

UNIT-2

Structural Testing

CONTROL FLOW TESTING

This technique is very popular due to its simplicity and effectiveness. We identify paths of the

program and write test cases to execute those paths. As we all know, path is a sequence of

statements that begins at an entry and ends at an exit. As shown in chapter 1, there may be too

many paths in a program and it may not be feasible to execute all of them. As the number of

decisions increase in the program, the number of paths also increase accordingly.

Every path covers a portion of the program. We define ‘coverage’ as a ‘percentage of

source code that has been tested with respect to the total source code available for testing’. We

may like to achieve a reasonable level of coverage using control flow testing. The most

reasonable level may be to test every statement of a program at least once before the

completion of testing. Hence, we may write test cases that ensure the execution of every

statement. If we do so, we have some satisfaction about reasonable level of coverage. If we

stop testing without achieving this level (every statement execution), we do unacceptable and

intolerable activity which may lead to dangerous results in future. Testing techniques based on

program coverage criterion may provide an insight about the effectiveness of test cases. Some

of such techniques are discussed which are part of control flow testing.

 Statement Coverage

We want to execute every statement of the program in order to achieve 100% statement

coverage. Consider the following portion of a source code along with its program graph given

in Figure 4.1.

#include<stdio.h>

#include<conio.h>

1. void main()

2. {

3. int a,b,c,x=0,y=0;

4. clrscr();

5. printf("Enter three numbers:");

6. scanf("%d %d %d",&a,&b,&c);

7. if((a>b)&&(a>c)){

8. x=a*a+b*b;

9. }

10. if(b>c){

11. y=a*a-b*b;

12. }

13. printf("x= %d y= %d",x,y);

14. getch();

15. }

Figure 4.1. Source code with program graph

If, we select inputs like:

a=9, b=8, c=7, all statements are executed and we have achieved 100% statement coverage

by only one test case. The total paths of this program graph are given as:

(i) 1–7, 10, 13–15

(ii) 1–7, 10 –15

(iii) 1–10, 13–15

(iv) 1–15

The cyclomatic complexity of this graph is:

V(G) = e – n + 2P = 16 – 15 + 2 = 3

V(G) = no. of regions = 3

V(G) = + 1 = 2 + 1 = 3

Hence, independent paths are three and are given as:

(i) 1–7, 10, 13–15

(ii) 1–7, 10–15

(iii) 1–10, 13–15

Only one test case may cover all statements but will not execute all possible four paths and

not even cover all independent paths (three in this case).

The objective of achieving 100% statement coverage is difficult in practice. A portion of the

program may execute in exceptional circumstances and some conditions are rarely possible,

and the affected portion of the program due to such conditions may not execute at all.

 Branch Coverage

We want to test every branch of the program. Hence, we wish to test every ‘True’ and ‘False’

condition of the program. We consider the program given in Figure 4.1. If we select a = 9, b =

8, c = 7, we achieve 100% statement coverage and the path followed is given as (all true

conditions):

Path = 1–15

We also want to select all false conditions with the following inputs:

a = 7, b = 8, c = 9, the path followed is

Path = 1–7, 10, 13–15

These two test cases out of four are sufficient to guarantee 100% branch coverage. The

branch coverage does not guarantee 100% path coverage but it does guarantee 100% statement

coverage.

 Condition Coverage

Condition coverage is better than branch coverage because we want to test every condition at

least once. However, branch coverage can be achieved without testing every condition.

Consider the seventh statement of the program given in Figure 4.1. The statement number

7 has two conditions (a>b) and (a>c). There are four possibilities namely:

(i) Both are true

(ii) First is true, second is false

(iii) First is false, second is true

(iv) Both are false

If a > b and a > c, then the statement number 7 will be true (first possibility). However, if a

< b, then second condition (a > c) would not be tested and statement number 7 will be false

(third and fourth possibilities). If a > b and a < c, statement number 7 will be false (second

possibility). Hence, we should write test cases for every true and false condition. Selected inputs

may be given as:

(i) a = 9, b = 8, c = 7 (first possibility when both are true)

(ii) a = 9, b = 8, c = 10 (second possibility – first is true, second is false)

(iii) a = 7, b = 8, c = 9 (third and fourth possibilities- first is false, statement number 7 is

false)

Hence, these three test cases out of four are sufficient to ensure the execution of every

condition of the program.

 Path Coverage

In this coverage criteria, we want to test every path of the program. There are too many paths

in any program due to loops and feedback connections. It may not be possible to achieve this
goal of executing all paths in many programs. If we do so, we may be confident about the

correctness of the program. If it is unachievable, at least all independent paths should be

executed. The program given in Figure 4.1 has four paths as given as:

(i) 1–7, 10, 13–15

(ii) 1–7, 10–15

(iii) 1–10, 13–15

(iv) 1–15

Execution of all these paths increases confidence about the correctness of the program.

Inputs for test cases are given as:

S. No. Paths Id. Paths
a

Inputs
Expected Output

b c

1. Path-1 1–7,10, 13–15 7 8 9 x=0 y=0

2. Path-2 1–7, 10–15 7 8 6 x=0 y=–15

3. Path-3 1–10, 13–15 9 7 8 x=130 y=0

4. Path-4 1–15 9 8 7 x=145 y=17

Some paths are possible from the program graph, but become impossible when we give inputs

as per logic of the program. Hence, some combinations may be found to be impossible to create.

Path testing guarantee statement coverage, branch coverage and condition coverage. However,

there are many paths in any program and it may not be possible to execute all the paths. We

should do enough testing to achieve a reasonable level of coverage. We should execute at least

(minimum level) all independent paths which are also referred to as basis paths to achieve

reasonable coverage. These paths can be found using any method of cyclomatic complexity.

We have to decide our own coverage level before starting control flow testing. As we go up

(statement coverage to path coverage) in the ladder, more resources and time may be required.

Example 4.1: Consider the program for the determination of the division of a student. The

program and its program graph are given in Figure 3.15 and 3.16 of chapter 3 respectively.

Derive test cases so that 100% path coverage is achieved.

Solution:

The test cases are given in Table 4.1.

Table 4.1. Test cases

S. No. mark1 mark2 mark3 Expected output Paths

1. 30 –1 20 Invalid marks 1–14, 33, 34

2. 40 20 45 Fail 1–12, 15–19, 32, 33,34

3. 45 47 50 Third division 1–13, 15–17, 20–22, 32–34

4. 55 60 57 Second division 1–12, 15–17, 20, 23, 26–28, 32–34

5. 65 70 75 First division 1–12, 15–17, 20, 23, 26–28,32–34

6. 80 85 90 First division with

distinction

1–12, 15–17, 20, 23, 26, 29–34

Example 4.2: Consider the program and program graph given below. Derive test cases so that

100% statement coverage and path coverage is achieved.

/*Program to validate input data*/

#include<stdio.h>

#include<string.h>

#include<conio.h>

1. void main()

2. {

3. char fname[30],address[100],Email[100];

4. int valid=1,flag=1;

5. clrscr();

6. printf("Enter first name:");

7. scanf("%s",fname);

8. printf("\nEnter address:");

9. scanf("%s",address);

10. printf("\nEnter Email:");

11. scanf("%s",Email);

12. if(strlen(fname)<4||strlen(fname)>30){

13. printf("\nInvalid first name");

14. valid=0;

15. }

16. if(strlen(address)<4||strlen(address)>100){

17. printf("\nInvalid address length");

18. valid=0;

19. }

20. if(strlen(Email)<8||strlen(Email)>100){

21. printf("\nInvalid Email length");

22. flag=0;

23. valid=0;

24. }

25. if(flag==1){

26. if(strchr(Email,'.')==0||strchr(Email,'@')==0){

27. printf("\nEmail must contain . and @ characters");

28. valid=0;

29. }

30. }

31. if(valid) {

32. printf("\nFirst name: %s \t Address: %s \t Email:
%s",fname,address,Email);

33. }

34. getch();

35. }

(Contd.)

Solution:

The test cases to guarantee 100% statement and branch coverage are given in Table 4.2.

Table 4.2. Test cases for statement coverage

S. No. First name Address Email Expected output Paths

1. ashok E-29, east-

ofkailash

abc@yahoo.com First name: ashok

Address: E-29, east-

ofkailash Email: abc@

yahoo.com

1–12, 16, 20,

25, 31–35

2. ruc E29 abc

Invalid address length

1–25, 30, 31,

34, 35

 Invalid email length

3. ruc E-29 abc@yahoocom

Invalid address length

1–20, 25–31,

34, 35

 Email must contain . and

@ character

mailto:abc@yahoo.com

(Contd.)

Table 4.3. Test cases for path coverage

S. No.
First

Address Email Expected output Paths

Total paths of the program graph are given in Table 4.3.

name

1. - - - - 1–35

2. - - - - 1–30, 34,35

3. - - - - 1–25, 30–35

4. ruc E29 abc

Invalid address length

1–25, 30, 31, 34,

35

 Invalid email length

5. - - - - 1–20, 25–35

6. ruc E-29 abc@yahoocom

Invalid address length

1–20, 25–31, 34,

35

 Email must contain . and

@ character

7. - - - - 1–20, 25, 30–35

8. ruc E-29 Abs@yahoo.com

Invalid address length

1–20, 25, 30, 31,

34, 35

9. - - - - 1–16, 20–35

10. - - - - 1–16, 20–31, 34,

35

11. - - - - 1–16, 20–25,

30–35

12. ruc E-29, east-

ofkailash

Abs

Invalid email length

1–16, 20–25, 30,

31, 34, 35

13. - - - - 1–16, 20, 25–35

14. ruc E-29, east-

ofkailash

abc@yahoocom

Email must contain . and

1–16, 20, 25–31,

34, 35

 @ character

15. - - - - 1–16, 20, 25,

31–35

16. ruc E-29, east-

ofkailash

abc@yahoo.com

 1–16, 20, 25, 30,

31, 34, 35

17. - - - - 1–12, 16–35

18. - - - - 1–12, 16–31,

34,35

19. - - - - 1–12, 16–25,

30–35

20. ashok E29 Abc Invalid address length

Invalid email length

1–12, 16–25, 30,

31, 34, 35

21. - - - - 1–12, 16–20,

25–35

mailto:Abs@yahoo.com
mailto:abc@yahoo.com

(Contd.)

S. No.
First

name
Address Email Expected output Paths

22. ashok E29 abc@yahoocom Invalid address length

Email must contain . and

@ character

1–12, 16–20,

25–31, 34, 35

23. - - - - 1–12, 16–20, 25,

30–35

24. ashok E29 abc@yahoo.com Invalid address length 1–12, 16–20, 25,

30, 31, 34, 35

25. - - - - 1–12, 16, 20–35

26. - - - - 1–12, 16, 20–31,

34, 35

27. - - - - 1–12, 16, 20–25,

30–35

28. ashok E-29, east-

ofkailash

Abs Invalid email length 1–12, 16, 20–25,

30, 31, 34, 35

29. - - - - 1–12, 16, 20,

25–35

30. ashok E-29, east-

ofkailash

Abcyahoo.com Email must contain . and

@ character

1–12, 16, 20,

25–31, 34, 35

31. ashok E-29, east-

ofkailash

abc@yahoo.com First name: ashok

Address: E-29, east-

ofkailash Email: abc@

yahoo.com

1–12, 16, 20, 25,

31–35

32. - - - - 1–12, 16, 20, 25,

30, 31, 34, 35

Example 4.3: Consider the program for classification of a triangle given in Figure 3.10.

Derive test cases so that 100% statement coverage and path coverage is achieved.

Solution:

The test cases to guarantee 100% statement and branch coverage are given in Table 4.4.

Table 4.4. Test cases for statement coverage

S. No. a b c Expected output Paths

1. 30 20 40 Obtuse angled triangle 1–16,20–27,34,41,42

2. 30 40 50 Right angled triangle 1–16,20–25,28–30,34,41,42

3. 40 50 60 Acute angled triangle 1–6,20–25,28,31–34,41,42

4. 30 10 15 Invalid triangle 1–14,17–21,35–37,41,42

5. 102 50 60 Input values out of range 1–13,21,35,38,39,40–42

Total paths of the program graph are given in Table 4.5.

mailto:abc@yahoo.com
mailto:abc@yahoo.com

1. # include < stdio.h>

2. void main ()

3. {

4. int a, b, c;

5. a = b + c;

6. printf (“%d”, a);

7. }

Table 4.5. Test cases for path coverage

S. No. a b c Expected output Paths

1. 102 –1 6 Input values out of range 1–13,21,35,38,39,40–42

2. - - - - 1–14,17–19,20,21,35,38,39,40–42

3. - - - - 1–16,20,21,35,38,39,40–42

4. - - - - 1–13,21,35,36,37,41,42

5. 30 10 15 Invalid triangle 1–14,17–21,35–37,41,42

6. - - - - 1–16,20,21,35–37,41,42

7. - - - - 1–13,21–25,28,31–34,41,42

8. - - - - 1–14,17–25,28,31–34,41,42

9. 40 50 60 Acute angled triangle 1–16,20–25,28,31–34,41,42

10. - - - - 1–13,21–25,28–30,34,41,42

11. - - - - 1–14,17–25,28–30,34,41,42

12. 30 40 50 Right angled triangle 1–16,20–25,28–30,34,41,42

13. - - - - 1–13,21–27,34,41,42

14. - - - - 1–14,17–27,34,41,42

15. 30 20 40 Obtuse angled triangle 1–16,20–27,34,41,42

Thus, there are 15 paths, out of which 10 paths are not possible to be executed as per the logic

of the program.

DATA FLOW TESTING

In control flow testing, we find various paths of a program and design test cases to execute

those paths. We may like to execute every statement of the program at least once before the

completion of testing. Consider the following program:

What will be the output? The value of ‘a’ may be the previous value stored in the memory

location assigned to variable ‘a’ or a garbage value. If we execute the program, we may get an

unexpected value (garbage value). The mistake is in the usage (reference) of this variable

without first assigning a value to it. We may assume that all variables are automatically

assigned to zero initially. This does not happen always. If we define at line number 4, ‘static

int a, b, c’, then all variables are given zero value initially. However, this is a language and

compiler dependent feature and may not be generalized.

Data flow testing may help us to minimize such mistakes. It has nothing to do with data-

flow diagrams. It is based on variables, their usage and their definition(s) (assignment) in the

program. The main points of concern are:

(i) Statements where variables receive values (definition).

(ii) Statements where these values are used (referenced).

Data flow testing focuses on variable definition and variable usage. In line number 5 of the

above program, variable ‘a’ is defined and variables ‘b’ and ‘c’ are used. The variables are

defined and used (referenced) throughout the program. Hence, this technique concentrates on

how a variable is defined and used at different places of the program.

 Define/Reference Anomalies

Some of the define / reference anomalies are given as:

(i) A variable is defined but never used / referenced.

(ii) A variable is used but never defined.

(iii) A variable is defined twice before it is used.

(iv) A variable is used before even first-definition.

We may define a variable, use a variable and redefine a variable. So, a variable must be first

defined before any type of its usage. Define / reference anomalies may be identified by static

analysis of the program i.e. analyzing program without executing it. This technique uses the

program graphs to understand the ‘define / use’ conditions of all variables. Some terms are

used frequently in data flow testing and such terms are discussed in the next sub-section.

 Definitions

A program is first converted into a program graph. As we all know, every statement of a

program is replaced by a node and flow of control by an edge to prepare a program graph.

There may be many paths in the program graph.

A node of a program graph is a defining node for a variable , if and only if, the

value of the variable is defined in the statement corresponding to that node. It is

represented as DEF (, n) where is the variable and n is the node corresponding to

the statement in which is defined.

(ii) Usage node

A node of a program graph is a usage node for a variable , if and only if, the value of

the variable is used in the statement corresponding to that node. It is represented as

USE (, n), where ‘ ’ is the variable and ‘n’ in the node corresponding to the statement

in which ‘ ’ is used.

A usage node USE (, n) is a predicate use node (denoted as P-use), if and only if, the

statement corresponding to node ‘n’ is a predicate statement otherwise USE (, n) is a

computation use node (denoted as C-use).

S. No. Variable(s) Used at node

S. No. Variable du-path(begin, end)

(iii) Definition use Path

A definition use path (denoted as du-path) for a variable ‘ ’ is a path between two

nodes ‘m’ and ‘n’ where ‘m’ is the initial node in the path but the defining node for

variable ‘ ’ (denoted as DEF (, m)) and ‘n’ is the final node in the path but usage node

for variable ‘ ’ (denoted as USE (, n)).

(iv) Definition clear path

A definition clear path (denoted as dc-path) for a variable ‘ ’ is a definition use path

with initial and final nodes DEF (, m) and USE (, n) such that no other node in the

path is a defining node of variable ‘ ’.

The du-paths and dc-paths describe the flow of data across program statements from

statements where values are defined to statements where the values are used. A du-path for a

variable ‘ ’ may have many redefinitions of variable ‘ ’ between initial node (DEF (, m)) and

final node (USE (, n)). A dc-path for a variable ‘ ’ will not have any definition of variable ‘ ’

between initial node (DEF (, m)) and final node (USE (, n)). The du-paths that are not

definition clear paths are potential troublesome paths. They should be identified and tested on

topmost priority.

 Identification of du and dc Paths

The various steps for the identification of du and dc paths are given as:

(i) Draw the program graph of the program.

(ii) Find all variables of the program and prepare a table for define / use status of all

variables using the following format:

(iii) Generate all du-paths from define/use variable table of step (iii) using the following

format:

(iv) Identify those du-paths which are not dc-paths.

 Testing Strategies Using du-Paths

We want to generate test cases which trace every definition to each of its use and every use is

traced to each of its definition. Some of the testing strategies are given as:

All du-paths generated for all variables are tested. This is the strongest data flow testing

strategy covering all possible du-paths.

(ii) Test all uses

Find at least one path from every definition of every variable to every use of that

variable which can be reached by that definition.

For every use of a variable, there is a path from the definition of that variable to the

use of that variable.

(iii) Test all definitions

Find paths from every definition of every variable to at least one use of that variable;

we may choose any strategy for testing. As we go from ‘test all du-paths’ (no. (i)) to

‘test all definitions’ (no.(iii)), the number of paths are reduced. However, it is best to

test all du-paths (no. (i)) and give priority to those du-paths which are not definition

clear paths. The first requires that each definition reaches all possible uses through all

possible du-paths, the second requires that each definition reaches all possible uses,

and the third requires that each definition reaches at least one use.

 Generation of Test Cases

After finding paths, test cases are generated by giving values to the input parameter. We get

different test suites for each variable.

Consider the program given in Figure 3.11 to find the largest number amongst three

numbers. Its program graph is given in Figure 3.12. There are three variables in the program

namely A, B and C. Define /use nodes for all these variables are given below:

S. No. Variable

 Used at node

1. A 6 11, 12, 13

2. B 8 11, 20, 24

3. C 10 12, 16, 20, 21

The du-paths with beginning node and end node are given as:

 Variable du-path (Begin, end)

A 6, 11

 6, 12

 6, 13

B 8, 11
 8, 20

 8, 24

C 10, 12

 10, 16

 10, 20

 10, 21

The first strategy (best) is to test all du-paths, the second is to test all uses and the third is to

test all definitions. The du-paths as per these three strategies are given as:

Test all du-paths

S. No.
Inputs Expected

Remarks

Test All

Inputs
Expected Output Remarks

 Paths

All 6–11 Yes

du paths 6–12 Yes

and 6–13 Yes

all uses 8–11 Yes

(Both are same in this 8–11, 19, 20 Yes

example) 8–11, 19, 20, 23, 24 Yes
 10–12 Yes
 10–12, 15, 16 Yes
 10, 11, 19, 20 Yes
 10, 11, 19–21 Yes

 6–11 Yes
 8–11 Yes

 10–12 Yes

Here all du-paths and all-uses paths are the same (10 du-paths). But in the 3rd case, for all

definitions, there are three paths.

Test cases are given below:

A B C Output

1. 9 8 7 9 6–11

2. 9 8 7 9 6–12

3. 9 8 7 9 6–13

4. 7 9 8 9 8–11

5. 7 9 8 9 8–11, 19, 20

6. 7 9 8 9 8–11, 19, 20, 23, 24

7. 8 7 9 9 10–12

8. 8 7 9 9 10–12, ,15, 16

9. 7 8 9 9 10, 11, 19, 20

10. 7 8 9 9 10, 11, 19–21

S. No.

A
 B C

1. 9 8 7 9 6–11

2. 7 9 8 9 8–11

3. 8 7 9 9 10–12

In this example all du-paths and all uses yield the same number of paths. This may not

always be true. If we consider the following graph and find du paths with all three strategies,

we will get a different number of all-du paths and all-uses paths.

Def/Use nodes table

S. No. Variables Used at node

1. a 1 7, 10

2. b 1 8, 9

The du paths are identified as:

S. No. Variables du-paths (Begin, end)

1. a 1, 7

 1, 10

2. b 1, 8
 1, 9

The du-paths are identified as per three testing strategies:

 Paths

All du paths 1–4, 6, 7 Yes

(8 paths) 1, 2, 5–7 Yes
 1–4, 6, 9, 10 Yes
 1, 2, 5, 6, 9, 10 Yes
 1–4, 6, 7, 8 Yes
 1, 2, 5–8 Yes
 1–4, 6, 9 Yes
 1, 2, 5, 6, 9 Yes

 (Contd.)

(Contd.)

 Paths

All uses 1–4, 6, 7 Yes

(4 paths) 1–4, 6, 9, 10
1–4, 6-8

1–4, 6, 9

Yes

Yes

Yes

(2 paths)

1–4, 6, 7

1–4, 6–8

Yes

Yes

Hence the number of paths is different in all testing strategies. When we find all du-paths,

some paths may become impossible paths. We show them in order to show all combinations.

Example 4.4: Consider the program for the determination of the division problem. Its input is

a triple of positive integers (mark1, mark2, mark3) and values for each of these may be from

interval [0, 100]. The program is given in Figure 3.15. The output may have one of the options

given below:

(i) Fail

(ii) Third division

(iii) Second division

(iv) First division

(v) First division with distinction

(vi) Invalid marks

Find all du-paths and identify those du-paths that are definition clear. Also find all du-paths,

all-uses and all-definitions and generate test cases for these paths.

Solution:

(i) The program graph is given in Figure 3.16. The variables used in the program are

mark1, mark2, mark3, avg.

(ii) The define/ use nodes for all variables are given below:

S. No. Variable Used at node

1. mark1 7 12, 16

2. mark2 9 12, 16

3. mark3 11 12, 16

4. avg 16 17, 20, 23, 26

(iii) The du-paths with beginning and ending nodes are given as:

)

S. No. Variable Du-path (begin, end)

1. mark1 7, 12

 7, 16

2. mark2 9, 12

 9, 16

3. mark3 11, 12

 11, 16

 (Contd.

All du-paths and all-uses

Paths

7–12

7–12, 15, 16

9–12

9–12, 15, 16

11, 12

11, 12, 15, 16

16, 17

16, 17, 20

16, 17, 20, 23

16, 17, 20, 23, 26

7–12

9–12

11, 12

16, 17

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

(Contd.)

S. No. Variable Du-path (begin, end)

4. Avg 16, 17

 16, 20

16, 23

16, 26

(iv) All du-paths, all-uses and all-definitions are given below:

Test cases for all du-paths and all-uses are given in Table 4.6 and test cases for all definitions

are given in Table 4.7.

Table 4.6. Test cases for all du-paths and all-uses

S. No. mark1 mark2 mark3 Expected Output Remarks

1. 101 50 50 Invalid marks 7–12

2. 60 50 40 Second division 7–12, 15, 16

3. 50 101 50 Invalid marks 9–12

4. 60 70 80 First division 9–12, 15, 16

5. 50 50 101 Invalid marks 11, 12

6. 60 75 80 First division 11, 12, 15, 16

7. 30 40 30 Fail 16, 17

8. 45 50 50 Third division 16, 17, 20

9. 55 60 50 Second division 16, 17, 20, 23

10. 65 70 70 First division 16, 17, 20, 23, 26

Table 4.7.

S. No.

mark1

mark2

mark3

Expected Output

Remarks

1. 101 50 50 Invalid marks 7–12

2. 50 101 50 Invalid marks 9–12

3. 50 50 101 Invalid marks 11, 12

4. 30 40 30 Fail 16, 17

Example 4.5: Consider the program of classification of a triangle. Its input is a triple of

positive integers (a, b and c) and values for each of these may be from interval [0, 100]. The

program is given in Figure 3.18. The output may have one of the options given below:

(i) Obtuse angled triangle

(ii) Acute angled triangle

(iii) Right angled triangle

(iv) Invalid triangle

(v) Input values out of range

Find all du-paths and identify those du-paths that are definition clear. Also find all du-paths,

all-uses and all definitions and generate test cases from them.

Solution:

(i) The program graph is given in Figure 3.19. The variables used are a, b, c, a1, a2, a3,

valid.

(ii) Define / use nodes for all variables are given below:

S. No. Variable node Used at node

1. a 8 13, 14, 22, 23, 24

2. b 10 13, 14, 22, 23, 24

3. c 12 13, 14, 22-24

4. a1 22 25. 28

5. a2 23 25, 28

6. a3 24 25, 28

7. valid 5, 15, 18 21, 35

(iii) The du-paths with beginning and ending nodes are given as:

S. No. Variable du-path (Begin, end)

1. a 8, 13

 8, 14

 8, 22

 8, 23

 8, 24

2. b 10, 13

 10, 14

 10, 22

 10, 23

 10, 24

3. c 12, 13

 12, 14

 12, 22

 12, 23

 12, 24

4. a1 22. 25

 22, 28

 (Contd.)

(Contd.)

S. No. Variable du-path (Begin, end)

5. a2 23, 25
 23, 28

6. a3 24, 25
 24, 28

7. Valid 5, 21

 5, 35

15, 21

15, 35

18, 21

18, 35

All du-paths are given in Table 4.8 and the test cases for all du-paths are given in Table 4.9.

Table 4.8. All du-paths

All du-paths All du paths

8–13 Yes 12–14, 17–22 Yes

8–14 Yes 12, 13, 21, 22 Yes

8–16, 20–22 Yes 12–16, 20–23 Yes

8–14, 17–22 Yes 12–14, 17–23 Yes

8–13, 21,22 Yes 12, 13, 21–23 Yes

8–16, 20–23 Yes 12–16, 20–24 Yes

8–14, 17–23 Yes 12–14, 17–24 Yes

8–13, 21–23 Yes 12, 13, 21–24 Yes

8–16, 20–24 Yes 22–25 Yes

8–14, 17–24 Yes 22–25, 28 Yes

8–13, 21–24 Yes 23–25 Yes

10–13 Yes 23–25, 28 Yes

10–14 Yes 24, 25 Yes

10–16, 20–22 Yes 24, 25, 28 Yes

10–14, 17–22 Yes 5–16, 20, 21 No

10–13, 21,22 Yes 5–14, 17–21 No

10–16, 20–23 Yes 5–13, 21 Yes

10–14, 17–23 Yes 5–16, 20, 21, 35 No

10–13, 21–23 Yes 5–14, 17–21, 35 No

10–16, 20–24 Yes 5–13, 21, 35 Yes

10–14, 17–24 Yes 15, 16, 20, 21 Yes

10–13, 21–24 Yes 15, 16, 20, 21, 35 Yes

12, 13 Yes 18–21 Yes

12–14 Yes 18–21, 35 Yes

12–16, 20–22 Yes

We consider all combinations for the design of du-paths. In this process, test cases

corresponding to some paths are not possible, but these paths are shown in the list of ‘all du-

paths’. They may be considered only for completion purpose.

Table 4.9. Test cases for all du-paths

S. No. A b c Expected output Remarks

1. 30 20 40 Obtuse angled triangle 8–13

2. 30 20 40 Obtuse angled triangle 8–14

3. 30 20 40 Obtuse angled triangle 8–16, 20–22

4. - - - - 8–14, 17–22

5. - - - - 8–13, 21,22

6. 30 20 40 Obtuse angled triangle 8–16, 20–23

7. - - - - 8–14, 17–23

8. - - - - 8–13, 21–23

9. 30 20 40 Obtuse angled triangle 8–16, 20–24

10. - - - - 8–14, 17–24

11. - - - - 8–13, 21–24

12. 30 20 40 Obtuse angled triangle 10–13

13. 30 20 40 Obtuse angled triangle 10–14

14. 30 20 40 Obtuse angled triangle 10–16, 20–22

15. - - - - 10–14, 17–22

16. - - - - 10–13, 21,22

17. 30 20 40 Obtuse angled triangle 10–16, 20–23

18. - - - - 10–14, 17–23

19. - - - - 10–13, 21–23

20. 30 20 40 Obtuse angled triangle 10–16, 20–24

21. - - - - 10–14, 17–24

22. - - - - 10–13, 21–24

23. 30 20 40 Obtuse angled triangle 12, 13

24. 30 20 40 Obtuse angled triangle 12–14

25. 30 20 40 Obtuse angled triangle 12–16, 20–22

26. - - - - 12–14, 17–22

27. - - - - 12, 13, 21, 22

28. 30 20 40 Obtuse angled triangle 12–16, 20–23

29. - - - - 12–14, 17–23

30. - - - - 12, 13, 21–23

31. 30 20 40 Obtuse angled triangle 12–16, 20–24

32. - - - - 12–14, 17–24

33. - - - - 12, 13, 21–24

34. 30 20 40 Obtuse angled triangle 22–25

(Contd.)

(Contd.)

S. No. A b c Expected output Remarks

35. 30 40 50 Right angled triangle 22–25, 28

36. 30 20 40 Obtuse angled triangle 23–25

37. 30 40 50 Right angled triangle 23–25, 28

38. 30 20 40 Obtuse angled triangle 24, 25

39. 30 40 50 Right angled triangle 24, 25, 28

40. 30 20 40 Obtuse angled triangle 5–16, 20, 21

41. 30 10 15 Invalid triangle 5–14, 17–21

42. 102 –1 6 Input values out of range 5–13, 21

43. - - - - 5–16, 20, 21, 35

44. 30 10 15 Invalid triangle 5–14, 17–21, 35

45. 102 -1 6 Input values out of range 5–13, 21, 35

46. 30 20 40 Obtuse angled triangle 15, 16, 20, 21

47. - - - - 15, 16, 20, 21, 35

48. 30 10 15 Invalid triangle 18–21

49. 30 10 15 Invalid triangle 18–21, 35

The ‘all-uses’ paths are given in Table 4.10 and the test cases for all du-paths are given in

Table 4.11. The ‘all-definitions’ paths and the test cases are given in Tables 4.12 and 4.13

respectively.

Table 4.10.

All uses

All uses

8–13 Yes 12–16, 20–24 Yes

8–14 Yes 22–25 Yes

8–16, 20–22 Yes 22–25, 28 Yes

8–16, 20–23 Yes 23–25 Yes

8–16, 20–24 Yes 23–25, 28 Yes

10–13 Yes 24, 25 Yes

10–14 Yes 24, 25, 28 Yes

10–16, 20–22 Yes 5–16, 20, 21 No

10–13, 21–23 Yes 5–14, 17–21, 35 No

10–16, 20–24 Yes 15, 16, 20, 21 Yes

12,13 Yes 15, 16, 20, 21, 35 Yes

12–14 Yes 18–21 Yes

12–16, 20, 21, 22 Yes 18–21, 35 Yes

12–16, 20–23 Yes

Table 4.11. Test cases for all uses paths

S. No. a b c Expected output Remarks

1. 30 20 40 Obtuse angled triangle 8–13

2. 30 20 40 Obtuse angled triangle 8–14

3. 30 20 40 Obtuse angled triangle 8–16, 20–22

4. 30 20 40 Obtuse angled triangle 8–16, 20–23

5. 30 20 40 Obtuse angled triangle 8–16, 20–24

6. 30 20 40 Obtuse angled triangle 10–13

7. 30 20 40 Obtuse angled triangle 10–14

8. 30 20 40 Obtuse angled triangle 10–16, 20–22

9. 30 20 40 Obtuse angled triangle 10–13, 21–23

10. 30 20 40 Obtuse angled triangle 10–16, 20–24

11. 30 20 40 Obtuse angled triangle 12,13

12. 30 20 40 Obtuse angled triangle 12–14

13. 30 20 40 Obtuse angled triangle 12–16, 20, 21, 22

14. 30 20 40 Obtuse angled triangle 12–16, 20–23

15. 30 20 40 Obtuse angled triangle 12–16, 20–24

16. 30 20 40 Obtuse angled triangle 22–25

17. 30 40 50 Right angled triangle 22–25, 28

18. 30 20 40 Obtuse angled triangle 23–25

19. 30 40 50 Right angled triangle 23–25, 28

20. 30 20 40 Obtuse angled triangle 24, 25

21. 30 40 50 Right angled triangle 24, 25, 28

22. 30 20 40 Obtuse angled triangle 5–16, 20, 21

23. 30 10 15 Invalid triangle 5–14, 17–21, 35

24. 30 20 40 Obtuse angled triangle 15, 16, 20, 21

25. - - - - 15, 16, 20, 21, 35

26. 30 10 15 Invalid triangle 18–21

27. 30 10 15 Invalid triangle 18–21, 35

Table 4.12.

8–13

10–13

12, 13

22–25

23–25

24,25

5–16, 20, 21

15, 16, 20, 21

18–21

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

(Contd.)

Table 4.13.

S. No.

a

b

c

Expected output

Remarks

1. 30 20 40 Obtuse angled triangle 8–13

2. 30 20 40 Obtuse angled triangle 10–13

3. 30 20 40 Obtuse angled triangle 12, 13

4. 30 20 40 Obtuse angled triangle 22–25

5. 30 20 40 Obtuse angled triangle 23–25

6. 30 20 40 Obtuse angled triangle 24,25

7. 30 20 40 Obtuse angled triangle 5–16, 20, 21

8. 30 20 40 Obtuse angled triangle 15, 16, 20, 21

9. 30 10 15 Invalid triangle 18–21

Example 4.6: Consider the program given in Figure 3.21 for the determination of day of the

week. Its input is at triple of positive integers (day, month, year) from the interval

1 day 31

1 month 12

1900 year 2058

The output may be:

[Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday]

Find all du-paths and identify those du-paths that are definition clear. Also find all du-paths,

all-uses and all-definitions and generate test cases for these paths.

Solution:

(i) The program graph is given in Figure 3.22. The variables used in the program are day,

month, year, century, Y, Y1, M, date, validDate, leap.

(ii) Define / use nodes for all variables are given below:

S. No. Variable Used at node

1. Day 6 19, 27, 30, 37, 91
 93, 96, 99, 102

 105, 108, 111, 115

2. Month 8 18, 26, 37, 54
 62, 70, 73, 76, 79
 82, 85, 93, 96, 99

 102, 105, 108, 111, 115

3. Year 10 11, 12, 14, 45, 47
 51, 93, 96, 99, 102

 105, 108, 111, 115

4. Century 46, 50 91

5. Y 53 91

6. Y1 47, 51 53

(Contd.)

(Contd.)

S. No. Variable

 Used at node

7. M 56, 59, 64 91
 67, 71, 74

 77, 80, 83

 86, 89

8. Date 91 92, 95, 98, 101, 104, 107

9. ValidDate 3, 20, 23 44
 28, 31, 34,

 38, 41

10. Leap 3, 13, 15 27, 55, 63

(iii) The du-paths with beginning and ending nodes are given as:

S. No. Variable du-path (begin, end)

1. Day 6, 19
 6, 27
 6, 30
 6, 37
 6, 91
 6, 93
 6, 96
 6, 99
 6, 102
 6, 105
 6, 108
 6, 111
 6, 115

2. Month 8, 18

 8, 26

8, 37

8, 54

8, 62

8, 70

8, 73

8, 76

8, 79

8, 82

8, 85

8, 93

8, 96

8, 99

8, 102

8, 105

8, 108

8, 111

8, 115

(Contd.)

S. No. Variable du-path (begin, end)

3. Year 10, 11

 10, 12

 10, 14

 10, 45

 10, 47

 10, 51

 10, 93

 10, 96

 10, 99

 10, 102

 10, 105

 10, 108

 10, 111

 10, 115

4. Century 46, 91

 50, 91

5. Y 53, 91

6. Y1 47, 53

 51, 53

7. M 56, 91

 59, 91

 64, 91

 67, 91

 71, 91

 74, 91

 77, 91

 80, 91

 83, 91

 86, 91

 89, 91

8. Date 91, 92

 91, 95

 91, 98

 91, 101

 91, 104

 91, 107

9. ValidDate 3, 44

 20, 44

 23, 44

 28, 44

 31, 44

 34, 44

 38, 44

 41, 44

 (Contd.)

S. No.

10.

Variable

Leap

du-path (begin, end)

3, 27

3, 55

3, 63

13, 27

13, 55

13, 63

15, 27

15, 55

15, 63

Table 4.14.

All uses

6–19

6–18, 26, 27

6–18, 26, 27, 30

6–18, 26, 37

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91–93

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 96

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 99

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 102

6–21, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 105

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101,104, 107, 108

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107,

110, 111

6–11, 44, 114, 115

8–18

8–18, 26

8–18, 26, 37

8–21, 25, 43–48, 53, 54

8–21, 25, 43–48, 53, 54, 62

8–25, 43–48, 53, 54, 62, 70

8–21, 25, 43–48, 53, 54, 62, 70, 73

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

(Contd.)

There are more than 10,000 du-paths and it is neither possible nor desirable to show all of

them. The all uses paths and their respective test cases are shown in Table 4.14 and Table 4.15

respectively. The ‘all definitions’ paths are shown in Table 4.16 and their corresponding test

cases are given in Table 4.17.

(Contd.)

(Contd.)

All uses

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79 Yes

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79, 82 Yes

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79, 82, 85 Yes

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 93 Yes

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 96 Yes

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 99 Yes

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 102 Yes

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 105 Yes

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107, 108 Yes

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107,

110, 111

Yes

8–11, 44, 114, 115 Yes

10, 11 Yes

10–12 Yes

10–14 Yes

10–21, 25, 43–45 Yes

10–21, 25, 43–47 Yes

10–21, 25, 43–45, 49–51 Yes

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91–93 Yes

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 96 Yes

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 99 Yes

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 102 Yes

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 105 Yes

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107,

108

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107,

110, 111

Yes

Yes

10, 11, 44, 114, 115 Yes

46–48, 53–57, 61, 91 Yes

50–57, 61, 91 Yes

53–61, 91 Yes

47, 48, 53 Yes

51–53 Yes

56, 57, 61, 91 Yes

59–61, 91 Yes

(Contd.)

(Contd.)

All uses

64, 65, 69, 91 Yes

67–69, 91 Yes

71, 72, 91 Yes

74, 75, 91 Yes

77, 78, 91 Yes

80, 81, 91 Yes

83, 84, 91 Yes

86, 87, 91 Yes

89, 90, 91 Yes

91, 92 Yes

91, 92, 95 Yes

91, 92, 95, 98 Yes

91, 92, 95, 98, 101 Yes

91, 92, 95, 98, 101, 104 Yes

91, 92, 95, 98, 101, 104, 107 Yes

3–11, 44 No

20, 21, 25, 43, 44 Yes

23–25, 43, 44 Yes

28, 29, 36, 43, 44 Yes

31, 32, 36, 43, 44 Yes

34–36, 43, 44 Yes

38, 39, 43, 44 Yes

41–44 Yes

3–18, 26, 27 No

3–18, 26, 37–39, 43–48, 53–55 No

3–18, 26, 27, 30–32, 36, 43–48, 53, 54, 62, 63 No

13–18, 26, 27 No

13–18, 26, 37–39, 43–48, 53–55 No

13–18, 26, 27, 30–32, 36, 43–48, 53, 54, 62, 63 No

15–18, 26, 27 Yes

15–18, 26, 37–39, 43–48, 53–55 Yes

15–18, 26, 27, 30–32, 36, 43–48, 53, 54, 62, 63 Yes

Table 4.15. Test cases for all uses

S. No. Month Day Year Expected output Remarks

1. 6 15 1900 Friday 6–19

2. 2 15 1900 Thursday 6–18, 26, 27

3. 2 15 1900 Thursday 6–18, 26, 27, 30

4. 7 15 1900 Sunday 6–18, 26, 37

5. 6 15 1900 Friday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91

6. 6 10 1900 Sunday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91–93

7. 6 11 1900 Monday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 96

8. 6 12 1900 Tuesday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 99

9. 6 13 1900 Wednesday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 101, 102

10. 6 14 1900 Thursday 6–21, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 101, 104, 105

11. 6 15 1900 Friday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 101,104, 107, 108

12. 6 16 1900 Saturday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 101, 104, 107, 110,

111

13. 6 15 2059 Invalid Date 6–11, 44, 114, 115

14. 6 15 1900 Friday 8–18

15. 2 15 1900 Thursday 8–18, 26

16. 1 15 1900 Monday 8–18, 26, 37

17. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54

18. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54, 62

19. 6 15 1900 Friday 8–25, 43–48, 53, 54, 62, 70

20. 4 15 1900 Sunday 8–21, 25, 43–48, 53, 54, 62, 70, 73

21. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76

22. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79

23. 9 15 1900 Saturday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79, 82

(Contd.)

(Contd.)

(Contd.)

S. No. Month Day Year Expected output Remarks

24. 9 15 1900 Saturday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79, 82, 85

25. 6 10 1900 Sunday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 93

26. 6 11 1900 Monday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 96

27. 6 12 1900 Tuesday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 99

28. 6 13 1900 Wednesday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79,80, 81, 91, 92, 95, 98, 101, 102

29. 6 14 1900 Thursday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79,80, 81, 91, 92, 95, 98, 101, 104, 105

30. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79, 80, 81, 91, 92, 95, 98, 101, 104, 107,

 108

31. 6 16 1900 Saturday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79, 80, 81, 91, 92, 95, 98, 101, 104, 107,

 110, 111

32. 6 15 2059 Invalid Date 8–11, 44, 114, 115

33. 6 15 1900 Friday 10, 11

34. 6 15 1900 Friday 10–12

35. 6 15 1900 Friday 10–14

36. 6 15 1900 Friday 10–21, 25, 43–45

37. 6 15 1900 Friday 10–21, 25, 43–47

38. 6 15 2009 Monday 10–21, 25, 43–45, 49–51

39. 6 10 1900 Sunday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91–93

40. 6 11 1900 Monday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 96

41. 6 12 1900 Tuesday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 99

42. 6 13 1900 Wednesday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 101, 102

43. 6 14 1900 Thursday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 101, 104, 105

44. 6 15 1900 Friday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 101, 104, 107, 108

(Contd.)

(Contd.)

S. No. Month Day Year Expected output Remarks

45. 6 16 1900 Saturday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76,

79–81, 91, 92, 95, 98, 101, 104, 107, 110,

111

46. 6 15 2059 Invalid Date 10, 11, 44, 114, 115

47. 1 15 1900 Monday 46–48, 53–57, 61, 91

48. 1 15 2009 Thursday 50–57, 61, 91

49. 1 15 2009 Thursday 53–61, 91

50. 6 15 1900 Friday 47, 48, 53

51. 6 15 2009 Monday 51–53

52. 1 15 2009 Thursday 56, 57, 61, 91

53. 1 15 2000 Saturday 59–61, 91

54. 1 15 2009 Thursday 64, 65, 69, 91

55. 2 15 2000 Tuesday 67–69, 91

56. 3 15 2009 Sunday 71, 72, 91

57. 4 15 2009 Wednesday 74, 75, 91

58. 5 15 2009 Friday 77, 78, 91

59. 6 15 2009 Monday 80, 81, 91

60. 8 15 2009 Saturday 83, 84, 91

61. 9 15 2009 Tuesday 86, 87, 91

62. 7 15 2009 Wednesday 89, 90, 91

63. 5 7 2009 Sunday 91, 92

64. 6 7 2009 Monday 91, 92, 95

65. 7 7 2009 Tuesday 91, 92, 95, 98

66. 8 7 2009 Wednesday 91, 92, 95, 98, 101

67. 9 7 2009 Thursday 91, 92, 95, 98, 101, 104

68. 10 7 2009 Friday 91, 92, 95, 98, 101, 104, 107

69. 6 15 1900 Friday 3–11, 44

70. 6 15 1900 Friday 20, 21, 25, 43, 44

71. 6 31 2009 Invalid Date 23–25, 43, 44

(Contd.)

(Contd.)

S. No. Month Day Year Expected output Remarks

72. 2 15 2000 Tuesday 28, 29, 36, 43, 44

73. 2 15 2009 Sunday 31, 32, 36, 43, 44

74. 2 30 2009 Invalid Date 34–36, 43, 44

75. 8 15 2009 Saturday 38,39, 43, 44

76. 13 1 2009 Invalid Date 41–44

77. 2 15 1900 Thursday 3–18, 26, 27

78. 1 15 1900 Monday 3–18, 26, 37–39, 43–48, 53–55

79. 2 15 1900 Thursday 3–18, 26, 27, 30–32, 36, 43–48, 53, 54,

62, 63

80. 2 15 1900 Thursday 13–18, 26, 27

81. 1 15 1900 Monday 13–18, 26, 37–39, 43–48, 53–55

82. 2 15 1900 Thursday 13–18, 26, 27, 30–32, 36, 43–48, 53, 54,

62, 63

83. 2 15 1900 Thursday 15–18, 26, 27

84. 1 15 1900 Monday 15–18, 26, 37–39, 43–48, 53–55

85. 2 15 1900 Thursday 15–18, 26, 27, 30–32, 36, 43–48, 53, 54,

62, 63

Table 4.16.

6–19

8–18

10, 11

46–48, 53–57, 61, 91

50–57, 61, 91

53–57, 61, 91

47, 48, 53

51–53

56, 57, 61, 91

59, 60, 61, 91

64, 65, 69, 91

67–69, 91

71, 72, 91

74, 75, 91

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

(Contd.)

77, 78, 91 Yes

80, 81, 91 Yes

83, 84, 91 Yes

86, 87, 91 Yes

89–91 Yes

91, 92 Yes

3–11, 44 No

20, 21, 25, 43, 44 Yes

23–25, 43, 44 Yes

28, 29, 36, 43, 44 Yes

31, 32, 36, 43, 44 Yes

34–36, 43, 44 Yes

38, 39, 43, 44 Yes

41–44 Yes

3–18, 26, 27 No

13–18, 26, 27 No

15–18, 26, 27 Yes

Table 4.17.

S. No.

Month

Day

Year

Expected output

Remarks

1. 6 15 1900 Friday 6–19

2. 6 15 1900 Friday 8–18

3. 6 15 1900 Friday 10, 11

4. 1 15 1900 Monday 46–48, 53–57, 61, 91

5. 1 15 2009 Thursday 50–57, 61, 91

6. 1 15 2009 Thursday 53–57, 61, 91

7. 6 15 1900 Friday 47, 48, 53

8. 6 15 2009 Monday 51–53

9. 1 15 2009 Thursday 56, 57, 61, 91

10. 1 15 2000 Saturday 59, 60, 61, 91

11. 1 15 2009 Thursday 64, 65, 69, 91

12. 2 15 2000 Tuesday 67–69, 91

13. 3 15 2009 Sunday 71, 72, 91

14. 4 15 2009 Wednesday 74, 75, 91

15. 5 15 2009 Friday 77, 78, 91

16. 6 15 2009 Monday 80, 81, 91

17. 8 15 2009 Saturday 83, 84, 91

 (Contd.)

(Contd.)

S. No. Month Day Year Expected output Remarks

18. 9 15 2009 Tuesday 86, 87, 91

19. 7 15 2009 Wednesday 89–91

20. 6 15 2009 Monday 91, 92

21. 6 15 2059 Invalid Date 3–11, 44

22. 6 15 1900 Friday 20, 21, 25, 43, 44

23. 6 31 2009 Invalid Date 23–25, 43, 44

24. 2 15 2000 Tuesday 28, 29, 36, 43, 44

25. 2 15 2009 Sunday 31, 32, 36, 43, 44

26. 2 30 2009 Invalid Date 34–36, 43, 44

27. 8 15 2009 Saturday 38, 39, 43, 44

28. 13 1 2009 Invalid Date 41–44

29. 2 15 1900 Thursday 3–18, 26, 27

30. 2 15 1900 Thursday 13–18, 26, 27

31. 2 15 1900 Thursday 15–18, 26, 27

SLICE BASED TESTING

Program slicing was introduced by Mark Weiser [WEIS84] where we prepare various subsets

(called slices) of a program with respect to its variables and their selected locations in the

program. Each variable with one of its location will give us a program slice. A large program

may have many smaller programs (its slices), each constructed for different variable subsets.

The slices are typically simpler than the original program, thereby simplifying the process of

testing of the program. Keith and James [KEIT91] have explained this concept as:

“Program slicing is a technique for restricting the behaviour of a program to some

specified subset of interest. A slice S(, n) of program P on variable , or set of variables,

at statement n yields the portions of the program that contributed to the value of just

before statement n is executed. S (, n) is called a slicing criteria. Slices can be computed

automatically on source programs by analyzing data flow. A program slice has the added

advantage of being an executable program.”

Hence, slices are smaller than the original program and may be executed independently.

Only two things are important here, variable and its selected location in the program.

 Guidelines for Slicing

There are many variables in the program but their usage may be different in different statements.

The following guidelines may be used for the creation of program slices.

1. All statements where variables are defined and redefined should be considered. Consider

the program for classification of a triangle (given in Figure 3.18) where variable ‘valid’ is

defined at line number 5 and redefined at line number 15 and line number 18.

5 int valid = 0

15 valid = 1

18 valid = –1

Hence, we may create S(valid, 5), S(valid, 15) and S(valid, 18) slices for variable ‘valid’

of the program.

2. All statements where variables receive values externally should be considered. Consider

the triangle problem (given in Figure 3.18) where variables ‘a’, ‘b’ and ‘c’ receive values

externally at line number 8, line number 10 and line number 12 respectively as shown

below:

8 scanf (“%lf”, &a);

10 scanf (“%lf”, &b);

12 scanf (“%lf”, &c);

Hence, we may create S(a, 8), S(b, 10) and S(c, 12) slices for these variables.

3. All statements where output of a variable is printed should be considered. Consider the

program to find the largest amongst three numbers (given in Figure 3.11) where variable

‘C’ is printed at line number 16 and 21 as given below:

16 printf (“The largest number is: % f \n”, C);

21 printf (“The largest number is: % f \n”, C)

Hence, we may create S(C, 16) and S(C, 21) as slices for ‘C’ variable

4. All statements where some relevant output is printed should be considered. Consider

the triangle classification program where line number 26, 29, 32, 36 and 39 are used for

printing the classification of the triangle (given in Figure 3.18) which is very relevant as

per logic of the program. The statements are given as:

26 printf (“Obtuse angled triangle”);

29 printf (“Right angled triangle”);

32 printf (“Acute angled triangle”);

36 printf (“\nInvalid triangle”);

39 printf (“\nInput Values out of Range”);

We may create S(a1, 26), S(a1, 29), S(a1, 32), S(valid, 36) and S(valid, 39) as slices.

These are important slices for the purpose of testing.

5. The status of all variables may be considered at the last statement of the program. We

consider the triangle classification program (given in figure 3.18) where line number 42 is

the last statement of the program. We may create S(a1, 42), S(a2, 42), S(a3, 42), S(valid,

42), S(a, 42), S(b,42) and S(c, 42) as slices.

 Creation of Program Slices

Consider the portion of a program given in Figure 4.2 for the identification of its slices.

1. a = 3;

2. b = 6;

3. c = b2;

4. d = a2 + b2;

5. c = a + b;

Figure 4.2. Portion of a program

S(c, 5)

= 3;

= 6;

= a + b;

a

b

c

1.

2.

5.

S(c, 3)

= 6;

= b2;

2. b

3. c

1. main ()

2. {

3. int a, b, c, d, e;

4. printf (“Enter the values of a, b and c \ n”);

5. scanf (“%d %d %d”, &a, &b, &c);

7. e = b + c;

9. printf (“%d”, e);

10. }

We identify two slices for variable ‘c’ at statement number 3 and statement number 5 as

given in Figure 4.3.

Variable ‘c’ at statement 5 Variable ‘c’ at statement 5

Figure 4.3. Two slices for variable ‘c’

Consider the program given in Figure 4.4.

1. void main ()

2. {

3. int a, b, c, d, e;

4. printf (“Enter the values of a, b and c \ n”);

5. scanf (“%d %d %d”, & a, &b, &c);

6. d = a+b;

7. e = b+c:

8. printf (“%d”, d);

9. printf (“%d”, e);

10. }

Figure 4.4. Example program

Many slices may be created as per criterion (mentioned in section 4.3.1) of the program

given in the Figure 4.4. Some of these slices are shown below:

Slice on criterion S (e, 10) = (1, 2, 3, 4, 5, 7, 9, 10)

1. main ()

2. {

3. int a, b, c, d, e;

4. printf (“Enter the values of a, b and c \ n”);

5. scanf (“%d %d %d”, &a, &b, &c);

6. d = a + b;

8. printf (“%d”, d);

10. }

1. main ()

2. {

3. int a, b, c, d, e;

4. printf (“Enter the values of a, b and c \ n”);

5. scanf (“%d %d %d”, &a, &b, &c);

7. e = b + c;

10. }

1. main ()

2. {

3. int a, b, c, d, e;

4. printf (“Enter the values of a, b and c \ n”);

5. scanf (“%d %d %d”, &a, &b, &c);

6. d = a + b;

10. }

1. main ()

2. {

3. int a, b, c, d, e;

4. printf (“Enter the values of a, b and c \ n”);

5. scanf (“%d %d %d”, &a, &b, &c);

10. }

Slice on criterion S (d,10) = (1, 2, 3, 4, 5, 6, 8, 10)

Slice on criterion S (e,7) = (1, 2, 3, 4, 5, 7,10)

Slice on criterion S (d,6) = (1, 2, 3, 4, 5, 6, 10)

Slice on criterion S (a, 5) = (1, 2, 3, 4, 5, 10)

We also consider the program to find the largest number amongst three numbers as given in

Figure 3.11. There are three variables A, B and C in the program. We may create many slices

like S (A, 28), S (B, 28), S (C, 28) which are given in Figure 4.8.

Some other slices and the portions of the program covered by these slices are given as:

S (A, 6) = {1– 6, 28}

S (A, 13) = {1–14, 18, 27, 28}

S (B, 8) = {1– 4, 7, 8, 28}

S (B, 24) = {1–11, 18–20, 22–28}

S (C, 10) = {1– 4, 9, 10, 28}

S (C, 16) = {1–12, 14–18, 27, 28}

S (C, 21) = {1–11, 18–22, 26–28}

It is a good programming practice to create a block even for a single statement. If we

consider C++/C/Java programming languages, every single statement should be covered with

curly braces { }. However, if we do not do so, the compiler will not show any warning / error

message. In the process of generating slices we delete many statements (which are not required

in the slice). It is essential to keep the starting and ending brackets of the block of the deleted

statements. It is also advisable to give a comment ‘do nothing’ in order to improve the

readability of the source code.

#include<stdio.h>

#include<conio.h>

1. void main()

1.

#include<stdio.h>

#include<conio.h>

void main()

2. { 2. {

3. float A,B,C; 3. float A,B,C;

4. clrscr(); 4. clrscr();

5. printf("Enter number 1:\n"); 5. printf("Enter number 1:\n");

6. scanf("%f", &A); 6. scanf("%f", &A);

7. printf("Enter number 2:\n"); 7. printf("Enter number 2:\n");

8. scanf("%f", &B); 8. scanf("%f", &B);

9. printf("Enter number 3:\n"); 9. printf("Enter number 3:\n");

10. scanf("%f", &C); 10. scanf("%f", &C);

11. if(A>B) { 11. if(A>B) { /*do nothing*/

12. if(A>C) { 18. }

13. printf("The largest number is: %f\n",A); 19. else {

14. } 20. if(C>B) { /*do nothing*/

18. } 22. }

27. getch(); 23. else {

28. } 24. printf("The largest number is: %f\n",B);

 25. }

 26. }

 27. getch();

(a) S(A, 28) ={1–14, 18, 27, 28}

28. }

(b) S(B, 28) ={1–11, 18–20, 22–28}

(Contd.)

(Contd.)

#include<stdio.h>

#include<conio.h>

1. void main()

2. {

3. float A,B,C;

4. clrscr();

5. printf("Enter number 1:\n");

6. scanf("%f", &A);

7. printf("Enter number 2:\n");

8. scanf("%f", &B);

9. printf("Enter number 3:\n");

10. scanf("%f", &C);

11. if(A>B) { /*do nothing*/

18. }

19. else {

20. if(C>B) {

21. printf("The largest number is: %f\n",C);

22. }

26. }

27. getch();

28. }
(c) S(C, 28)={1–11, 18–22, 26–28}

Figure 4.5. Some slices of program in Figure 3.11

A statement may have many variables. However, only one variable should be used to

generate a slice at a time. Different variables in the same statement will generate a different

program slice. Hence, there may be a number of slices of a program depending upon the slicing

criteria. Every slice is smaller than the original program and can be executed independently.

Each slice may have one or more test cases and may help us to focus on the definition,

redefinition, last statement of the program, and printing/reading of a variable in the slice.

Program slicing has many applications in testing, debugging, program comprehension and

software measurement. A statement may have many variables. We should use only one variable

of a statement for generating a slice.

 Generation of Test Cases

Every slice should be independently executable and may cover some lines of source code of

the program as shown in previous examples. The test cases for the slices of the program given

in Figure 3.3 (to find the largest number amongst three numbers) are shown in Table 4.18. The

generated slices are S(A, 6), S(A, 13), S(A, 28), S(B, 8), S(B, 24), S(B, 28), S(C, 10), S(C, 16),

S(C, 21), S(C, 28) as discussed in previous section 4.3.1.

Table 4.18.

S. No. Slice Lines covered A B C Expected output

1. S(A, 6) 1–6, 28 9 No output

2. S(A, 13) 1–14, 18, 27, 28 9 8 7 9

3. S(A, 28) 1–14, 18, 27, 28 8 8 7 9

4. S(B, 8) 1–4, 7, 8, 28 9 No output

5. S(B, 24) 1–11, 18–20, 22–28 7 9 8 9

6. S(B, 28) 1–11, 19, 20, 23–28 7 9 8 9

7. S(C, 10) 1–4, 9, 10, 28 9 No output

8. S(C, 16) 1–12, 14–18, 27, 28 8 7 9 9

9. S(C, 21) 1–11, 18–22, 26–28 7 8 9 9

10. S(C, 28) 1–11, 18–22, 26–28 7 8 9 9

Slice based testing is a popular structural testing technique and focuses on a portion of the

program with respect to a variable location in any statement of the program. Hence slicing

simplifies the way of testing a program’s behaviour with respect to a particular subset of its

variables. But slicing cannot test a behaviour which is not represented by a set of variables or

a variable of the program.

Example 4.7: Consider the program for determination of division of a student. Consider all

variables and generate possible program slices. Design at least one test case from every slice.

Solution:

There are four variables – mark1, mark2, mark3 and avg in the program. We may create many

slices as given below:

S (mark1, 7) = {1–7, 34}

S (mark1, 13) = {1–14, 33, 34}

S (mark2, 9) = {1–5, 8, 9, 34}

S (mark2, 13) = {1–14, 33, 34}

S (mark3, 11) = {1–5, 10, 11, 34}

S (mark3, 13) = {1–14, 33, 34}

S (avg, 16) = {1–12, 14–16, 32, 34}

S (avg, 18) = {1–12, 14–19, 32–34}

S (avg, 21) = {1–12, 14–17, 19–22, 29, 31–34}

S (avg, 24) = {1–12, 14–17, 19, 20, 22–25, 29, 31–34}

S (avg, 27) = {1–12, 14–17, 19, 20, 22, 23, 25–29, 31–34}

S (avg, 30) = {1–12, 14–17, 19, 20, 22, 23, 25, 26, 28–34}

The program slices are given in Figure 4.6 and their corresponding test cases are given in

Table 4.19.

1.

#include<stdio.h>

#include<conio.h>

void main()

1.

#include<stdio.h>

#include<conio.h>

void main()

2. { 2. {

3. int mark1, mark2,mark3,avg; 3. int mark1, mark2,mark3,avg;

4. clrscr(); 4. clrscr();

5. printf("Enter marks of 3 subjects
(between 0-100)\n");

5. printf("Enter marks of 3 subjects (between
0-100)\n");

6. printf("Enter marks of first
subject:");

8. printf("Enter marks of second subject:");

7. scanf("%d", &mark1); 9. scanf("%d", &mark2);

34. } 34. }

 (a) S(mark1,7)/S(mark1,34) (b) S(mark2,9)/S(mark2,34)

#include<stdio.h> #include<stdio.h>

#include<conio.h> #include<conio.h>

1. void main() 1. void main()

2. { 2. {

3. int mark1, mark2,mark3,avg; 3. int mark1, mark2,mark3,avg;

4. clrscr(); 4. clrscr();

5. printf("Enter marks of 3 subjects
(between 0-100)\n"); 5.

printf("Enter marks of 3 subjects (between
0-100)\n");

10. printf("Enter marks of third subject:"); 6. printf("Enter marks of first subject:");

11. scanf("%d",&mark3); 7. scanf("%d", &mark1);

34. } 8. printf("Enter marks of second subject:");

9. scanf("%d", &mark2);

10. printf("Enter marks of third subject:");

11. scanf("%d",&mark3);

12.
if(mark1>100||mark1<0||mark2>100||mark2<0||
mark3>100||mark3<0){

13. printf("Invalid Marks! Please try again");

14. }

33. getch();

34. }

(c) S(mark3,11)/S(mark3,34) (d) S(mark1,13)/S(mark2,13)/S(mark3,13)

(Contd.)

(Contd.)

#include<stdio.h> #include<stdio.h>

#include<conio.h> #include<conio.h>

1. void main() 1. void main()

2. { 2. {

3. int mark1, mark2,mark3,avg; 3. int mark1, mark2,mark3,avg;

4. clrscr(); 4. clrscr();

5. printf("Enter marks of 3 subjects (between
0-100)\n");

5. printf("Enter marks of 3 subjects
(between 0-100)\n");

6. printf("Enter marks of first subject:"); 6. printf("Enter marks of first subject:");

7. scanf("%d", &mark1); 7. scanf("%d", &mark1);

8. printf("Enter marks of second subject:"); 8. printf("Enter marks of second subject:");

9. scanf("%d", &mark2); 9. scanf("%d", &mark2);

10. printf("Enter marks of third subject:"); 10. printf("Enter marks of third subject:");

11. scanf("%d",&mark3); 11. scanf("%d",&mark3);

12. if(mark1>100||mark1<0||mark2>100||mark2
<0||mark3>100||mark3<0){ /* do nothing*/

12. if(mark1>100||mark1<0||mark2>100||mark2
<0||mark3>100||mark3<0){

14. } 14. } /* do nothing*/

15. else { 15. else {

16. avg=(mark1+mark2+mark3)/3; 16. avg=(mark1+mark2+mark3)/3;

17. if(avg<40){ 17. if(avg<40){ /* do nothing*/

18. printf("Fail"); 19. }

19. } 20. else if(avg>=40&&avg<50) {

32. } 21. printf("Third Division");

33. getch(); 22. }

34. } 29. else { /* do nothing*/

 31. }

 32. }

 33. getch();

 34. }

 (e) S(avg,18) (f) S(avg,21)

#include<stdio.h>

#include<stdio.h>

 #include<conio.h> #include<conio.h>

1. void main() 1. void main()

2. { 2. {

3. int mark1, mark2,mark3,avg; 3. int mark1, mark2,mark3,avg;

4. clrscr(); 4. clrscr();

5. printf("Enter marks of 3 subjects (between
0-100)\n");

5. printf("Enter marks of 3 subjects
(between 0-100)\n");

(Contd.)

(Contd.)

6. printf("Enter marks of first subject:"); 6. printf("Enter marks of first subject:");

7. scanf("%d", &mark1); 7. scanf("%d", &mark1);

8. printf("Enter marks of second subject:"); 8. printf("Enter marks of second subject:");

9. scanf("%d", &mark2); 9. scanf("%d", &mark2);

10. printf("Enter marks of third subject:"); 10. printf("Enter marks of third subject:");

11. scanf("%d",&mark3); 11. scanf("%d",&mark3);

12. if(mark1>100||mark1<0||mark2>100||mark2
<0||mark3>100||mark3<0) {
/* do nothing*/

12. if(mark1>100||mark1<0||mark2>100||mar
k2<0||mark3>100||mark3<0) {
/* do nothing*/

14. } 14. }

15. else { 15. else {

16. avg=(mark1+mark2+mark3)/3; 16. avg=(mark1+mark2+mark3)/3;

17. if(avg<40) { /* do nothing*/ 17. if(avg<40) { /* do nothing*/

19. } 19. }

20. else if(avg>=40&&avg<50) {
/* do nothing*/

20. else if(avg>=40&&avg<50) {
/* do nothing*/

22. } 22. }

23. else if(avg>=50&&avg<60) { 23. else if(avg>=50&&avg<60) {

24. printf("Second Division"); 25. }

25. } 26. else if(avg>=60&&avg<75) {

29. else { /* do nothing*/ 27. printf("First Division");

31. } 28. }

32. } 29. else { /* do nothing*/

33. getch(); 31. }

34. } 32. }

33. getch();

34. }

(g) S(avg,24) (h) S(avg,27)

#include<stdio.h>

#include<conio.h>

1. void main()

2. {

3. int mark1, mark2,mark3,avg;

4. clrscr();

5. printf("Enter marks of 3 subjects (between 0-100)\n");

6. printf("Enter marks of first subject:");

7. scanf("%d", &mark1);

8. printf("Enter marks of second subject:");

(Contd.)

(Contd.)

9. scanf("%d", &mark2);

10. printf("Enter marks of third subject:");

11. scanf("%d",&mark3);

12. if(mark1>100||mark1<0||mark2>100||mark2<0||mark3>100||mark3<0) { /* do nothing*/

14. }

15. else {

16. avg=(mark1+mark2+mark3)/3;

17. if(avg<40) { /* do nothing*/

19. }

20. else if(avg>=40&&avg<50) {/* do nothing*/

22. }

23. else if(avg>=50&&avg<60) {/* do nothing*/

25. }

26. else if(avg>=60&&avg<75) {/* do nothing*/

28. }

29. else {

30. printf("First Division with Distinction");

31. }

32. }

33. getch();

34. }

(i) S(avg,30)/S(avg,34)

Figure 4.6. Slices of program for determination of division of a student

Table 4.19.

S.

.
Slice Line covered mark1 mark2 mark3 Expected output

No

1. S(mark1, 7) 1–7, 34 65 No output

2. S(mark1, 13) 1–14, 33, 34 101 40 50 Invalid marks

3. S(mark1, 34) 1–7, 34 65

No output

4. S(mark2, 9) 1–5, 8, 9, 34

65

No output

5. S(mark2, 13) 1–14, 33, 34 40 101 50 Invalid marks

6. S(mark2, 34) 1–5, 8, 9, 34

65

No output

7. S(mark3, 11) 1–5, 10, 11, 34

65 No output

8. S(mark3, 13) 1–14, 33, 34 40 50 101 Invalid marks

(Contd.)

(Contd.)

S.

.
Slice Line covered mark1 mark2 mark3 Expected output

No

9. S(mark3, 34) 1–5, 10, 11, 34 65 No output

10. S(avg, 16) 1–12, 14–16, 32, 34 45 50 45 No output

11. S(avg, 18) 1–12, 14–19, 32–34 40 30 20 Fail

12. S(avg, 21) 1–12, 14–17, 19–22,

29, 32–34

45 50 45 Third division

13. S(avg, 24) 1–12, 14–17, 19, 20,

22–25, 29, 31–34

55 60 57 Second division

14. S(avg, 27) 1–12, 14–17, 19, 20,

22, 23, 25–29, 31–34

65 67 65 First division

15. S(avg, 30) 1–12, 14–17, 19, 20,

22, 23, 25, 26, 28–34

79 80 85 First division with

distinction

16. S(avg, 34) 1–12, 14–17, 19, 20,

22, 23, 25, 26, 28–34

79 80 85 First division with

distinction

17. S(avg, 16) 1–12, 14–16, 32, 34 45 50 45 No output

Example 4.8: Consider the program for classification of a triangle. Consider all variables and

generate possible program slices. Design at least one test case from every slice.

Solution:

There are seven variables ‘a’, ‘b’, ‘c’, ‘a1’, ‘a2’, ‘a3’ and ‘valid’ in the program. We may create

many slices as given below:

i. S (a, 8) = {1–8, 42}

ii. S (b, 10) = {1–6, 9, 10, 42}

iii. S (c, 12) = {1–6, 11, 12, 42}

iv. S (a1, 22) = {1–16, 20–22, 34, 42}

v. S (a1, 26) = {1–16, 20–22, 25–27, 34, 41, 42}

vi. S (a1, 29) = {1–16, 20–22, 25, 27–31, 33, 34, 41, 42}

vii. S (a1, 32) = {1–16, 20–22, 25, 27, 28, 30–34, 41, 42}

viii. S (a2, 23) = {1–16, 20, 21,23, 34, 42}

ix. S (a2, 26) = {1–16, 20, 21, 23, 25–27, 34, 41, 42)

x. S (a2, 29) = {1–16, 20, 21, 23, 25, 27–31, 33, 34, 41, 42}

xi. S (a2, 32) = {1–16, 20, 21, 23, 25, 27, 28, 30–34, 41, 42}

xii. S (a3, 26) = {1–16, 20, 21, 24–27, 34, 41, 42}

xiii. S (a3, 29) = {1–16, 20, 21, 24, 25, 27–31, 33, 34, 41,42}

xiv. S (a3, 32) = {1–16, 20, 21, 24, 25, 27, 28, 30–34, 41, 42}

xv. S (valid, 5) = {1–5, 42}

xvi. S (valid, 15) = {1–16, 20, 42}

xvii. S (valid, 18) = {1–14, 16–20, 42}

xviii. S (valid, 36) = {1–14, 16–20, 21, 34–38, 40–42}

xix. S (valid, 39) = {1–13, 20, 21, 34, 35, 37–42}

The test cases of the above slices are given in Table 4.20.

Table 4.20.

S.

No.

Slice Path a b c Expected output

1. S(a, 8)/S(a,42) 1–8, 42 20 No output

2. S(b, 10)/S(b,42) 1–6, 9, 10, 42 20 No output

3. S(c, 12)/S(c,42) 1–6, 11, 12, 42 20 No output

4. S(a1, 22) 1–16, 20–22, 34, 42 30 20 40 No output

5. S(a1, 26) 1–16, 20–22, 25–27, 34,

41, 42

6. S(a1, 29) 1–16, 20–22, 25, 27–31,

33, 34, 41, 42

7. S(a1, 32) 1–16, 20–22, 25, 27, 28,

30–34, 41, 42

30 20 40 Obtuse angled

triangle

30 40 50 Right angled triangle

50 60 40 Acute angled tri-

angle

8. S(a1, 42) 1–16, 20–22, 34, 42 30 20 40 No output

9. S(a2, 23) 1–16, 20, 21, 23, 34, 42 30 20 40 No output

10. S(a2, 26) 1–16, 20, 21, 23, 25–27,

34, 41, 42

11. S(a2, 29) 1–16, 20, 21, 23, 25,

27–31, 33, 34, 41, 42

12. S(a2, 32) 1–16, 20, 21, 23, 25, 27, 28,

30–34, 41, 42

40 30 20 Obtuse angled

triangle

50 40 30 Right angled triangle

40 50 60 Acute angled tri-

angle

13. S(a2, 42) 1–16, 20, 21, 23, 34, 42 30 20 40 No output

14. S(a3, 24) 1–16, 20, 21, 24, 34, 42 30 20 40 No output

15. S(a3, 26) 1–16, 20, 21, 24–27, 34,

41, 42

16. S(a3, 29) 1–16, 20, 21, 24, 25, 27–31,

33, 34, 41, 42

17. S(a3, 32) 1–16, 20, 21, 24, 25, 27, 28,

30–34, 41, 42

20 40 30 Obtuse angled

triangle

40 50 30 Right angled triangle

50 40 60 Acute angled tri-

angle

18. S(a3, 42) 1–16, 20, 21, 24, 34, 42 30 20 40 No output

19. S(valid,5) 1–2, 5, 42 No output

20. S(valid,15) 1–16, 20, 42 20 40 30 No output

21. S(valid,18) 1–14, 16–20, 42 30 10 15 No output

22. S(valid,36) 1–14, 16–20, 21, 34–38,

40–42

30 10 15 Invalid triangle

23. S(valid,39) 1–13, 20, 21, 34, 35, 37–42 102 –1 6 Input values out of

range

24. S(valid,42) 1–14, 16–20, 42 30 10 15 No output

Example 4.9. Consider the program for determination of day of the week given in Figure 3.13.

Consider variables day, validDate, leap and generate possible program slices. Design at least

one test case from each slice.

Solution:

There are ten variables – day, month, year, century Y, Y1, M, date, valid date, and leap. We

may create many slices for variables day, validDate and leap as given below:

1. S(day, 6) = {1–6, 118}

2. S(day, 93) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,

78–81, 88, 90–94, 113, 117, 118}

3. S(day, 96) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,

78–81, 88, 90–92, 94–97, 110, 112, 113, 117, 118}

4. S(day, 99) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,

78–81, 88, 90–92, 94, 95, 97–100, 110, 112, 113, 117, 118}

5. S(day, 102) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,

78–81, 88, 90–92, 94, 95, 97, 98, 100–103, 110, 112, 113, 117,

118}

6. S(day, 105) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,

78–81, 88, 90–92, 94, 95, 97, 98, 100, 101, 103–106, 110, 112,

113, 117, 118}

7. S(day, 108) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,

78–81, 88, 90–92, 94, 95, 97, 98, 100, 101, 103, 104, 106–110,

112, 113, 117, 118}

8. S(day, 111) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,

78–81, 88, 90–92, 94, 95, 97, 98, 100, 101, 103, 104, 106, 107,

109–113, 117, 118}

9. S(day, 115) = {1–11, 43, 44, 113–118}

10. S(day, 118) = {1–6, 118}

11. S(validDate,3) = {1–3, 118}

12. S(validDate,20) = {1–11, 18–21, 25, 43, 118}

13. S(validDate,23) = {1–11, 18, 19, 21–25, 43, 118}

14. S(validDate,28) = {1–13, 17, 18, 25, 26–29, 36, 40, 42, 43, 118}

15. S(validDate,31) = {1–11, 18, 25, 26, 27, 29–33, 35, 36, 40, 42, 43, 118}

16. S(validDate,34) = {1–11, 18, 25, 26, 27, 29, 30, 32–36, 40, 42, 43, 118}

17.. S(validDate,38) = {1–11, 18, 25, 26, 36–40, 42, 43, 118}

18. S(validDate,41) = {1–11, 18, 25, 26, 36, 37, 39–43, 118}

19. S(validDate,118) = {1–11, 18, 25, 26, 36, 37, 39–43, 118}

20. S(leap,3) = {1–3, 118}

21. S(leap,13) = {1–13, 17, 43, 118}

22. S(leap,15) = {1–17, 43, 118}

23. S(leap,118) = {1–17, 43, 118}

The test cases for the above slices are given in Table 4.21.

Table 4.21.

S.

No.
Slice Lines covered Month Day Year

Expected

output

1. S(day, 6) 1–6, 118 6 - - No output

2. S(day, 93) 1–11, 18–21, 25, 43–48, 53,

54, 61, 62, 69, 70, 72, 73, 75,

76, 78–81, 88, 90–94, 113,

117, 118

6 13 1999 Sunday

3. S(day, 96) 1–11, 18–21, 25, 43–48, 53,

54, 61, 62, 69, 70, 72, 73, 75,

76, 78–81, 88, 90–92, 94–97,

110, 112, 113, 117, 118

6 14 1999 Monday

4. S(day, 99) 1–11, 18–21, 25, 43–48, 53,

54, 61, 62, 69, 70, 72, 73, 75,

76, 78–81, 88, 90–92, 94, 95,

97–100, 110, 112, 113, 117,

118

6 15 1999 Tuesday

5. S(day, 102) 1–11, 18–21, 25, 43–48, 53,

54, 61, 62, 69, 70, 72, 73, 75,

76, 78–81, 88, 90–92, 94, 95,

97, 98, 100–103, 110, 112,

113, 117, 118

6 16 1999 Wednesday

6. S(day, 105) 1–11, 18–21, 25, 43–48, 53,

54, 61, 62, 69, 70, 72, 73, 75,

76, 78–81, 88, 90–92, 94, 95,

97, 98, 100, 101, 103–106,

110, 112, 113, 117, 118

6 17 1999 Thursday

7. S(day, 108) 1–11, 18–21, 25, 43–48, 53,

54, 61, 62, 69, 70, 72, 73, 75,

76, 78–81, 88, 90–92, 94, 95,

97, 98, 100, 101, 103, 104,

106–110, 112, 113, 117, 118

6 18 1999 Friday

8. S(day, 111) 1–11, 18–21, 25, 43–48, 53,

54, 61, 62, 69, 70, 72, 73, 75,

76, 78–81, 88, 90–92, 94, 95,

97, 98, 100, 101, 103, 104,

106, 107, 109–113, 117, 118

6 19 1999 Saturday

9. S(day, 115) 1–11, 43, 44, 113–118 6 31 2059 Invalid Date

10. S(day, 118) 1–6, 118 6 19 1999 Saturday

11. S(validDate,3) 1–3, 118 - - - No output

12. S(validDate,20) 1–11, 18–21, 25, 43, 118 6 15 2009 No output

13. S(validDate,23) 1–11, 18, 19, 21–25, 43, 118 6 31 2009 No output

14. S(validDate,28) 1–13, 17, 18, 25, 26–29, 36,

40, 42, 43, 118

2 15 2000 No output

 (Contd.)

(Contd.)

S.

No.
Slice Lines covered Month Day Year

Expected

output

15. S(validDate,31) 1–11, 18, 25, 26, 27, 29–33,

35, 36, 40, 42, 43, 118

2 15 2009 No output

16. S(validDate,34) 1–11, 18, 25, 26, 27, 29, 30,

32–36, 40, 42, 43, 118

2 29 2009 No output

17. S(validDate,38) 1–11, 18, 25, 26, 36–40, 42,

43, 118

8 15 2009 No output

18. S(validDate,41) 1–11, 18, 25, 26, 36, 37,

39–43, 118

13 15 2009 No output

19. S(validDate,118) 1–11, 18, 25, 26, 36, 37,

39–43, 118

13 15 2009 No output

20. S(leap,3) 1–3, 118 - - - No output

21. S(leap,13) 1–13, 17, 43, 118 8 15 2000 No output

22. S(leap,15) 1–17, 43, 118 8 15 1900 No output

23. S(leap,118) 1–17, 43, 118 8 15 1900 No output

MUTATION TESTING

It is a popular technique to assess the effectiveness of a test suite. We may have a large number

of test cases for any program. We neither have time nor resources to execute all of them. We

may select a few test cases using any testing technique and prepare a test suite. How do we

assess the effectiveness of a selected test suite? Is this test suite adequate for the program? If

the test suite is not able to make the program fail, there may be one of the following reasons:

(i) The test suite is effective but hardly any errors are there in the program. How will a test

suite detect errors when they are not there?

(ii) The test suite is not effective and could not find any errors. Although there may be

errors, they could not be detected due to poor selection of test suite. How will errors be

detected when the test suite is not effective?

In both the cases, we are not able to find errors, but the reasons are different. In the first

case, the program quality is good and the test suite is effective and in the second case, the

program quality is not that good and the test suite is also not that effective. When the test suite

is not able to detect errors, how do we know whether the test suite is not effective or the

program quality is good? Hence, assessing the effectiveness and quality of a test suite is very

important. Mutation testing may help us to assess the effectiveness of a test suite and may also

enhance the test suite, if it is not adequate for a program.

 Mutation and Mutants

The process of changing a program is known as mutation. This change may be limited to one,

two or very few changes in the program. We prepare a copy of the program under test and make

a change in a statement of the program. This changed version of the program is known as a

if(A>B){

mutant of the original program. The behaviour of the mutant may be different from the original

program due to the introduction of a change. However, the original program and mutant are

syntactically correct and should compile correctly. To mutate a program means to change a

program. We generally make only one or two changes in order to assess the effectiveness of

the selected test suite. We may make many mutants of a program by making small changes in

the program. Every mutant will have a different change in a program. Consider a program to

find the largest amongst three numbers as given in Figure 3.11 and its two mutants are given

in Figure 4.7 and Figure 4.8. Every change of a program may give a different output as

compared to the original program.

Many changes can be made in the program given in Figure 3.11 till it is syntactically
correct. Mutant M

1
is obtained by replacing the operator ‘>’ of line number 11 by the operator

‘ =’. Mutant M
2

is obtained by changing the operator ‘>’ of line number 20 to operator ‘<’.

These changes are simple changes. Only one change has been made in the original program to
obtain mutant M

1
and mutant M

2
.

#include<stdio.h>

#include<conio.h>

1. void main()

2. {

3. float A,B,C;

4. clrscr();

5. printf("Enter number 1:\n");

6. scanf("%f", &A);

7. printf("Enter number 2:\n");

8. scanf("%f", &B);

9. printf("Enter number 3:\n");

10. scanf("%f", &C);

/*Check for greatest of three numbers*/

11. if(A=B) { mutated statement (‘>’ is replaced by ‘=’)

12. if(A>C) {

13. printf("The largest number is: %f\n",A);

14. }

15. else {

16. printf("The largest number is: %f\n",C);

17. }

18. }

19. else {

20. if(C>B) {

21. printf("The largest number is: %f\n",C);

22. }

23. else {

24. printf("The largest number is: %f\n",B);

25. }

26. }

(Contd.)

if(C>B) {

(Contd.)

27. getch();

28. }

M1 : First order mutant

Figure 4.7. Mutant1 (M1) of program to find the largest among three numbers

#include<stdio.h>

#include<conio.h>

1. void main()

2. {

3. float A,B,C;

4. clrscr();

5. printf("Enter number 1:\n");

6. scanf("%f", &A);

7. printf("Enter number 2:\n");

8. scanf("%f", &B);

9. printf("Enter number 3:\n");

10. scanf("%f", &C);

/*Check for greatest of three numbers*/

11. if(A>B) {

12. if(A>C) {

13. printf("The largest number is: %f\n",A);

14. }

15. else {

16. printf("The largest number is: %f\n",C);

17. }

18. }

19. else {

20. if(C<B) { mutated statement (‘>’ is replaced by ‘<’)

21. printf("The largest number is: %f\n",C);

22. }

23. else {

24. printf("The largest number is: %f\n",B);

25. }

26. }

27. getch();

28. }

M2 : First order mutant

Figure 4.8. Mutant2 (M2) of program to find the largest among three numbers

if(C>B) {

if(A>B) {

The mutants generated by making only one change are known as first order mutants. We may

obtain second order mutants by making two simple changes in the program and third order mutants

by making three simple changes, and so on. The second order mutant (M
3
) of the program given in

Figure 3.11 is obtained by making two changes in the program and thus changing operator ‘>’ of

line number 11 to operator ‘<’ and operator ‘>’ of line number 20 to ‘ ’ as given in Figure 4.9. The

second order mutants and above are called higher order mutants. Generally, in practice, we prefer

to use only first order mutants in order to simplify the process of mutation.

#include<stdio.h>

#include<conio.h>

1. void main()

2. {

3. float A,B,C;

4. clrscr();

5. printf("Enter number 1:\n");

6. scanf("%f", &A);

7. printf("Enter number 2:\n");

8. scanf("%f", &B);

9. printf("Enter number 3:\n");

10. scanf("%f", &C);

/*Check for greatest of three numbers*/

11. if(A<B) { mutated statement (replacing ‘>’ by ‘<’)

12. if(A>C) {

13. printf("The largest number is: %f\n",A);

14. }

15. else {

16. printf("The largest number is: %f\n",C);

17. }

18. }

19. else {

20. if(C B) { mutated statement (replacing ‘>’by ‘ ’)

21. printf("The largest number is: %f\n",C);

22. }

23. else {

24. printf("The largest number is: %f\n",B);

25. }

26. }

27. getch();

28. }

M3 : Second order mutant

Figure 4.9. Mutant3 (M3) of program to find the largest among three numbers

 Mutation Operators

Mutants are produced by applying mutant operators. An operator is essentially a grammatical

rule that changes a single expression to another expression. The changed expression should be

grammatically correct as per the used language. If one or more mutant operators are applied to

all expressions of a program, we may be able to generate a large set of mutants. We should

measure the degree to which the program is changed. If the original expression is x + 1, and

the mutant for that expression is x + 2, that is considered as a lesser change as compared to a

mutant where the changed expression is (y * 2) by changing both operands and the operator.

We may have a ranking scheme, where a first order mutant is a single change to an expression,

a second order mutant is a mutation to a first order mutant, and so on. Higher order mutants

become difficult to manage, control and trace. They are not popular in practice and first order

mutants are recommended to be used. To kill a mutant, we should be able to execute the

changed statement of the program. If we are not able to do so, the fault will not be detected. If

x – y is changed to x – 5 to make a mutant, then we should not use the value of y to be equal

to 5. If we do so, the fault will not be revealed. Some of the mutant operators for object

oriented languages like Java, C++ are given as:

(i) Changing the access modifier, like public to private.

(ii) Static modifier change

(iii) Argument order change

(iv) Super Keyword change

(v) Operator change

(vi) Any operand change by a numeric value.

 Mutation Score

When we execute a mutant using a test suite, we may have any of the following outcomes:

(i)

(ii)

The results of the program are affected by the change and any test case of the test suite

detects it. If this happens, then the mutant is called a killed mutant.

The results of the program are not affected by the change and any test case of the test

suite does not detect the mutation. The mutant is called a live mutant.

The mutation score associated with a test suite and its mutants is calculated as:

Mutation Score
Number of mutants killed

Total number of mutants

The total number of mutants is equal to the number of killed mutants plus the number of

live mutants. The mutation score measures how sensitive the program is to the changes and

how accurate the test suite is. A mutation score is always between 0 and 1. A higher value of

mutation score indicates the effectiveness of the test suite although effectiveness also depends

on the types of faults that the mutation operators are designed to represent.

The live mutants are important for us and should be analyzed thoroughly. Why is it that any

test case of the test suite not able to detect the changed behaviour of the program? One of the

reasons may be that the changed statement was not executed by these test cases. If executed,

Table 4.22. Mutated statements

Mutant No. Line no. Original line

M1 11 if(A>B)

M2 11 if(A>B)

M3 12 if(A>C)

M4 20 if(C>B)

M5 16 printf(“The Largest number

is:%f\n”,C);

if (A<B)

if(A>(B+C))

if(A<C)

if(C=B)

printf(“The Largest number

is:%f\n”,B);

then also it has no effect on the behaviour of the program. We should write new test cases for

live mutants and kill all these mutants. The test cases that identify the changed behaviour

should be preserved and transferred to the original test suite in order to enhance the capability

of the test suite. Hence, the purpose of mutation testing is not only to assess the capability of

a test suite but also to enhance the test suite. Some mutation testing tools are also available in

the market like Insure++, Jester for Java (open source) and Nester for C++ (open source).

Example 4.10: Consider the program to find the largest of three numbers as given in figure

3.11. The test suite selected by a testing technique is given as:

S. No. A B C Expected Output

1. 6 10 2 10

2. 10 6 2 10

3. 6 2 10 10

4. 6 10 20 20

Generate five mutants (M
1

to M
5
) and calculate the mutation score of this test suite.

Solution:

The mutated line numbers and changed lines are shown in Table 4.22.

The actual output obtained by executing the mutants M
1
-M

5
is shown in Tables 4.23-4.27.

Table 4.23. Actual output of mutant M1

Test case A B C Expected output Actual output

1. 6 10 2 10 6

2. 10 6 2 10 6

3. 6 2 10 10 10

4. 6 10 20 20 20

Table 4.24. Actual output of mutant M2

Test case A B C Expected output Actual output

1. 6 10 2 10 10

2. 10 6 2 10 10

3. 6 2 10 10 10

4. 6 10 20 20 20

Table 4.25. Actual output of mutant M3

Test case A B C Expected output Actual output

1. 6 10 2 10 10

2. 10 6 2 10 2

3. 6 2 10 10 6

4. 6 10 20 20 20

Table 4.26. Actual output of mutant M4

Test case A B C Expected output Actual output

1. 6 10 2 10 10

2. 10 6 2 10 10

3. 6 2 10 10 10

4. 6 10 20 20 10

Table 4.27. Actual output of mutant M5

Test case A B C Expected output Actual output

1. 6 10 2 10 10

2. 10 6 2 10 10

3. 6 2 10 10 2

4. 6 10 20 20 20

Mutation Score
Number of mutants killed

Total number of mutants

4

5

0.8

Higher the mutant score, better is the effectiveness of the test suite. The mutant M
2
is live

in the example. We may have to write a specific test case to kill this mutant. The additional test
case is given in Table 4.28.

Table 4.28.

Test case

A

B

C

Expected output

5. 10 5 6 10

Now when we execute the test case 5, the actual output will be different from the expected

output (see Table 4.29), hence the mutant will be killed.

Table 4.29. Output of added test case

Test case A B C Expected output Actual output

5. 10 5 6 10 6

Table 4.33.

Mutant

No.

M
1

M
2

M
3

M
4

M
5

Line

no.

13

14

21

23

25

Original line

if(a>0&&a<=100&&b>0&&b<=10 if(a>0||a<=100&&b>0&&b<=100&

0&&c>0&&c<=100) { &c>0&&c<=100) {

if((a+b)>c&&(b+c)>a&&(c+a)>b) { if((a+b)>c&&(b+c)>a&&(b+a)>b) {

if(valid==1) { if(valid>1) {

a2=(b*b+c*c)/(a*a); a2=(b*b+c*c)*(a*a);

if(a1<1||a2<1||a3<1) { if(a1>1||a2<1||a3<1) {

This test case is very important and should be added to the given test suite. Therefore, the

revised test suite is given in Table 4.30.

Table 4.30.

Test case

A

B

C

Expected output

1. 6 10 2 10

2. 10 6 2 10

3. 6 2 10 10

4. 6 10 20 20

5. 10 5 6 10

Example 4.11: Consider the program for classification of triangle given in Figure 3.18. The

test suite A and B are selected by two different testing techniques and are given in Table 4.31

and Table 4.32, respectively. The five first order mutants and the modified lines are given in

Table 4.33. Calculate the mutation score of each test suite and compare their effectiveness.

Also, add any additional test case, if required.

Table 4.31.

Test case

a

b

c

Expected output

1. 30 40 90 Invalid triangle

2. 30 20 40 Obtuse angled triangle

3. 50 40 60 Acute angled triangle

4. 30 40 50 Right angled triangle

5. –1 50 40 Input values are out of range

6. 50 150 90 Input values are out of range

7. 50 40 –1 Input values are out of range

Table 4.32.

Test case

a

b

c

Expected output

1. 40 90 20 Invalid triangle

2. 40 30 60 Obtuse angled triangle

3. 40 50 60 Acute angled triangle

4. 30 40 50 Right angled triangle

5. –1 50 40 Input values are out of range

6. 30 101 90 Input values are out of range
7. 30 90 0 Input values are out of range

Solution:

The actual outputs of mutants M
1
-M

5
on test suite A are shown in Tables 4.34-4.38.

Table 4.34. Actual output of M1(A)

Test case a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Obtuse angled triangle

3. 50 40 60 Acute angled triangle Acute angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. –1 50 40 Input values are out of range Invalid triangle

6. 50 150 90 Input values are out of range Invalid triangle

7. 50 40 –1 Input values are out of range Invalid triangle

Table 4.35. Actual output of M2(A)

Test case a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Obtuse angled triangle

3. 50 40 60 Acute angled triangle Acute angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. –1 50 40 Input values are out of range Input values are out of range

6. 50 150 90 Input values are out of range Input values are out of range

7. 50 40 –1 Input values are out of range Input values are out of range

Table 4.36. Actual output of M3(A)

Test case a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Input values are out of range

3. 50 40 60 Acute angled triangle Input values are out of range

4. 30 40 50 Right angled triangle Input values are out of range

5. –1 50 40 Input values are out of range Input values are out of range

6. 50 150 90 Input values are out of range Input values are out of range

7. 50 40 –1 Input values are out of range Input values are out of range

Table 4.37. Actual output of M4(A)

Test case a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Obtuse angled triangle

3. 50 40 60 Acute angled triangle Acute angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. –1 50 40 Input values are out of range Input values are out of range

6. 50 150 90 Input values are out of range Input values are out of range

7. 50 40 –1 Input values are out of range Input values are out of range

Table 4.38. Actual output of M5(A)

Test case a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Acute angled triangle

3. 50 40 60 Acute angled triangle Obtuse angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. –1 50 40 Input values are out of range Input values are out of range

6. 50 150 90 Input values are out of range Input values are out of range

7. 50 40 –1 Input values are out of range Input values are out of range

Two mutants are M
2

and M
4
are live. Thus, the mutation score using test suite A is 0.6.

Mutation Score
Number of mutants killed

Total number of mutants

3

5

0.6

The actual outputs of mutants M
1
-M

5
on test suite B are shown in Tables 4.39-4.43.

Table 4.39. Actual output of M1

Test case a b c Expected output Actual output

1. 40 90 20 Invalid triangle Invalid triangle

2. 40 30 60 Obtuse angled triangle Obtuse angled triangle

3. 40 50 60 Acute angled triangle Acute angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. –1 50 40 Input values are out of range Invalid triangle

6. 30 101 90 Input values are out of range Obtuse angled triangle

7. 30 90 0 Input values are out of range Invalid triangle

Table 4.40. Actual output of M2

Test case a b c Expected output Actual output

1. 40 90 20 Invalid triangle Obtuse angled triangle

2. 40 30 60 Obtuse angled triangle Obtuse angled triangle

3. 40 50 60 Acute angled triangle Acute angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. –1 50 40 Input values are out of range Input values are out of range

6. 30 101 90 Input values are out of range Input values are out of range

7. 30 90 0 Input values are out of range Input values are out of range

Table 4.41. Actual output of M3

Test case a b c Expected output Actual output

1. 40 90 20 Invalid triangle Invalid triangle

2. 40 30 60 Obtuse angled triangle Input values are out of range

3. 40 50 60 Acute angled triangle Input values are out of range

4. 30 40 50 Right angled triangle Input values are out of range

5. –1 50 40 Input values are out of range Input values are out of range

6. 30 101 90 Input values are out of range Input values are out of range

7. 30 90 0 Input values are out of range Input values are out of range

Table 4.42. Actual output of M4

Test case a b c Expected output Actual output

1. 40 90 20 Invalid triangle Invalid triangle

2. 40 30 60 Obtuse angled triangle Obtuse angled triangle

3. 40 50 60 Acute angled triangle Acute angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. –1 50 40 Input values are out of range Input values are out of range

6. 30 101 90 Input values are out of range Input values are out of range

7. 30 90 0 Input values are out of range Input values are out of range

Table 4.43. Actual output of M5

Test case a b c Expected output Actual output

1. 40 90 20 Invalid triangle Invalid triangle

2. 40 30 60 Obtuse angled triangle Acute angled triangle

3. 40 50 60 Acute angled triangle Obtuse angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. –1 50 40 Input values are out of range Input values are out of range

6. 30 101 90 Input values are out of range Input values are out of range

7. 30 90 0 Input values are out of range Input values are out of range

Mutation Score
Number of mutants killed

Total number of mutants

4

5

0.8

The mutation score of Test suite B is higher as compared to the mutation score of test suite

A, hence test suite B is more effective in comparison to test suite A. In order to kill the live

mutant (M
4
), an additional test case should be added to test suite B as shown in Table 4.44.

Table 4.44.

Test case

a

b

c

Expected output

8. 40 30 20 Obtuse angled triangle

The revised test suite B is given in Table 4.45.

Table 4.45.

Test case

a

b

c

Expected output

1. 40 90 20 Invalid triangle

2. 40 30 60 Obtuse angled triangle

3. 40 50 60 Acute angled triangle

4. 30 40 50 Right angled triangle

5. –1 50 40 Input values are out of range

6. 30 101 90 Input values are out of range

7. 30 90 0 Input values are out of range

8. 40 30 20 Obtuse angled triangle

