

UNIT-3

Creating Test Cases from Requirements
and Use Cases

USE CASE DIAGRAM AND USE CASES

Use case diagram is also used along with use cases to explain the functionality of the system.

This is a graphical representation and gives the top view of the system along with its users and

use cases. Use case diagram may be decomposed into a further level of abstraction. Use cases

and use case diagrams are normally used together to define the behaviour of a system.

A use case diagram visually explains what happens when an actor interacts with the

system. Actor represents the role of a user that interacts with the system. They are outsiders to

the system and can be human beings, other systems, devices, etc. We should not confuse the

actors with the devices they use. Devices are mechanisms that actors use to communicate with

the system, but they are not actors themselves. We use the computer keyboard for interaction;

in such a case, we are the actors, and not the keyboard that helps us to interact with the

computer. We use the printer to generate a report; in such case, the printer does not become

an actor because it is only used to convey the information. However, if we want to take

information from an external database, then, this database becomes an actor for our system.

A use case is started by a user for a specific purpose and completes when that purpose is

satisfied. It describes a sequence of actions a system performs to produce an observable output

for the interacting user (actor). The importance of a use case is effectively given by Greg

Fournier [FOUR09] as:

“The real value of a use case is the dynamic relationship between the actor

and the system. A well written use case clarifies how a system is used by the

actor for a given goal or reason. If there are any questions about what a

system does to provide some specific value to someone or something outside

the system, including conditional behaviour and handling conditions of when

something goes wrong, the use case is the place to find the answers.”

A use case describes who (any user) does what (interaction) with the system, for what goal,

without considering the internal details of the system. A complete set of use cases explains the

various ways to use the system. Hence, use cases define expected behaviours of the system and

helps us to define the scope of the system.

 Identification of Actors

An actor represents the role of a user that interacts with the system. An actor may be a
human being or a system that may interact with a use case keeping in view a particular
goal in mind. Some of the examples of the actors used in the case study of ‘University
registration system’ (discussed in Section 5.7) are given as:

(i) Administrator

(ii) Student

(iii) Faculty

(iv) Data entry operator

The URS will allow the above actors to interact with the system with their specific roles.

Depending upon the role, an actor will be able to access only the defined information from the

system. We may define the role of every actor as:

(i) Administrator: Able to add, modify or delete a programme, school, scheme, paper,

student, faculty and login information. Able to generate student registration card and

other reports.

(ii) Student: Able to add and modify his/her details and register for papers to be studied in

the current semester. Able to generate student registration card.

S. No. Use Case

1. Login

2. Maintain School
Details

Actors

Administrator, student,

faculty, DEO

Administrator

3. Maintain Programme Administrator
Details

4. Maintain Scheme
Details

Administrator

Description

Login

Change password

Add School

Edit School

Delete School

View School

Add Programme

Edit Programme

Delete Programme

View Programme

Add Scheme

Edit Scheme

Delete Scheme

(iii) Faculty: Able to generate desired reports.

(iv) Data entry operator: Able to add, modify or delete student and faculty information.

The identification of actors with their specified roles may define the scope for every actor

and its expected actions. Every actor may interact with one or more use cases designed for the

specified purpose.

 Identification of Use Cases

Whenever we design a system, we expect some functionalities from the system. To achieve

such functionalities, many actors interact with the system with some specified expectations.

The actor acts from the outside and may provide some inputs to the system and expect some

outputs from the system. After the finalization of requirements, we expect to create use cases

for the system. Some guidelines for the creation of use cases are given as:

(i) Every use case should have a specified functionality.

(ii) Every use case will have a name. Every name should be unique, meaningful and

purposeful to avoid confusion in the system.

(iii) One or more actors will interact with a use case.

(iv) An actor will initiate a use case.

(v) The role of actors should always be clearly defined for every use case. Who will initiate

the use case and under which conditions, should be clearly specified.

We should always remember that use cases describe who (actor) does what (interaction)

with the system, for what goal, without considering the internal details of the system.

In the URS, we may identify the following use cases for each of the actors.

(Contd.)

Description

Add Paper

Edit Paper

Delete Paper

View Paper

Add Student

Edit Student

Delete Student

View Student

Add Faculty

Edit Faculty

Delete Faculty

View Faculty

Add Student Information

Select Papers offered by the
programme

Roll number wise

Programme wise

Semester wise

Paper wise

Printing of Registration card Administrator, student Generate Registration
Card

10.

Administrator, faculty Generate Report 9.

Administrator, student Maintain Student
Registration Details

8.

Administrator, DEO Maintain Faculty
Details

7.

Administrator, DEO Maintain Student

Details

6.

Actors

Administrator

Use Case

Maintain Paper
Details

S. No.

5.

(Contd.)

We should identify use cases very carefully, because it has serious implications on the

overall design of the system. Use cases should not be too small or too big. The basic flow and

all alternative flows should also be specified. Identifying and writing good use cases means

providing better foundations for the intended system.

 Drawing of Use Case Diagram

The use case diagram shows actors, use cases and the relationship between them. It gives the

pictorial view of the system. In use case diagram, actors are represented as stick figures and use

cases are represented as ovals. The relationship between an actor and a use case is represented by

a solid arrow. The components of the use case diagram are given in Figure 6.1.

Figure 6.1. Components of use case diagram

Actors appear outside of a system. A relationship is shown by an arrow and is between the

actor and a use case and vice versa. A relationship between a ‘user’ (actor) and ‘login’ use case

is shown as:

If the system is small, one diagram may be sufficient to represent the whole system, but for

large systems, we may require to represent the whole system in many diagrams. The use case

diagram of the URS is given in Figure 6.2. There are ten use cases and four actors. The

administrator interacts with all use cases, whereas a student may interact only with ‘Login’,

‘Maintain student registration’ details and ‘Generate registration card’ use cases.

Figure 6.2. Use case diagram of the URS

Table 6.1. Jacobson’s use case template

Brief Description. Describe a quick background of the use case.

Actors. List the actors that interact and participate in this use case.

List the primary events that will occur when this use case is executed.
Any subsidiary events that can occur in the use case should be

Special Requirements.

special requirements in the use case narration. These business rules will also be used for
writing test cases. Both success and failure scenarios should be described here.

conditions.

be listed.

Post-conditions.

use case executes.

Extension Points. List of related use cases, if any.

 Writing of Use Case Description

Actors interact with the use cases for predefined purposes. Hence, each actor does something

with the system and the system responds accordingly. Each step is considered as a sequence of

events and is called a flow. There are two types of flows:

(i) Basic Flow: It is the main flow and describes the sequence of events that takes place

most of the time between the actor and the system to achieve the purpose of the use

case.

(ii) Alternative Flows: If the basic flow is not successful due to any condition, the

system takes an alternative flow. An alternative flow may occur due to failure of an

expected service because of occurrence of exceptions/errors. There may be more

than one alternative flow of a use case, but may not occur most of the time. Any

alternative flow takes place under certain conditions in order to fulfil the purpose of

a use case.

There is no standard method for writing use cases. Jacobson et al. [JACO99] has given a

use case template which is given in Table 6.1. This captures the requirements effectively and

has become a popular template. Another similar template is given in Table 6.2 which is also

used by many companies [COCK01, QUAT03]. All pre-conditions that are required for the use

case to perform should be identified. Post conditions, which will emerge after the execution of

a use case, should also be defined. The pre-condition is necessary for the use case to start but

is not sufficient to start the use case. The use case must be started by an actor when the pre-

condition is true. A post-condition describes the state of the system after the ending of the use

case. A post-condition for a use case should be true regardless of which flow (basic or any

alternative flows) is executed.

Table 6.2. Alternative use case template

Introduction. Describe the brief purpose of the use case.

Actors. List the actors that interact and participate in this use case.

condition.

Post-condition. After the execution of the use case, different states of the systems are

5.

5.1.
5.2.

List the primary events that will occur when this use case is executed.

Special Requirements.

as special requirements. Both success and failure scenarios should be described.

Associated use cases. List the related use cases, if any.

Use Case Description of login use case

1 Introduction

This use case documents the steps that must be followed in order to log into the URS

2 Actors

Administrator
Student

Faculty
Data Entry Operator

3 Condition

The user must have a valid login Id and password.

4 Post-Condition

If the use case is successful, the actor is logged into the system. If not, the system state
remains unchanged.

5 Basic Flow

It starts when the actor wishes to login to the URS.

(v) The system requests that the actor specify the function he/she would like to perform
(either Login, Change Password).

Basic Flow 1: Login

The system requests that the actor enters his/her login Id and password information.
The actor enters his/her login Id and password.

The actor enters into the system.
Basic Flow 2: Change Password

The system requests that the actor enter his/her login Id, old password, new password

information.

We may write a ‘Login’ use case description of the URS using the template given in Table

6.2 and the same is given below:

(Contd.)

Use Case Description of login use case

6

login Id and /or password empty, the system displays an error message. The actor returns to

This allows the user to exit during the use case. The use case ends.

7 Special Requirement

None

8 Associated use cases

None

The use cases describe the flow of events which include the basic flow and alternative flows

and this description should be long enough to clearly explain its various steps. The basic flow

and alternative flows are written in simple and clear sentences in order to satisfy all the

stakeholders. A login use case, which allows entering the correct login Id and password, has

two basic flows (the user is allowed to enter after giving the correct login Id and password and

change password) and many alternative flows (incorrect login Id and/or password, invalid

entry and user Exits). If an alternative flow has other alternative flows, the use case may have

a longer description of the flows and may become a complex use case.

We should write the basic flow independently of the alternative flows and no knowledge of

alternative flows is considered. The basic flow must be complete in itself without reference to

the alternative flows. The alternative flow knows the details of when and where it is applicable

which is opposite to the basic flow. It inserts into the basic flow when a particular condition is

true [BITT03].

GENERATION OF TEST CASES FROM USE CASES

We may start writing the test cases as soon as use cases are available. This may happen well

before any source code is written. It is always advisable to follow a systematic approach for

the generation of test cases. These test cases may give us better coverage of the source code

during testing. Any adhoc way may generate many duplicate test cases that may result in to

poor coverage of the source code. A systematic approach may include the following steps:

(i) Generation of scenario diagrams

(ii) Creation of use case scenario matrix

(iii) Identification of variables in a use case

(iv) Identification of different input states of available variables

(v) Design of test case matrix

(vi) Assigning actual values to variables

If all steps are followed in the above mentioned sequence, we may have a good number of

planned and systematic test cases which will result in an efficient and effective testing

process.

 Generation of Scenario Diagrams

A use case scenario is an instance of a use case or a complete path through the use case

[HEUM01]. The basic flow is one scenario and every alternative path gives another scenario.

Use case scenarios may also be generated due to various combinations of alternative flows.

The basic and alternative flows for a use case are shown in Figure 6.3.

Figure 6.3. Basic and alternative flows with pre- and post-conditions

The basic flow is represented by a straight arrow and the alternative flows by the curves.

Some alternative flows return to the basic flow, while others end the use case. At the end of the

basic flow, a post-condition is generated while at the starting of the basic flow, a pre-condition

is required to be set.

There are the following basic and alternative flows in login use case:

Basic flow:

(i) Login

(ii) Change password

Alternative flows:

(i) Invalid Login Id/password

(ii) Invalid entry

(iii) User exits

The basic and alternative flows for login use case are given in Figure 6.4. In Figure 6.4 (a),

there is one basic flow which will be executed when the correct login Id and password are

given. This basic flow is expected to be executed most of the time. If any input (Login Id or

password) is invalid, then the alternative flow will be executed and the actor will return to the

beginning of the basic flow. If at any time, the user decides to exit, then alternative flow 3 will

be executed.

Figure 6.4. Basic and alternative flows for login use case (a) Login (b) Change password

Alternative Flow 1: Invalid login Id/password

Alternative Flow 2: Invalid Entry
Alternative Flow 3: User exits

 Creation of Use Case Scenario Matrix

Use case scenario diagrams generate many scenarios due to the basic flow, every alternative

flow along with the basic flow and various combinations of the basic and alternative flows. A

scenario matrix gives all possible scenarios of the use case scenario diagram. The scenario

matrix given in Table 6.3 gives all possible scenarios for the diagram given in Figure 6.3.

Table 6.3.

Scenario 1 Basic Flow

Scenario 2 Basic Flow Alternative Flow 1

Scenario 3 Basic Flow Alternative Flow 1 Alternative Flow 2

Scenario 4 Basic Flow Alternative Flow 3

Scenario 5 Basic Flow Alternative Flow 3 Alternative Flow 4

Scenario 6 Basic Flow Alternative Flow 3 Alternative Flow1

Scenario 7 Basic Flow Alternative Flow 3 Alternative Flow 1 Alternative Flow 2

Scenario 8 Basic Flow Alternative Flow 5

(Contd.)

(Contd.)

Scenario 9 Basic Flow Alternative Flow 5 Alternative Flow 6

Scenario 10 Basic Flow Alternative Flow 3 Alternative Flow 5

Scenario 11 Basic Flow Alternative Flow 3 Alternative Flow 5 Alternative Flow 6

In the basic and alternative flows scenario diagram of the login use case, there are six

possible paths (see Figure 6.4). These six paths become six scenarios of login use case and are

given in Table 6.4. Moreover, the path ‘Basic Flow 1, Alternative Flow 1 and Alternative Flow

3’ is impossible as per the use case description, because after giving incorrect login ID/

password, the actor returns to the beginning of the basic flow 1. Similarly, both ‘Basic Flow 2,

Alternative Flow 2 and Alternative Flow 3’ are also impossible. All valid combinations of the

basic flow and the alternative flows may be generated as per given use case description.

Table 6.4. Scenario matrix for the login use case

Scenario 1- Login Basic Flow 1

 Basic Flow 1 Alternative Flow 1

 Basic Flow 1 Alternative Flow 3

Scenario 4- Change Password Basic Flow 2

 Basic Flow 2 Alternative Flow 2

 Basic Flow 2 Alternative Flow 3

 Identification of Variables in a Use Case

We have to identify all input variables which have been used in every use case. For a login use

case, we use ‘login Id’ and ‘password’ as inputs for entering into the use case. These are two

input variables for the ‘Login’ use case. A variable may also be used as a selection variable

where many options are available for a variable. A selection variable may be values of buttons

available which provide input to the use case at some intermediate step of the use case. For

example, ‘Updation confirmed?’ will provide two options to an actor ‘Yes/No’ and thus based

on this selection input, the decision on whether updation is to be made or not, is made. We may

select a semester from a drop down menu. The following variables are used in the login use

case:

(i) Login Id

(ii) Password

(iii) Old password

(iv) New password

(v) Confirm password

These variables are inputs to the system and when an input or combination of specified

inputs is given, a particular behaviour (output) is expected from the system. Hence,

identification of these variables is important and helps in designing the test cases.

 Identification of Different Input States of a Variable

An input variable may have different states and the behaviour of the system may change if the

state of a variable is changed. Any variable may have at least two states i.e. valid state and

invalid state. If we consider the ‘Login Id’ variable of the login use case, it is expected that the

“Login Id should be alphanumeric of length 11 characters and only digits from 0 to 9 are

allowed. Alphabets, special characters and blank spaces are not allowed.” Hence, one state is

the valid login Id as per the given directions and another state is the invalid login Id which is

different from the given directions. There may be many different states of invalid variable. If

a variable is in an invalid state, then a different process flow is executed (different alternative

flow) or the system gives an unexpected output. The invalid variable should be given different

inputs and appropriate values should be given at the time of designing the test cases.

 Design of Test Case Matrix

We identify all variables and their different states for the purpose of designing test cases. One

way to do so is to create a test case matrix where rows of the matrix contain test cases and the

first column contains the scenario name and description and the remaining columns may

contain the various input variables including the selection variables. The last column contains

the expected output when these inputs are given to the system. A typical test case matrix is

given in Table 6.5.

Table 6.5. A typical test case matrix

Test

Case Id

Scenario Name and

Description

Input 1 Input 2 Input 3 Expected Output

(selection

variable)

TC1

TC2

TC3

TC4

The test case matrix for login use case is given in Table 6.6.

 Assigning Actual Values to Variables

In test case matrix, we have written only ‘valid input’, ‘invalid input’ and ‘not applicable (n/a)’

in the input value columns of various variables. Now, we want to assign actual values in these

columns in order to use them at the time of execution to get the actual output. We may also add

two additional columns with titles ‘Actual output’ and ‘Pass/fail’ which will be used at the time

of executing these test cases. There should be at least one test case for each scenario, but more

test cases may be designed, depending upon availability, time and resources. These test cases

may be very useful, effective and are also designed at an early stage of the software development

life cycle. The test cases for the ‘Login’ use case are given in Table 6.7.

Table 6.6. Test case matrix for the login use case

Test

case

Id

Scenario Name and

description

Input 1 Input 2 Input 3 Input 4 Input 5 Expected output Remarks (if any)

Login id Password Old password New password

password

TC1 Scenario 1- Login Valid input Valid input n/a n/a n/a User is allowed to login --

TC2 Scenario 2- Login Invalid input Valid input n/a n/a n/a Login id invalid Login Id is not in the

TC3 Invalid Entry Valid input Valid input n/a n/a n/a Login id invalid Login id does not exist

in database

TC4 Valid input Invalid input n/a n/a n/a Password invalid Password is not in the

TC5 Valid input Valid input n/a n/a n/a Password invalid Password does not

exist in database

TC6 Invalid input Invalid input n/a n/a n/a Login id and password

invalid

Login id and Password

format

TC7 Scenario 3- Login Valid /Invalid

input

Valid /Invalid

input

n/a n/a n/a User comes out of the --

system

TC8 Scenario 4- Change

password

Valid input n/a Valid input Valid input Valid input User is allowed to change

password

Password is changed

in the database

TC9 Scenario 5- Change Invalid input n/a Valid /Invalid

input

Valid /Invalid

input

Valid /Invalid Old password invalid Login Id is not in the

input

TC10 Invalid entry Valid input n/a Invalid input Valid /Invalid Valid /Invalid Old password invalid If old password is not

input input valid, other entries

become ‘do not care’

entries

TC11 Valid input n/a Valid input Invalid input Valid /Invalid New password invalid Password is not in the

input

TC12 Valid input n/a Valid input Valid input Valid input

TC13 Scenario 6- Change

Valid /Invalid

n/a Valid /Invalid

Valid /Invalid

not match new password password entries are
different

Valid /Invalid User is allowed to exit and --

password alternative input input input input returns to login screen

Table 6.7.

Invalid entry

invalid sponding password in the database. Other

become ‘do not care’.

TC11 01164521657 n/a Abc123 R12 * New password

invalid which is less than 4 characters. Other entries

TC12 01164521657 n/a Abc123 Abc124 Abc125 --

does not match

new password

TC13 Scenario 6-

Change password

Exit

* n/a * * * User is allowed to --

exit and returns to

login screen

*: ‘do not care’ conditions (valid/invalid inputs); n/a: option(s) not available for respective scenario

Test

case Id

Scenario Name

and description

Login Id Password Old

password

New

password

password

Expected output Remarks (if any)

TC1 Scenario 1- Login 01164521657 Abc123 n/a n/a n/a User is allowed to

login

--

TC2 Scenario 2- Login

1234 Abc123 n/a n/a n/a Login id invalid

less than 11 characters

TC3 Invalid Entry 01164521658 Abc123 n/a n/a n/a Login id invalid Login id does not exist in database

TC4 01164521657 R34 n/a n/a n/a Password invalid

less than 4 characters

TC5 01164521657 Abc124 n/a n/a n/a Login id invalid Password does not exist in database

TC6 1234 R34 n/a n/a n/a Login id/password

invalid

Login id and password are not in the speci-

-

ters and password is less than 4 characters.

TC7 Scenario 3- Login

Exit

* * n/a n/a n/a User comes out of

the system

--

TC8 Scenario 4-

Change password

01164521657 n/a Abc123 Abc124 Abc124 User is allowed to

change password

--

TC9 Scenario 5- 01165 n/a * * * Login Id invalid

TC10 Change password 01164521657 n/a Abc1 * * Old password Old password does not match the corre-

The use cases are available after finalizing the SRS document. If we start writing test cases

in the beginning, we may be able to identify defects at the early phases of the software

development. This will help to ensure complete test coverage as a complete test suite will be

designed directly from the use cases. This technique is becoming popular due to its applicability

in the early phases of software development. The technique is simple and directly applicable

from the use cases that are part of the SRS which is designed as per IEEE standard 830-1998.

Example 6.1: Consider the problem statement of the URS as given in chapter 5. Write the use

case description of use cases and generate test cases from these use cases.

Solution:

The use case description of ‘maintain school details’ use case is given below:

1 Introduction

Allow the administrator to maintain details of schools in the university. This includes adding, updat-

ing, deleting and viewing school information.

2 Actors

Administrator

3 Pre-Conditions

The administrator must be logged onto the system before this use case begins.

4 Post-Conditions

If the use case is successful, the school information is added/updated/deleted/viewed from the
system. Otherwise, the system state is unchanged.

5 Basic Flow

This use case starts when the administrator wishes to add/edit/delete/view school information.

(i) The system requests that the administrator specify the function he/she would like to perform

(either Add a school, Edit a school, Delete a school or View a school).
(ii)

If the administrator selects ‘Add a School’, the Add a School

If the administrator selects ‘Edit a School’, the Edit a School

If the administrator selects ‘Delete a School’, the Delete a School

If the administrator selects ‘View a School’, the View a School

Basic Flow 1: Add a School

The system requests that the administrator enter the school information. This includes:

(i) The system requests the administrator to enter the:
1. School name

2. School code

(ii) Once the administrator provides the requested information, the school is added to the system.

Basic Flow 2: Edit a School

(i) The system requests the administrator to enter the school code.
(ii) The administrator enters the code of the school. The system retrieves and displays the school

name information.
(iii) The administrator makes the desired changes to the school information. This includes any of the

(iv)

(v)
tion.

-

(Contd.)

Basic Flow 3: Delete a School

The system requests the administrator to specify the code of the school.

The administrator enters the code of the school. The system retrieves and displays the school

information.

The system deletes the school record.

Basic Flow 4: View a School

The system requests that the administrator specify the school code.

The system retrieves and displays the school information.

If in the Add a School or Edit a School

actor leaves the school name/code blank, the system displays an error message. The actor returns to

If in the Add a School

If in the Edit a School or Delete a School or View a School

code does not exist, the system displays an error message. The administrator returns to the basic

the Basic Flow is re-started at the beginning.

celled and the Basic Flow is re-started at the beginning.

This allows the user to exit during the use case. The use case ends.

7 Special Requirements

None.

8 Associated Use cases

Login

(Contd.)

The Use Case Scenario diagram of ‘Maintain school details’ use case is given in Figure 6.5

and the scenario matrix is given in Table 6.8. The test case matrix is given in Table 6.9 and

corresponding matrix with actual data values is given in Table 6.10.

Maintain School Details

Alternative Flow 2: School already exists

Alternative Flow 3: School not found

Alternative Flow 4: Edit cancelled

Alternative Flow 5: Delete cancelled

Alternative Flow 6: Deletion not allowed

Maintain Programme Details

Alternative Flow 2: Programme already exists

Alternative Flow 3: Programme not found

Alternative Flow 4: Edit cancelled

Alternative Flow 5: Delete cancelled

Alternative Flow 6: Deletion not allowed

Maintain Scheme Details Maintain Paper Details

Alternative Flow 1: Invalid Entry

Figure 6.5. Basic and alternative flows for ‘maintain school’, ‘programme’, ‘scheme’, ‘paper’, or

‘student details’ use cases (a) Add details (b) Edit details (c) Delete details (d) View details

The scenario diagram is the same for Maintain Programme details, ‘Maintain Scheme

details’, ‘Maintain Paper details’, and ‘Maintain Student details’.

(Contd.)

Maintain Scheme Details

Alternative Flow 3: Scheme not found

Alternative Flow 4: Edit cancelled

Alternative Flow 5: Delete cancelled

Alternative Flow 6: Deletion not allowed

Alternative Flow 7: User exits

Maintain Paper Details

Alternative Flow 3: Paper not found

Alternative Flow 4: Edit cancelled

Alternative Flow 5: Delete cancelled

Alternative Flow 6: Deletion not allowed

Alternative Flow 7: User exits

Maintain Student Details

Alternative Flow 2: Roll number already exists

Alternative Flow 3: Student not found

Alternative Flow 4: Edit cancelled

Alternative Flow 5: Delete cancelled

Alternative Flow 6: Deletion not allowed

Alternative Flow 7: User exits

 6.8.

Scenario 1- Add a school Basic Flow 1

Basic Flow 1 Alternative Flow 1

Basic Flow 1 Alternative Flow 2
exists

Basic Flow 1 Alternative Flow 7

Scenario 5- Edit a school Basic Flow 2

Basic Flow 2 Alternative Flow 1

Basic Flow 2 Alternative Flow 3

Basic Flow 2 Alternative Flow 4

Basic Flow 2 Alternative Flow 7

Scenario 10- Delete a school Basic Flow 3

Basic Flow 3 Alternative Flow 3

Basic Flow 3 Alternative Flow 5

Basic Flow 3 Alternative Flow 6
allowed

Basic Flow 3 Alternative Flow 7

Scenario 15- View a school Basic Flow 4

Basic Flow 4 Alternative Flow 3

Basic Flow 4 Alternative Flow 7

(Contd.)

As shown in Table 6.8, there are 17 scenarios for ‘Maintain School Details’ use case. For

‘Maintain School Details’ use case, we identify four input variables for various basic flows in

the use case. There are two input variables (school code, school name) and two selection

variables (edit confirmed, delete confirmed) in this use case. These inputs will be available for

the respective flows as specified in the use case.

code

Table 6.9.

Test

case

Id

Scenario and

description

Input 1

School

Input 2

School name

Edit Deletion

Expected result Remarks (if any)

TC1 Scenario 1- Add a

school

Valid input Valid input n/a n/a School is added suc-
cessfully

--

TC2 Scenario 2- Add a

school alternative

Invalid

input

Valid/invalid

input

n/a n/a Invalid school code

format. School name becomes do
 not care.

TC3 Scenario 2- Add a

school alternative

Valid input Invalid input n/a n/a Invalid school name

format

TC4 Scenario 3- Add a

school alternative
Valid input Valid input n/a n/a School code already

exist

The school with the same code is

already present in the database

already exists

TC5 Scenario 4- Add a

school alternative
Valid /

Invalid
input

Valid /Invalid

input

n/a n/a User is allowed to exit

and returns to Main
menu

--

TC6 Scenario 5- Edit a

school
Valid input Valid input Yes n/a School is updated

successfully
--

TC7 Scenario 6- Edit a

school alternative
Invalid
input

Valid/invalid
input

n/a n/a Invalid school code

format

TC8 Scenario 7- Edit a

school alternative
Valid input n/a n/a n/a School not found

does not exist in the database

TC9 Scenario 8- Edit can-

celled
Valid input Valid input No n/a Main screen of

school appears
--

TC10 Scenario 9- Edit a

school alternative
Valid /
Invalid

input

Valid /Invalid
input

n/a n/a User is allowed to exit
and returns to Main

menu

--

 (Contd.)

Test Scenario and 1 2 Edit Deletion Remarks (if any)

code

(Contd.)

case description
Id

School School name

TC11 Scenario 10- Delete a

school
Valid input n/a n/a Yes School is deleted suc-

cessfully
--

TC12 Scenario 11- Delete a

School not found

Valid input n/a n/a n/a School not found

not exist in the database

TC13 Scenario 12- Delete a

Delete cancelled

Valid input n/a n/a No Main screen of school
appears

operation

TC14 Scenario 13- Delete a Valid input n/a n/a n/a Deletion not allowed Programme of the school exists

Deletion not allowed

TC15 Scenario 14- Delete a

User exits

Valid /

Invalid
input

Valid /Invalid

input

n/a n/a User is allowed to exit

and returns to Main
menu

--

TC16 Scenario 15- View a

school
Valid input n/a n/a n/a School is displayed

successfully

code is displayed on the screen

TC17 Scenario 16- View a

School not found

Valid input n/a n/a n/a School not found

does not exist in the database

TC18 Scenario 17- View a

User exits

Valid /

Invalid

input

Valid /Invalid

input

n/a n/a User is allowed to exit

and returns to Main

menu

--

n/a: option(s) not available for respective scenario

There are 18 test cases created for the given 17 scenarios as shown in Table 6.9. Two test cases are designed for scenario 2. After

constructing these test cases, actual input values are given to all the variables in order to generate actual output and verify whether the

test case passes or fails (refer Table 6.10).

Table 6.10.

Test Scenario and School School Edit Deletion Expected Remarks (if

case description ID Name result any)
Id

TC1 Scenario 1- 101 University n/a n/a School is --
 Add a school School of added suc-

 Information cessfully

 technology

TC2 Scenario 2- 1001 * n/a n/a Invalid school School code
 Add a school code is not of
 alternative

entry

 length

TC3 Scenario 2- 101 12univ n/a n/a Invalid school School
 Add a school name name is

 alternative not in the

entry

format i.e.

 it contains
 digits in the

TC4 Scenario 3- 102 University n/a n/a School code
beginning
Entry with

 Add a school School of already exists the same
 alternative Management school code
 Studies already
 code already exists in the
 exists database
TC5 Scenario 4- * * n/a n/a User is --

 Add a school allowed to exit

 alternative and returns to

 Main menu

 exits

TC6 Scenario 5- 102 University Yes n/a School is --
 Edit a school School of updated suc-

 Management cessfully

TC7 Scenario 6- 101
Studies
univ n/a n/a Invalid school School

 Edit a school name name is not

 alternative in the speci-

entry

which is

 less than 10

TC8 Scenario 7- 103 n/a n/a n/a School not
characters
School code

 Edit a school found does not
 alternative exist in the
 database
 not found

TC9 Scenario 8- 101 University No n/a Main screen User does
 Edit cancelled School of of school

 Information appears the edit
 technology operation

(Contd.)

(Contd.)

Test Scenario and School School Edit Deletion Expected Remarks (if

case
Id

description ID Name result any)

TC10 Scenario 9-

Edit a school

alternative

exits

* * n/a n/a User is
allowed to exit
and returns to

Main menu

--

TC11 Scenario

10- Delete a

school

101 n/a n/a Yes School is
deleted suc-

cessfully

--

TC12 Scenario

11- Delete a

school alter-

School not

found

103 n/a n/a n/a School not

found

School code

does not
exist in the
database

TC13 Scenario

12- Delete

a school

alternative

102 n/a n/a No Main screen

of school
appears

--

cancelled

TC14 Scenario

13- Delete a

school alter-

Deletion not

allowed

102 n/a n/a n/a Deletion not

allowed

Programme

of the
school

exists

TC15 Scenario

14- Delete a

school alter-

User exits

* * n/a n/a User is
allowed to exit

and returns to
Main menu

--

TC16 Scenario 15-

View a school
101 n/a n/a n/a School is

displayed suc-
cessfully

--

TC17 Scenario 16-

View a school

alternative

not found

103 n/a n/a n/a School not
found

School code
does not
exist in the

database

TC18 Scenario 17-

View a school

alternative

* * n/a n/a User is
allowed to exit
and returns to

Main menu

--

exits

*: ‘do not care’ conditions (valid/invalid inputs)
n/a: option(s) that are not available for respective scenario

The use case description of ‘Maintain programme details’ use case is given below:

1. Introduction

Allow the administrator to maintain details of the programme in the school. This includes adding,

updating, deleting and viewing programme information.

2. Actors

Administrator

3. Pre-Conditions

The administrator must be logged onto the system and school details for which the programme
details are to be added/updated/deleted/viewed must be available in the system before this

use case begins.

4. Post-Conditions

If the use case is successful, the programme information is added/updated/deleted/viewed
from the system. Otherwise, the system state is unchanged.

5. Basic Flow

This use case starts when the administrator wishes to add/edit/delete/view programme information
(i) The system requests that the administrator specify the function he/she would like to perform

(either ‘Add a programme’, ‘Edit a programme’, ‘Delete a programme’ or ‘View a programme’)
(ii)

If the administrator selects ‘Add a Programme’, the Add a Programme

If the administrator selects ‘Edit a Programme’, the Edit a Programme

If the administrator selects ‘Delete a Programme’, the Delete a Programme

If the administrator selects ‘View a Programme’, the View a Programme

Basic Flow 1: Add a Programme

The system requests that the administrator enters the programme information. This includes:

(i) The system requests the administrator to select an already existing school and also enter:

1. Programme name
2. Duration (select through drop down menu)

3. Number of semesters

4. Programme code

(ii) Once the administrator provides the requested information, the programme is added to the
system.

Basic Flow 2: Edit a Programme

(i) The system requests that the administrator enters the programme code.

(ii) The administrator enters the programme code. The system retrieves and displays the pro-
gramme information.

(iii) The administrator makes the desired changes to the programme information. This includes
Add a Programme

(iv)
(v)

information.
Basic Flow 3: Delete a Programme

(i) The system requests that the administrator specify the programme code.

(ii) The administrator enters the programme code. The system retrieves and displays the pro-

gramme information.

(iii) The system deletes the programme record.

Basic Flow 4: View a Programme

(i)
(ii)

The system requests that the administrator specify the programme code.
The system retrieves and displays the programme information.

(Contd.)

Flows

duration/number of semesters/programme code or the actor leaves the programme/duration/
number of semesters/programme code empty, the system displays an error message. The actor

may renter the programme code.

is cancelled and the Basic Flow is re-started at the beginning.

delete is cancelled and the Basic Flow is re-started at the beginning.

This allows the user to exit during the use case. The use case ends.
Special Requirements

None.
Associated use cases

Login, Maintain School Details, Maintain Scheme Details.

 6.11.

Scenario 1- Add a programme

 exists

Scenario 10- Delete a programme

found

allowed

Scenario 15-View a programme

found

Basic Flow 1

Basic Flow 1 Alternative Flow 1

Basic Flow 1 Alternative Flow 2

Basic Flow 1 Alternative Flow 7

Basic Flow 2

Basic Flow 2 Alternative Flow 1

Basic Flow 2 Alternative Flow 3

Basic Flow 2 Alternative Flow 4

Basic Flow 2 Alternative Flow 7

Basic Flow 3

Basic Flow 3 Alternative Flow 3

Basic Flow 3 Alternative Flow 5

Basic Flow 3 Alternative Flow 6

Basic Flow 3 Alternative Flow 7

Basic Flow 4

Basic Flow 4 Alternative Flow 3

Basic Flow 4 Alternative Flow 7

(Contd.)

The Use Case Scenario of ‘Maintain programme details’ use case is given in Figure 6.5 and

the scenario matrix is given in Table 6.11.

From the use case, we identify seven input variables, out of which four are selection variables. The input variables are prog ramme name,

duration, number of semesters and programme code. The selection variables include school name, duration, edit confirmed and delete

confirmed. The test case matrix is given in Table 6.12 and the corresponding matrix with actual data values is given in Table 6.13.

Table 6.12.

Test Scenario Input 1 Input 2 Input 3 Input 4 Input 5 Edit Deletion Expected Remarks (if any)

case Name and School Programme Duration Number of Programme

 output

Id description selected name semesters code

TC1

TC2

Scenario 1- Add

a programme

Scenario

Yes

No

Valid input

Valid/

Valid

input

Valid/

Valid input

Valid/ Invalid

Valid input

Valid/

n/a

n/a

n/a

n/a

User is

allowed to
add a pro-
gramme

School not

--

User did not select

 2- Add a

programme

 Invalid input Invalid

input

input Invalid input selected a school

TC3

Invalid entry

—do—

Yes

Invalid input

Valid/

Valid/ Invalid

Valid/ Invalid

n/a

n/a

Programme

Programme name

TC4

—do—

Yes

Valid input

Invalid

input

Invalid

input

Valid/ Invalid

input

Valid/ Invalid

n/a

n/a

name invalid

Duration

is not in the speci-

Duration is not

TC5

TC6

—do—

—do—

Yes

Yes

Valid input

Valid input

input

Valid

input

Valid

input

Invalid input

Valid input

input

Valid/

Invalid input

Invalid input

n/a

n/a

n/a

n/a

invalid

Number of

semesters
invalid
Programme

selected

--

Programme code is

 input code invalid

format

TC7 Scenario 3- Add
a programme

Programme
code already

exist

Yes Valid input Valid
input

Valid input Valid input n/a n/a Programme
code already
exists

Entry with the
same programme
code already exists
in the database

 (Contd.)

(Contd.)

code

)

Test

case

Id

Scenario

Name and

description

Input 1

School

selected

Input 2

Programme

name

Input 3

Duration

Input 4

Number of

semesters

Input 5

Programme

Edit Deletion

Expected

output

Remarks (if any)

TC8 Scenario 4- Add Yes Valid / Valid / Valid / Valid / n/a n/a User is --

 a programme

User exits

 Invalid input Invalid

input

Invalid input Invalid input allowed to

exit and
returns to

Main menu

TC9 Scenario 5- Edit
a programme

n/a Valid input Valid
input

Valid input Valid input Yes n/a Programme
is suc-
cessfully

updated

--

TC10 Scenario 6-Edit n/a Invalid input Valid/ Valid/ Valid/ n/a n/a Programme Programme name

 a programme

Invalid entry

 Invalid

input

Invalid input Invalid input name

invalid

is not in the speci-

TC11 —do— n/a Valid input Invalid

input

Valid/

Invalid input

Valid/

Invalid input
n/a n/a Duration

invalid

Duration is not

selected

TC12 —do— n/a Valid input Valid
input

Invalid input Valid/
Invalid input

n/a n/a Number of
semesters
invalid

--

TC13 Scenario 7- Edit
a programme

n/a n/a n/a n/a Valid input n/a n/a Programme
not found

Programme with

programme code

 Programme not

found

 does not exist in

the database

TC14 Scenario 8- Edit
a programme

Edit cancelled

n/a Valid input Valid
input

Valid input Valid input No n/a Sub menu

of pro-

gramme
appears

User does not

operation

 (Contd.

(Contd.)

code

Test

case

Id

Scenario

Name and

description

Input 1

School

selected

Input 2

Programme

name

Input 3

Duration

Input 4

Number of

semesters

Input 5

Programme

Edit Deletion

Expected

output

Remarks (if any)

TC15 Scenario 9- Edit n/a Valid / Valid / Valid / Valid / n/a n/a User is --

TC16

a programme

User exits

Scenario

n/a

Invalid input

n/a

Invalid

input

n/a

Invalid input

n/a

Invalid input

Valid input

n/a

Yes

allowed to

exit and
returns to

Main menu
Programme

--

TC17

10- Delete a

programme

Scenario
11- Delete a
programme

n/a

n/a

n/a

n/a

Valid input

n/a

n/a

is success-

fully deleted

Programme

not found

Programme with

programme code

Programme not
 does not exist in

the database

TC18

found

Scenario

n/a

n/a

n/a

n/a

Valid input

n/a

No

Deletion

User does not con-

 12- Delete a

programme
alternative

 cancelled

operation

TC19

cancelled

Scenario

n/a

n/a

n/a

n/a

Valid input

n/a

n/a

Deletion not

Scheme of the

 13- Delete a

programme

 allowed programme exists

TC20

Deletion not
allowed
Scenario

n/a

n/a

n/a

n/a

Valid /

n/a

n/a

User is

--

 14- Delete a

programme

User exits

 Invalid input allowed to

exit and
returns to

Main menu

 (Contd.)

(Contd.)

code

n/a: option(s) not available for respective scenario

Test

case

Id

Scenario

Name and

description

Input 1

School

selected

Input 2

Programme

name

Input 3

Duration

Input 4

Number of

semesters

Input 5

Programme

Edit Deletion

Expected

output

Remarks (if any)

TC21 Scenario

15-View a
programme

n/a n/a n/a n/a Valid input n/a n/a Programme

details are
displayed

--

TC22 Scenario

16- View a
programme

n/a n/a n/a n/a Valid input n/a n/a Programme

not found

Programme with

programme code

Programme not
 does not exist in

the database
 found

TC23 Scenario
17- View a
programme

User exits

n/a n/a n/a n/a Valid /
Invalid input

n/a n/a User is
allowed to

exit and

returns to

Main menu

--

Table 6.13.

Test

case

Id

Scenario name

and description

School

selected

Programme

name

Duration Number of

semesters

Programme

code

Edit Deletion Expected

output

Remarks (if any)

TC1 Scenario 1- Add a

programme

TC2 Scenario 2- Add

a programme

Invalid entry

Yes MCA 3 6 12 n/a n/a User is

allowed to add
a programme

No * * * * n/a n/a School not

selected

--

User did not

select a school

TC3 —do— Yes M12Ca * * * n/a n/a Programme

name invalid

TC4 —do— Yes MCA * * n/a n/a Duration

invalid
TC5 —do— Yes MCA 3 12 * n/a n/a Number of

semesters

invalid

TC6 —do— Yes MCA 3 6 12d n/a n/a Programme

code invalid

Programme name
is not in the speci-

contains digits
Duration not
selected
Number of

semesters should
be 6 as duration
of the programme

is 3
Programme code

and cannot con-

tain alphabets

(Contd.)

TC7 Scenario 3- Add
a programme

Programme code

Yes BTech(IT) 4 8 13 n/a n/a Programme

code already
exists

Programme

with the same
programme code

exists in the

TC8
already exists
Scenario 4- Add
a programme

User exits

Yes * * * * n/a n/a User is
allowed to exit

and returns to

Main menu

database
--

(Contd.)

(Contd.)

Test

case

Scenario name

and description

School

selected

Programme

name

Duration Number of

semesters

Programme

code

Edit Deletion Expected

output

Remarks (if any)

 Id
TC9 Scenario 5- Edit

a programme

TC10 Scenario 6-Edit
a programme

Invalid entry

n/a BTech(IT) 4 8 13 Yes n/a Programme is
successfully
edited

n/a Mca123 * * * n/a n/a Programme
name invalid
in ‘Edit a pro-

--

Programme name
is not in the speci-

contains digits
TC11 —do— n/a BTech(IT) * * n/a n/a Duration

invalid
Duration not
selected

TC12 —do— n/a BTech(IT) 4 13 * n/a n/a Number of Number of semes-
 semesters ters should be 8
 as duration is 4

TC13 Scenario 7- Edit n/a n/a n/a n/a 14 n/a n/a Programme Programme with
 a programme not found

 programme code
 Programme not does not exist in
 found the database

TC14 Scenario 8- Edit n/a BTech(IT) 4 8 13 No n/a Blank form User does not
 a programme appears

 operation
 Edit cancelled

TC15 Scenario 9- Edit n/a * * * * n/a n/a User is --
 a programme allowed to exit

and returns to
User exits Main menu

TC16 Scenario 10- n/a n/a n/a n/a 12 n/a Yes Programme is --
 Delete a pro- successfully

 gramme deleted

TC17 Scenario n/a n/a n/a n/a 16 n/a n/a Programme Programme with
 11- Delete a not found

 programme programme code

 does not exist in
 Programme not the database
 found

(Contd.)

Test Scenario name School Programme Duration Number of Programme Edit
case and description selected name

Id

semesters code

Deletion Expected

output

Remarks (if any)

TC18 Scenario 12- n/a
Delete a pro-
gramme alterna-

tive

 No Sub menu of
programme
appears

User does not

operation

TC19
cancelled
Scenario 13- n/a n/a n/a n/a 13 n/a n/a Deletion not Scheme of the

 Delete a pro- allowed record already
 gramme alterna- exists, hence the
 tive programme with
 not allowed

 cannot be deleted

TC20 Scenario 14- n/a n/a n/a n/a * n/a n/a User is --
 Delete a pro- allowed to exit

 gramme alterna- and returns to

 tive Main menu

TC21
exits
Scenario 15-View n/a n/a n/a n/a 13 n/a n/a Programme --

 a programme details are

TC22 Scenario 16- View n/a n/a n/a n/a 16 n/a n/a
displayed
Programme Programme with

 a programme not found

 alternative programme code

 Programme not does not exist in

TC23
found
Scenario 17- View n/a n/a n/a n/a * n/a n/a User is

the database
--

 a programme allowed to exit

 alternative and returns to

 User exits Main menu

*: ‘do not care’ conditions (valid/invalid inputs)
n/a: option(s) not available for respective scenario

The test cases for other use cases of the URS case study are given in Appendix II.

GUIDELINES FOR GENERATING VALIDITY CHECKS

We want to have guidelines for generating validity checks for input data. We may have to give

many inputs to a program via forms, data files and / or input statement(s). Ideally, we want to

enter correct data and for this purpose we should test various conditions with invalid inputs to

the program. Some of the guidelines are given in the following sub-sections.

 Data Type

If input x is defined as an integer, then x should also be checked for float, char, double, etc.

values. We should clearly state what can be accepted as an input. In the login form, (please

refer to Figure 6.7), we should clearly state the type of both the inputs i.e. Login Id and

password. For example, the Login Id input should be numeric and should not accept alphabets,

special characters and blank spaces. Similarly, the password input will accept alphabets, digits,

hyphen and underscore but will not accept blank spaces. We should generate validity checks

for every ‘do’ and every ‘do not’ case.

 Data Range

The range of inputs should also be clearly specified. If x is defined as an integer, its range, (say 1

x 100) should also be defined. Validity checks may be written for conditions when x 1 and x >

100. For example, in login form, length of the login-id is defined as 11 digits and the password as

4 to 15 digits. We should generate validity checks for both valid and invalid range of inputs.

 Special Data Conditions

Some special conditions may need to be checked for specified inputs. For example, in the

e-mail address, ‘@’ and ‘.’symbols are essential and must be checked. We should write validity

checks for such special symbols which are essential for any specific input.

 Mandatory Data Inputs

Some inputs are compulsory for the execution of a program. These mandatory fields should be

identified and validity checks be written accordingly. In the login form, both inputs (login Id

and password) are mandatory. Some fields (data inputs) may not be mandatory like telephone

number in a student registration form. We should provide validity checks to verify that

mandatory fields are entered by the user.

 Domain Specific Checks

Some validity checks should be written on the basis of the expected functionality. In the

URS, no two semesters should have a common paper. The roll number should be used as a

login Id. A student cannot select more than the required number of elective papers in a

semester. These domain specific issues should be written as validity checks in order to verify

their correctness.

STRATEGIES FOR DATA VALIDITY

What are data validity checks? Are they required to be tested? Why should data validation be

given focus in testing? Why do we expect valid data? These questions are important and their

answers may motivate us to generate test cases using data validity checks.

Valid data means correct data which is expected in every software. The software should

provide checks for validating data entered into the system. Whenever and wherever we attempt

to enter invalid data, an appropriate message should be displayed. Ideally, the software should

only allow the entry of valid data into the system. If we are able to do so with a good design,

we may be able to minimize many problems. In order to give proper focus on data validations,

there is a provision of writing data validity checks for every form / screen in the SRS document.

These data validity checks may become the basis for the generation of test cases.

Data validity strategies are often influenced by the design of the software. Three popular

strategies for data validation are discussed which may be applied at the early phases of the

software development life cycle.

 Accept Only Known Valid Data

We all want to enter valid data into the system. If our software accepts only correct data, our

design is a successful design. If it does not happen, we may enter invalid data into the system,

which may further complicate many issues. Invalid data may force the software to behave

unexpectedly and may lead to a failure. Hence, software should accept only input(s) that is /

are known to be safe and expected.

Consider the SRS document of the URS (refer Appendix I). The login form is given in

Figure 6.6 that allows users to enter into the system using a valid login Id and a valid

password. Some data validity checks are also given in Table 6.14. Our login form should

only accept valid login Id and valid password and allow the user to enter into the system. If

we give valid entries for both login ID and password, we should enter into the system,

otherwise proper error message(s) should be displayed. In order to ensure validity of data,

we should generate test cases to check the validity of the data and to also check the conditions

when we enter invalid data. Both valid and invalid data inputs will generate test cases that

may check the entry of data into the software. We have identified 8 validity checks shown

in Table 6.14 and may generate test cases as given in Table 6.15. If the first input is invalid,

the second input automatically becomes ‘do not care’ and an appropriate error message is

displayed. Every validity check condition at least generates a test case. In Table 6.15, two

test cases (TC1, TC10) accept only valid data. We have identified three test cases for VC4

and two test cases for VC6.

Password will not accept blank spaces. VC8

Alphabets, digits, hyphen and underscore characters are allowed in VC7

Length of password can only be 4 to 15 digits. VC6

Password cannot be blank. VC5

Login Id will not accept alphabetic, special and blank spaces. VC4

Login Id can only have 11 digits. VC3

Login Id cannot be blank. VC2

Every user will have a unique login Id. VC1

 6.14.

Figure 6.6. Login form

Table 6.15.

Test Validity

case check

Id Number

Login id Password Expected output Remarks

TC1 VC1 10234567899 Rkhj7689 User successfully logs -

into the system

TC2 VC2 * Please Enter Login Id Login id cannot
be blank

TC3 VC3 1234 * Invalid login id Login id should

have 11 digits

TC4 VC4 Ae455678521 * Invalid login id Login id cannot

have alphanu-
meric characters

TC5 VC4 123$4567867 * Invalid login id Login id cannot

have special
characters

TC6 VC4 123 45667897 * Invalid login id Login id cannot
have blank spaces

TC7 VC5 10234567899 Please Enter Password Password cannot
be blank

TC8 VC6 10234567899 Ruc Invalid password Password cannot

be less than 4

characters in
length

TC9 VC6 10234567899 Rtyuiopki1123678 Invalid password Password cannot
be greater than

15 characters in
length

TC10 VC7 10234567899 Rty_uyo User successfully logs Password can

into the system have underscore
character

TC11 VC8 10234567899 Rt yuii Invalid password Password cannot

have blank spaces

*: ‘do not care’ conditions (valid/invalid inputs)

Additional validity checks are designed in order to validate various inputs in the ‘Change

password’ form. The ‘Change password’ form is given in Figure 6.7 and the validity checks are

given in Table 6.16. The corresponding test cases for each validity check are given in Table

6.17.

 6.16.

VC9

VC10

VC11

VC12

VC13

VC14

Description

Login Id cannot be blank.

Login Id can only have 11 digits.

Login Id will not accept alphabetic, special and blank spaces.

Old password cannot be blank.

Length of old password can only be 4 to 15 digits.

Alphabets, digits, hyphen and underscore characters are allowed in

VC15

VC16

VC17

VC18

Old password will not accept blank spaces.

New password cannot be blank.

Length of new password can only be 4 to 15 digits.

Alphabets, digits, hyphen and underscore characters are allowed in

VC19

VC20

VC21

New password will not accept blank spaces.

Figure 6.7. Change password form

Table 6.17.

Test

case

Validity

check

Login id Old password New Password

Password

Expected output Remarks

TC1 VC9 * * * Please Enter Login Id Login id cannot be blank

TC2 VC10 1234 * * * Invalid login id Login id should have 11 digits

TC3 VC11 Ae455678521 * * * Invalid login id Login id cannot have alphanumeric

characters

TC4 VC11 123$4567867 * * * Invalid login id Login id cannot have special characters

TC5 VC11 123 45667897 * * * Invalid login id Login id cannot have blank spaces

TC6 VC12 10234567899 * * Please Enter Old

Password

Password cannot be blank

TC7 VC13 10234567899 Ruc * * Invalid old password Password cannot be less than 4 charac-

ters long

TC8 VC14 10234567899 Rtyuiopki1123678 * * Invalid old password Password cannot be greater than 15
characters in length

TC9 VC14 10234567899 Rty_uyo * * -- Password can have underscore character

TC10 VC15 10234567899 Rt yuii * * Invalid old password Password cannot have blank spaces

TC11 VC16 10234567899 Ruc_ui * -- Password cannot be blank

TC12 VC17 10234567899 Ruc_ui Rrk * Invalid new password Password cannot be less than 4 charac-

ters long

TC13 VC17 10234567899 Ruc_ui Rtyuiopki1123678 * Invalid new password Password cannot be greater than 15
characters in length

TC14 VC18 10234567899 Ruc_ui Rty_uyo * Invalid new password New password can have underscore

character

TC15 VC19 10234567899 Ruc_ui Rty uyo * Invalid new password New password cannot have blank spaces

TC16 VC20 10234567899 Ruc_ui Rty_uyo --

TC17 VC21 10234567899 Ruc_ui Rty_uyo Rty_uyo

Password’

new password

*: ‘do not care’ conditions (valid/invalid inputs)

 Reject Known Bad Data

We should be able to identify the correctness of the data. If the input data is not as expected,

the software should reject it and an appropriate error message should be displayed. We should

check the data type from the form itself. If the integer type x is the input and we enter x as a

float, an error should immediately be displayed. The software should accept values in the

specified range. If the input is beyond range, it should not be accepted at all. Many test cases

of Table 6.15 check this concept and reject known bad data (refer TC3, TC4, TC5, TC6, TC8,

TC9, and TC11) by giving appropriate error messages.

 Sanitize All Data

Data sanitization is the process of purifying (filtering) undesirable data in order to make it

harmless and safe for the system. We may sanitize data at the input stage where data is entered

by the user. We may also sanitize the data at the output stage where data is displayed to the

user in such a way that it becomes more useful and meaningful. For example, when an integer

variable is used, its lower and upper permissible limits must be specified and provisions should

be made in the program to prevent the entry of any value outside the permissible limit. These

limits are hardware dependent and may change, if not earlier specified. In case of Boolean

variable, provision should be made in the program to reject any value which is not from the

following list:

List = (true, false, 0, 1, yes, no)

Hence, we should attempt to make undesired data harmless, especially when dealing with

rejecting bad inputs. This may be easy to write but extremely difficult to do in practice. It is

advisable to reject undesired data if we want to play safe and secure.

Example 6.2: Consider the ‘Maintain School detail’ form of the URS as given in Figure 6.8.

The validity checks for the ‘Maintain school details’ form are given in Table 6.18. Generate

test cases from these validity checks.

Figure 6.8. Maintain school details form

 6.18.

Validity check Description

Number

VC1

VC2

VC3

VC4

VC5

VC6

VC7

VC8

VC9

Only Administrator will be authorized to access the ‘Maintain School Details’
module. Test case of this validity check cannot be generated as access to the

module is provided to the actor at the time of login.
Every school will have a unique school name.

School code cannot be blank.

School code cannot contain alphanumeric, special and blank characters.

School code will have only 3 digits.

School name cannot be blank.

School name will only accept alphabetic characters and blank spaces.

School name cannot accept special characters and numeric digits.

School name can have from 10 to 50 characters.

Solution:

Test cases based on validity checks for ‘Maintain school details’ form are given in Table 6.19.

Table 6.19.

Test

case

Id

Validity

check

No.

School

ID

School Name Expected result Remarks (if any)

TC1 VC2 101 University School of

Information Technology

User successfully

adds the school
record

--

TC2 VC3 * Please enter school

code

School code cannot be blank

TC3 VC4 1rr * Invalid school code School code cannot contain
alphanumeric characters

TC3 VC4 1_* * Invalid school code School code cannot contain
special characters

TC3 VC4 1 3 * Invalid school code School code cannot contain
blank characters

TC4 VC5 1012 * Invalid school code School code can have length

of 3 digits

TC5 VC6 102 Invalid school name School name cannot be blank

TC6 VC7 102 University School of
Management Studies

User successfully
adds the school

record

--

TC7 VC8 103 University 434 Invalid school name School name cannot contain

digits

TC8 VC8 104 University_school_of_

basic_applied_science

Invalid school name School name cannot contain

special characters

TC9 VC9 105 univer Invalid school name School name cannot contain
less than 10 characters

TC10 VC9 106 >50 Invalid school name School name cannot contain
more than 50 characters

*: ‘do not care’ conditions (valid/invalid inputs)

 6.20.

 Description

VC1 Only Administrator will be authorized to access the ‘Maintain Programme
Details’ module.

VC2 Every programme will have a unique programme code and name.

VC3 School name cannot be blank.

VC4 Programme name cannot be blank.

VC5 Programme name can be of length 3 to 50 characters.

VC6 Programme name can only have alphabets and brackets.

VC7 Programme name cannot have special characters, digits and blank spaces.

VC8 Duration cannot be blank.

VC9 Duration can have a value from 1 to 7.

VC10 Number of semesters cannot be blank.

VC11 Number of semesters can have a value from 2 to 14.

VC12 Programme code cannot be blank.

VC13 Programme code cannot have special characters, digits and blank spaces.

VC14 Programme code can have only 2 digits.

Example 6.3: Consider the ‘Maintain programme detail’ form of the URS as given in Figure 6.9.

This form will be accessible only to the system administrator. It will allow him/her to add/edit/

delete/view information about new/existing programme(s) for the school that was selected in the

‘Programme Details’ form. Generate the test cases using validity checks given in Table 6.20.

Figure 6.9. Maintain program details form

Solution:

The test cases based on validity checks of the ‘Maintain Programme Detail’ form are given in

Table 6.21.

Table 6.21.

Test

case Id

Validity

check No.

School

selected

Programme

name

Duration Number of

semesters

Programme

code

Expected output Remarks (if any)

TC1 VC2 Yes MCA 3 6 12 User is allowed to add a --
 programme

TC2 VC3 * * * * Please select school User should select a school
TC3 VC4 Yes * * * Please enter programme Programme name cannot be

 name blank
TC4 VC5 Yes MC * * * Invalid programme name Programme cannot be less than

 3 characters
TC5 VC5 Yes >50 * * * Invalid programme name Programme cannot be greater

 than 50 characters
TC6 VC6 Yes MCA(SE) * * * -- Valid programme name

TC7 VC7 Yes MC_A(Se) * * * Invalid programme name Programme cannot contain spe-
cial characters

TC8 VC7 Yes MC1234 * * * Invalid programme name Programme cannot contain digits
TC9 VC8 Yes MCA * * Please enter duration Duration cannot be blank
TC10 VC9 Yes MCA 8 * * Invalid duration Duration can have value

between 1 to 7

TC11 VC10 Yes MCA 3 * Please enter number of

semesters
TC12 VC11 Yes MCA 3 15 * Invalid number of semes-

ters

TC13 VC12 Yes MCA 3 6 Please enter programme

code

Number of semesters cannot be

blank
Number of semesters can have

value between 2 to 14

TC14 VC13 Yes MCA 3 6 12a Invalid programme code Programme code cannot contain
alphanumeric characters

TC15 VC13 Yes MCA 3 6 1_0 Invalid programme code Programme code cannot contain
special characters

TC16 VC13 Yes MCA 3 6 1 2 Invalid programme code Programme code cannot contain
blank spaces

TC17 VC14 Yes MCA 3 6 123 Invalid programme code Programme code can only con-

tain 2 digits

*: ‘do not care’ conditions (valid/invalid inputs)

The validity checks for other forms of the URS case study are given in Appendix III.

