification

revealing test cases.

The reasonable objective is to select all those test cases that traverse the modified source

code and the source code affected by modification(s). These test cases are known as

modification traversing test cases. It is easy to develop techniques for modification traversing

test cases and some are available too. Out of all modification traversing test cases, some may

be modification revealing test cases and out of some modification revealing test cases, some

may be fault revealing test cases. Many modification traversing techniques are available but

their applications are limited due to the varied nature of software projects. Aditya Mathur has

rightly mentioned that [MATH08]:

“The sophistication of techniques to select modification traversing tests

requires automation. It is impractical to apply these techniques to large

commercial systems unless a tool is available that incorporates at least one safe

test minimization technique. Further, while test selection appears attractive

from the test effort point of view, it might not be a practical technique when tests

are dependent on each other in complex ways and that this dependency cannot

be incorporated in the test selection tool”.

We may effectively implement any test case selection technique with the help of a testing

tool. The modified source code and source code affected by modification(s) may have to be

identified systematically and this selected area of the source code becomes the concern of test

case selection. As the size of the source code increases, the complexity also increases, and need

for an efficient technique also increases accordingly.

REDUCING THE NUMBER OF TEST CASES

Test case reduction is an essential activity and we may select those test cases that execute the

modification(s) and the portion of the program that is affected by the modification(s). We may

minimize the test suite or prioritize the test suite in order to execute the selected number of test

cases.

 Minimization of Test Cases

We select all those test cases that traverse the modified portion of the program and the portion

that is affected by the modification(s). If we find the selected number very large, we may still

reduce this using any test case minimization technique. These test case minimization techniques

attempt to find redundant test cases. A redundant test case is one which achieves an objective

which has already been achieved by another test case. The objective may be source code

coverage, requirement coverage, variables coverage, branch coverage, specific lines of source

code coverage, etc. A minimization technique may further reduce the size of the selected test

cases based on some criteria. We should always remember that any type of minimization is

risky and may omit some fault revealing test cases.

 Prioritization of Test Cases

We may indicate the order with which a test case may be addressed. This process is known as

prioritization of test cases. A test case with the highest rank has the highest priority and the test

case with the second highest rank has the second highest priority and as so on. Prioritization

does not discard any test case. The efficiency of the regression testing is dependent upon the

criteria of prioritization. There are two varieties of test case prioritization i.e. general test case

prioritization and version specific test case prioritization. In general test case prioritization, for

a given program with its test suite, we prioritize the test cases that will be useful over a

succession of subsequent modified versions of the original program without any knowledge of

modification(s). In the version specific test case prioritization, we prioritize the test cases,

when the original program is changed to the modified program, with the knowledge of the

changes that have been made in the original program.

Prioritization guidelines should address two fundamental issues like:

(i) What functions of the software must be tested?

(ii) What are the consequences if some functions are not tested?

Every reduction activity has an associated risk. All prioritization guidelines should be

designed on the basis of risk analysis. All risky functions should be tested on higher priority.

The risk analysis may be based on complexity, criticality, impact of failure, etc. The most

important is the ‘impact of failure’ which may range from ‘no impact’ to ‘loss of human life’

and must be studied very carefully.

The simplest priority category scheme is to assign a priority code to every test case. The

priority code may be based on the assumption that “test case of priority code 1 is more

important than test case of priority code 2.” We may have priority codes as follows:

Priority code 1 : Essential test case

Priority code 2 : Important test case

Priority code 3 : Execute, if time permits

Priority code 4 : Not important test case

Priority code 5 : Redundant test case

There may be other ways for assigning priorities based on customer requirements or market

conditions like:

Priority code 1 : Important for the customer

Priority code 2 : Required to increase customer satisfaction

Priority code 3 : Help to increase market share of the product

We may design any priority category scheme, but a scheme based on technical considerations

always improves the quality of the product and should always be encouraged.

Table 7.3. Risk analysis table

S. No. Potential Problem Probability of Impact of that Risk Exposure

occurrence of problem Problem

1.

2.

3.

4.

RISK ANALYSIS

Unexpected behaviours of a software programme always carry huge information and most of

the time they disturb every associate person. No one likes such unexpected behaviour and

everyone prays that they never face these situations in their professional career. In practice, the

situation is entirely different and developers do face such unexpected situations frequently and,

moreover, work hard to find the solutions of the problems highlighted by these unexpected

behaviours.

We may be able to minimize these situations, if we are able to minimize the risky areas of

the software. Hence, risk analysis has become an important area and in most of the projects we

are doing it to minimize the risk.

 What is Risk?

Tomorrow’s problems are today’s risks. Therefore, a simple definition of risk is a problem that

may cause some loss or threaten the success of the project, but, which has not happened yet.

Risk is defined as the “probability of occurrence of an undesirable event and the impact of

occurrence of that event.” To understand whether an event is really risky needs an understanding

of the potential consequences of the occurrences / non-occurrences of that event. Risks may

delay and over-budget a project. Risky projects may also not meet specified quality levels.

Hence, there are two things associated with risk as given below:

(i) Probability of occurrence of a problem (i.e. an event)

(ii) Impact of that problem

Risk analysis is a process of identifying the potential problems and then assigning a

‘probability of occurrence of the problem’ value and ‘impact of that problem’ value for each

identified problem. Both of these values are assigned on a scale of 1 (low) to 10 (high). A factor

‘risk exposure’ is calculated for every problem which is the product of ‘probability of

occurrence of the problem’ value and ‘impact of that problem’ value. The risks may be ranked

on the basis of its risk exposure. A risk analysis table may be prepared as given in Table 7.3.

These values may be calculated on the basis of historical data, past experience, intuition and

criticality of the problem. We should not confuse with the mathematical scale of probability

values which is from 0 to 1. Here, the scale of 1 to 10 is used for assigning values to both the

components of the risk exposure.

The case study of ‘University Registration System’ given in chapter 5 is considered and its

potential problems are identified. Risk exposure factor for every problem is calculated on the

basis of ‘probability of occurrence of the problem’ and ‘impact of that problem’. The risk

analysis is given in Table 7.4.

Table 7.4. Risk analysis table of ‘University Registration System’

S. No. Potential Problems Probability of

occurrence of

problem

Impact of

that Problem

Risk

Exposure

1. Issued password not available 2 3 6

2. Wrong entry in students detail form 6 2 12

3. Wrong entry in scheme detail form 3 3 9

4. Printing mistake in registration card 2 2 4

5. Unauthorised access 1 10 10

6. Database corrupted 2 9 18

7. Ambiguous documentation 8 1 8

8. Lists not in proper format 3 2 6

9.

 2 1 2

10. School not available in the database 2 4 8

The potential problems ranked by risk exposure are 6, 2, 5, 3, 7, 10, 1, 8, 4 and 9.

 Risk Matrix

Risk matrix is used to capture identified problems, estimate their probability of occurrence

with impact and rank the risks based on this information. We may use the risk matrix to assign

thresholds that group the potential problems into priority categories. The risk matrix is shown

in Figure 7.3 with four quadrants. Each quadrant represents a priority category.

Figure 7.3. Threshold by quadrant

The priority category in defined as:

Priority category 1 (PC-1) = High probability value and high impact value

Priority category 2 (PC-2) = High probability value and low impact value

Priority category 3 (PC-3) = Low probability value and high impact value

Priority category 4 (PC-4) = Low probability value and low impact value

In this case, a risk with high probability value is given more importance than a problem with

high impact value. We may change this and may decide to give more importance to high impact

value over the high probability value and is shown in Figure 7.4. Hence, PC-2 and PC-3 will

swap, but PC-1 and PC-4 will remain the same.

Figure 7.4. Alternative threshold by quadrant

There may be situations where we do not want to give importance to any value and assign

equal importance. In this case, the diagonal band prioritization scheme may be more suitable

as shown in Figure 7.5. This scheme is more appropriate in situations where we have difficulty

in assigning importance to either ‘probability of occurrence of the problem’ value or ‘impact

of that problem’ value.

We may also feel that high impact value must be given highest priority irrespective of the

‘probability of occurrence’ value. A high impact problem should be addressed first, irrespective

of its probability of occurrence value. This prioritization scheme is given in Figure 7.6. Here,

the highest priority (PC-1) is assigned to high impact value and for the other four quadrants;

any prioritization scheme may be selected. We may also assign high priority to high ‘probability

of occurrence’ values irrespective of the impact value as shown in Figure 7.7. This scheme may

not be popular in practice. Generally, we are afraid of the impact of the problem. If the impact

value is low, we are not much concerned. In the risk analysis table (see Table 7.4), ambiguous

documentations (S. No. 7) have high ‘probability of occurrence of problem’ value (8), but

impact value is very low (1). Hence, these faults are not considered risky faults as compared

to ‘unauthorized access’ (S. No. 5) where ‘probability of occurrence’ value is very low (1) and

impact value is very high (10).

Figure 7.5. Threshold by diagonal quadrant

Figure 7.6. Threshold based on high ‘Impact of Problem’ value

Figure 7.7. Threshold based on high ‘probability of occurrence of problem’ value

After the risks are ranked, the high priority risks are identified. These risks are required to

be managed first and then other priority risks in descending order. These risks should be

discussed in a team and proper action should be recommended to manage these risks. A risk

matrix has become a powerful tool for designing prioritization schemes. Estimating the

probability of occurrence of a problem may be difficult in practice. Fortunately, all that matters

when using a risk matrix is the relative order of the probability estimates (which risks are more

likely to occur) on the scale of 1 to 10. The impact of the problem may be critical, serious,

moderate, minor or negligible. These two values are essential for risk exposure which is used

to prioritize the risks.

CODE COVERAGE PRIORITIZATION TECHNIQUE

We consider a program P with its modified program P and its test suite T created to test P.

When we modify P to P , we would like to execute modified portion(s) of the source code and

the portion(s) affected by the modification(s) to see the correctness of modification(s). We

neither have time nor resources to execute all test cases of T. Our objective is to reduce the size

of T to T using some selection criteria, which may help us to execute the modified portion of

the source code and the portion(s) affected by modification(s).

A code coverage based technique [KAUR06, AGGA04] has been developed which is based

on version specific test case prioritization and selects T from T which is a subset of T. The

technique also prioritizes test cases of T and recommends use of high priority test cases first

and then low priority test cases in descending order till time and resources are available or a

reasonable level of confidence is achieved.

Table 7.5.

S. No. Variable name Description

1. T1 It is a two dimensional array and is used to store line numbers of lines of

source code covered by each test case.

2. modloc

3. mod_locode It is a one-dimensional array and is used to store line numbers of modi-

4. nfound It is a one-dimensional array and is used to store the number of lines of

5. pos

6. candidate

7. priority

It is a one-dimensional array and is used to set the position of each test

case when nfound is sorted.

It is a one-dimensional array. It sets the bit to 1 corresponding to the

position of the test case to be removed.

It is a one-dimensional array and is used to set the priority of the selected

test case.

 Test Cases Selection Criteria

The technique is based on version specific test case prioritization where information about

changes in the program is known. Hence, prioritization is focused around the changes in the

modified program. We may like to execute all modified lines of source code with a minimum

number of selected test cases. This technique identifies those test cases that:

(i) Execute the modified lines of source code at least once

(ii) Execute the lines of source code after deletion of deleted lines from the execution

history of the test case and are not redundant.

The technique uses two algorithms one for ‘modification’ and the other for ‘deletion’. The

following information is available with us and has been used to design the technique:

(i) Program P with its modified program P .

(ii) Test suite T with test cases t1, t2, t3,…..tn.

(iii) Execution history (number of lines of source code covered by a test case) of each test

case of test suite T.

(iv) Line numbers of lines of source code covered by each test case are stored in a two

dimensional array (t
11

, t
12

, t
13

,……t
ij
).

 Modification Algorithm

The ‘modification’ portion of the technique is used to minimize and prioritize test cases based

on the modified lines of source code. The ‘modification’ algorithm uses the following

information given in Table 7.5.

The following steps have been followed in order to select and prioritize test cases from test

suite T based on the modification in the program P.

First portion of the ‘modification’ algorithm

1. Repeat for i=1 to number of test cases
(a) Repeat for j=1 to number of test cases

(i) Initialize array T1[i][j] to zero
2. Repeat for i=1 to number of test cases

(a) Repeat for j=1 to number of test cases
(i) Store line numbers of line of source code covered by each test case.

3. Repeat for i=1 to number of modified lines of source code
(a) Store line numbers of modified lines of source code in array mod_locode.

Second portion of the ‘modification’ algorithm

2. Repeat for all true cases
(a) Repeat for i=1 to number of test cases

(i) Initialize array nfound[i] to zeroes
(ii) Set pos[i] =i

(b) Repeat for i=1 to number of test cases
(i) Initialize l to zero

Step I: Initialization of variables

Consider a hypothetical program of 60 lines of code with a test suite of 10 test cases. The

execution history is given in Table 7.6. We assume that lines 1, 2, 5, 15, 35, 45, 55 are

modified.

Table 7.6.

Test case Id Execution history

T1 1, 2, 20, 30, 40, 50

T2 1, 3, 4, 21, 31, 41, 51

T3 5, 6, 7, 8, 22, 32, 42, 52

T4 6, 9, 10, 23, 24, 33, 43, 54

T5 5, 9, 11, 12, 13, 14, 15, 20, 29, 37, 38, 39

T6 15, 16, 17, 18, 19, 23, 24, 25, 34, 35, 36

T7 26, 27, 28, 40, 41, 44, 45, 46

T8 46, 47, 48, 49, 50, 53, 55

T9 55, 56, 57, 58, 59

T10 3, 4, 60

The first portion of the ‘modification’ algorithm is used to initialize and read values of

variables T1, modloc and mod_locode.

Step II: Selection and prioritization of test cases

The second portion of the algorithm counts the number of modified lines of source code

covered by each test case (nfound).

(ii) Repeat for j=1 to length of the test case
If candidate[i] 1 then
Repeat for k=1 to modified lines of source code

If t1[i][j]=mod_locode[k] then
Increment nfound[i] by one
Increment l by one

Third portion of the ‘“modification’ algorithm

(c) Initialize l to zero
(d) Repeat for i=0 to number of test cases

(i) Repeat for j=1 to number of test cases
If nfound[i]>0 then

t=nfound[i]
nfound[i]=nfound[j]
nfound[j]=t
t=pos[i]
pos[i]=pos[j]
pos[j]=t

(e) Repeat for i=1 to number of test cases
(i) If nfound[i]=1 then

Increment count
(f) If count = 0 then

(i) Goto end of the algorithm
(g) Initialize candidate[pos[0]] = 1
(h) Initialize priority[pos[0]]= m+1

The status of test cases covering modified lines of source code is given in Table 7.7.

Table 7.7.

Test Cases Numbers of lines matched Number of Matches (nfound)

T1 1, 2 2

T2 1 1

T3 5 1

T4 - 0

T5 5, 15 2

T6 15, 35 2

T7 45 1

T8 55 1

T9 55 1

T10 - 0

Consider the third portion of ‘modification’ algorithm. In this portion, we sort the nfound

array and select the test case with the highest value of nfound as a candidate for selection. The

test cases are arranged in increasing order of priority.

The test cases with less value have higher priority than the test cases with higher value.

Hence, the test cases are sorted on the basis of number of modified lines covered as shown in

Table 7.8.

Fourth portion of the ‘modification’ algorithm

(a) Repeat for i=1 to length of selected test cases
(i) Repeat for j=1 to modified lines of source code

If t1[pos[0]][i] = mod[j] then
mod[j] = 0

Table 7.8.

Test Cases Numbers of lines

matched

Number of Matches

(nfound)

Candidate Priority

T1 1, 2 2 1 1

T5 5, 15 2 0 0

T6 15, 35 2 0 0

T2 1 1 0 0

T3 5 1 0 0

T7 45 1 0 0

T8 55 1 0 0

T9 55 1 0 0

T4 - 0 0 0

T10 - 0 0 0

The test case with candidate=1 is selected in each iteration. In the fourth portion of the

algorithm, the modified lines of source code included in the selected test case are removed

from the mod_locode array. This process continues until there are no remaining modified lines

of source code covered by any test case.

Since test case T1 is selected and it covers 1 and 2 lines of source code, these lines will be

removed from the mod_locode array.

mod_locode = [1, 2, 5, 15, 35, 45, 55] - [1, 2] = [5, 15, 35, 45, 55]

The remaining iterations of the ‘modification’ algorithm are shown in tables 7.9-7.12.

Table 7.9.

Test Cases Number of matches (nfound) Matches found Candidate Priority

T5 2 5, 15 1 2

T6 2 15, 35 0 0

T3 1 5 0 0

T7 1 45 0 0

T8 1 55 0 0

T9 1 55 0 0

T2 0 - 0 0

T4 0 - 0 0

T10 0 - 0 0

mod_locode = [5, 15, 35, 45, 55] – [5, 15] = [35, 45, 55]

Table 7.10.

Test Cases Number of matches (nfound) Matches found Candidate Priority

T6 1 35 1 3

T7 1 45 0 0

T8 1 55 0 0

T9 1 55 0 0

T2 0 - 0 0

T3 0 - 0 0

T4 0 - 0 0

T10 0 - 0 0

mod_locode = [35, 45, 55] – [35] = [45, 55]

Table 7.11.

Test Cases Number of matches (nfound) Matches found Candidate Priority

T7 1 45 1 4

T8 1 55 0 0

T9 1 55 0 0

T2 0 - 0 0

T3 0 - 0 0

T4 0 - 0 0

T10 0 - 0 0

mod_locode = [45, 55] – [45] = [55]

Table 7.12.

Test Cases Number of matches (nfound) Matches found Candidate Priority

T8 1 55 1 5

T9 1 55 0 0

T2 0 - 0 0

T3 0 - 0 0

T4 0 - 0 0

T10 0 - 0 0

mod_locode = [55] – [55] = [Nil]

Hence test cases T1, T5, T6, T7 and T8 need to be executed on the basis of their

corresponding priority. Out of ten test cases, we need to run only 5 test cases for 100% code

coverage of modified lines of source code. This is 50% reduction of test cases.

 Deletion Algorithm

The ‘deletion’ portion of the technique is used to (i) update the execution history of test cases

by removing the deleted lines of source code (ii) identify and remove those test cases that cover

only those lines which are covered by other test cases of the program. The information used in

the algorithm is given in Table 7.13.

Table 7.13.

S. No. Variable Description

1. T1 It is a two-dimensional array. It keeps the number of lines of source code

covered by each test case i.

2. deloc It is used to store the total number of lines of source code deleted.

3. del_locode It is a one-dimensional array and is used to store line numbers of deleted

lines of source code.

4. count It is a two-dimensional array. It sets the position corresponding to every

matched line of source code of each test case to 1.

5. match It is a one-dimensional array. It stores the total count of the number of 1’s

in the count array for each test case.

6. deleted It is a one-dimensional array. It keeps the record of redundant test cases.

If the value corresponding to test case i is 1 in deleted array, then that test

case is redundant and should be removed.

Step I: Initialization of variables

We consider a hypothetical program of 20 lines with a test suite of 5 test cases. The execution

history is given in Table 7.14.

Table 7.14.

Test case Id Execution history

T1 1, 5, 7, 15, 20

T2 2, 3, 4, 5, 8, 16, 20

T3 6, 8, 9, 10, 11, 12, 13, 14, 17, 18

T4 1, 2, 5, 8, 17, 19

T5 1, 2, 6, 8, 9, 13

We assume that line numbers 6, 13, 17 and 20 are modified, and line numbers 4, 7 and 15

are deleted from the source code. The information is stored as:

First portion of the “deletion” algorithm

1. Repeat for i=1 to number of test cases

(a) Repeat for j=1 to length of test case i

(i) Repeat for l to number of deleted lines of source code

If T1[i][j]=del_locode then

Repeat for k=j to length of test case i

T1[i][k]=T1[i][k+1]

Initialize T1[i][k] to zero

Decrement c[i] by one

Second portion of the ‘deletion’ algorithm

2. Repeat for i=1 to number of test cases

(a) Repeat for j=1 to number of test cases

(i) Initialize array t1[i][j] to zero

(ii) Initialize array count[i][j] to zero

3. Repeat for i=1 to number of test cases

(a) Initialize deleted[i] and match [i] to zero

4. Repeat for i=1 to number of test cases

(a) Initialize c[i] to number of line numbers in each test case i

(b) Repeat for j=1 to c[i]

(c) Initialize t1[i][j] to line numbers of line of source code covered by each test case

delloc = 3

del_locode = [4, 7, 15]

modloc = 4

mod_locode = [6, 13, 17, 20]

After deleting line numbers 4, 7, and 15, the modified execution history is given in Table 7.15.

Table 7.15.

Test case Id Execution history

T1 1, 5, 20

T2 2, 3, 5, 8, 16, 20

T3 6, 8, 9, 10, 11, 12, 13, 14, 17, 18

T4 1, 2, 5, 8, 17, 19

T5 1, 2, 6, 8, 9, 13

Step II: Identification of redundant test cases

We want to find redundant test cases. A test case is a redundant test case, if it covers only those

lines which are covered by other test cases of the program. This situation may arise due to

deletion of a few lines of the program.

Consider the second portion of the ‘deletion’ algorithm. In this portion, the test case array

is initialized with line numbers of lines of source code covered by each test case.

Third portion of the ‘deletion’ algorithm

5. Repeat for i=1 to number of test cases

(a) Repeat for j=1 to number of test cases

(i) If i j and deleted[j] 1 then

Repeat for k=1 to until t1[i][k] 0

Repeat for l=1 until t1[j][l] 0

If t1[i][k]=t1[j][l] then

Initialize count [i][k]=1

(b) Repeat for m=1 to c[i]

(i) If count[i][m]=1 then

Increment match[i] with 1

(c) If match[i]=c[i] then

(i) Initialize deleted[i] to 1

6. Repeat for i=1 to number of test cases

(a) If deleted[i] =1 then

Remove test case i (as it is a redundant test case)

The third portion of the algorithm compares lines covered by each test case with lines

covered by other test cases. A two-dimensional array count is used to keep the record of line

number matched in each test case. If all the lines covered by a test case are being covered

by some other test case, then that test case is redundant and should not be selected for

execution.

On comparing all values in each test case with all values of other test cases, we found that

test case 1 and test case 5 are redundant test cases. These two test cases do not cover any line

which is not covered by other test cases as shown in Table 7.16.

Table 7.16.

Test Case

Line Number of LOC

Found In Test Case

Redundant Y/N

T1 1 T4 Y

 5 T2 Y

 20 T2 Y

T5 6 T3 Y

 8 T3 Y

 9 T3 Y

 1 T4 Y

 2 T2 Y

 13 T3 Y

Table 7.20.

The remaining test cases are = [T2, T3, T4] and are given in Table 7.17.

Table 7.17.

Test case Id Execution history

T2 2, 3, 5, 8, 16, 20

T3 6, 8, 9, 10, 11, 12, 13, 14, 17, 18

T4 1, 2, 5, 8, 17, 19

Now we will minimize and prioritize test cases using ‘modification’ algorithm given in

section 7.5.2. The status of test cases covering the modified lines is given in Table 7.18.

Table 7.18.

Test Cases Number of lines matched (found) Number of matches (nfound)

T2 20 1

T3 6, 13, 17 3

T4 17 1

Test cases are sorted on the basis of number of modified lines covered as shown in tables 7.19-7.20.

Table 7.19.

Test Cases Number of matches

(nfound)

Numbers of lines matched Candidate Priority

T3 3 6, 13, 17 1 1

T2 1 20 0 0

T4 1 17 0 0

mod_locode = [6, 13, 17, 20] – [6, 13, 17] = [20]

Test Cases Number of matches

(nfound)

Numbers of lines matched Candidate Priority

T2 1 20 1 2

T4 0 - 0 0

Hence, test cases T2 and T3 are needed to be executed and redundant test cases are T1 and T5.

Out of the five test cases, we need to run only 2 test cases for 100% code coverage of

modified code coverage. This is a 60% reduction. If we run only those test cases that cover any

modified lines, then T2, T3 and T4 are selected. This technique not only selects test cases, but

also prioritizes test cases.

