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CONTROL FLOW TESTING 

This technique is very popular due to its simplicity and effectiveness. We identify paths of the 

program and write test cases to execute those paths. As we all know, path is a sequence of 

statements that begins at an entry and ends at an exit. As shown in chapter 1, there may be too 

many paths in a program and it may not be feasible to execute all of them. As the number of 

decisions increase in the program, the number of paths also increase accordingly. 

Every path covers a portion of the program. We define ‘coverage’ as a ‘percentage of 

source code that has been tested with respect to the total source code available for testing’. We 

may like to achieve a reasonable level of coverage using control flow testing. The most 

reasonable level may be to test every statement of a program at least once before the 

completion of testing. Hence, we may write test cases that ensure the execution of every 

statement. If we do so, we have some satisfaction about reasonable level of coverage. If we 

stop testing without achieving this level (every statement execution), we do unacceptable and 

intolerable activity which may lead to dangerous results in future. Testing techniques based on 

program coverage criterion may provide an insight about the effectiveness of test cases. Some 

of such techniques are discussed which are part of control flow testing. 

 

 Statement Coverage 

We want to execute every statement of the program in order to achieve 100% statement 

coverage. Consider the following portion of a source code along with its program graph given 

in Figure 4.1. 

#include<stdio.h> 

#include<conio.h> 

 

1. void main() 

2.       { 

3. int a,b,c,x=0,y=0; 

4. clrscr(); 

5. printf("Enter three numbers:"); 

6. scanf("%d %d %d",&a,&b,&c); 

7. if((a>b)&&(a>c)){ 

8. x=a*a+b*b; 

9.       } 

10. if(b>c){ 

11. y=a*a-b*b; 

12. } 

13. printf("x= %d y= %d",x,y); 

14. getch(); 

15. } 

 
Figure 4.1. Source code with program graph 

If, we select inputs like: 

a=9, b=8, c=7, all statements are executed and we have achieved 100% statement coverage 

by only one test case. The total paths of this program graph are given as: 

(i) 1–7, 10, 13–15 

(ii) 1–7, 10 –15 

(iii) 1–10, 13–15 

(iv) 1–15 



 

 

The cyclomatic complexity of this graph is: 

V(G) = e – n + 2P = 16 – 15 + 2 = 3 

V(G) = no. of regions = 3 

V(G) = + 1 = 2 + 1 = 3 

Hence, independent paths are three and are given as: 

(i) 1–7, 10, 13–15 

(ii) 1–7, 10–15 

(iii) 1–10, 13–15 

Only one test case may cover all statements but will not execute all possible four paths and 

not even cover all independent paths (three in this case). 

 
The objective of achieving 100% statement coverage is difficult in practice. A portion of the 

program may execute in exceptional circumstances and some conditions are rarely possible, 

and the affected portion of the program due to such conditions may not execute at all. 

 Branch Coverage 

We want to test every branch of the program. Hence, we wish to test every ‘True’ and ‘False’ 

condition of the program. We consider the program given in Figure 4.1. If we select a = 9, b = 

8, c = 7, we achieve 100% statement coverage and the path followed is given as (all true 

conditions): 

Path = 1–15 

We also want to select all false conditions with the following inputs: 

a = 7, b = 8, c = 9, the path followed is 

Path = 1–7, 10, 13–15 

These two test cases out of four are sufficient to guarantee 100% branch coverage. The 

branch coverage does not guarantee 100% path coverage but it does guarantee 100% statement 

coverage. 

 Condition Coverage 

Condition coverage is better than branch coverage because we want to test every condition at 

least once. However, branch coverage can be achieved without testing every condition. 

Consider the seventh statement of the program given in Figure 4.1. The statement number 

7 has two conditions (a>b) and (a>c). There are four possibilities namely: 

(i) Both are true 

(ii) First is true, second is false 

(iii) First is false, second is true 

(iv) Both are false 

If a > b and a > c, then the statement number 7 will be true (first possibility). However, if a 

< b, then second condition (a > c) would not be tested and statement number 7 will be false 

(third and fourth possibilities). If a > b and a < c, statement number 7 will be false (second 

possibility). Hence, we should write test cases for every true and false condition. Selected inputs 

may be given as: 

(i) a = 9, b = 8, c = 7 (first possibility when both are true) 

(ii) a = 9, b = 8, c = 10 (second possibility – first is true, second is false) 

(iii) a = 7, b = 8, c = 9 (third and fourth possibilities- first is false, statement number 7 is 



 

 

false) 

Hence, these three test cases out of four are sufficient to ensure the execution of every 

condition of the program. 

 Path Coverage 

In this coverage criteria, we want to test every path of the program. There are too many paths 

in any program due to loops and feedback connections. It may not be possible to achieve this 
goal of executing all paths in many programs. If we do so, we may be confident about the 

correctness of the program. If it is unachievable, at least all independent paths should be 

executed. The program given in Figure 4.1 has four paths as given as: 

(i) 1–7, 10, 13–15 

(ii) 1–7, 10–15 

(iii) 1–10, 13–15 

(iv) 1–15 

Execution of all these paths increases confidence about the correctness of the program. 

Inputs for test cases are given as: 

S. No. Paths Id. Paths 
a 

Inputs 
Expected Output 

b c 

1. Path-1 1–7,10, 13–15 7 8 9 x=0 y=0 

2. Path-2 1–7, 10–15 7 8 6 x=0 y=–15 

3. Path-3 1–10, 13–15 9 7 8 x=130 y=0 

4. Path-4 1–15 9 8 7 x=145 y=17 

Some paths are possible from the program graph, but become impossible when we give inputs 

as per logic of the program. Hence, some combinations may be found to be impossible to create. 

Path testing guarantee statement coverage, branch coverage and condition coverage. However, 

there are many paths in any program and it may not be possible to execute all the paths. We 

should do enough testing to achieve a reasonable level of coverage. We should execute at least 

(minimum level) all independent paths which are also referred to as basis paths to achieve 

reasonable coverage. These paths can be found using any method of cyclomatic complexity. 

We have to decide our own coverage level before starting control flow testing. As we go up 

(statement coverage to path coverage) in the ladder, more resources and time may be required. 

Example 4.1: Consider the program for the determination of the division of a student. The 

program and its program graph are given in Figure 3.15 and 3.16 of chapter 3 respectively. 

Derive test cases so that 100% path coverage is achieved. 

Solution: 

The test cases are given in Table 4.1. 

 

Table 4.1. Test cases 

S. No. mark1 mark2 mark3 Expected output Paths 

1. 30 –1 20 Invalid marks 1–14, 33, 34 

2. 40 20 45 Fail 1–12, 15–19, 32, 33,34 

3. 45 47 50 Third division 1–13, 15–17, 20–22, 32–34 

4. 55 60 57 Second division 1–12, 15–17, 20, 23, 26–28, 32–34 

5. 65 70 75 First division 1–12, 15–17, 20, 23, 26–28,32–34 

6. 80 85 90 First division with 

distinction 

1–12, 15–17, 20, 23, 26, 29–34 



 

 

 
Example 4.2: Consider the program and program graph given below. Derive test cases so that 

100% statement coverage and path coverage is achieved. 

/*Program to validate input data*/ 

#include<stdio.h> 

#include<string.h> 

#include<conio.h> 

1. void main() 

2. { 

3. char fname[30],address[100],Email[100]; 

4. int valid=1,flag=1; 

5. clrscr(); 

6. printf("Enter first name:"); 

7. scanf("%s",fname); 

8. printf("\nEnter address:"); 

9. scanf("%s",address); 

10. printf("\nEnter Email:"); 

11. scanf("%s",Email); 

12. if(strlen(fname)<4||strlen(fname)>30){ 

13. printf("\nInvalid first name"); 

14. valid=0; 

15. } 

16. if(strlen(address)<4||strlen(address)>100){ 

17. printf("\nInvalid address length"); 

18. valid=0; 

19. } 

20. if(strlen(Email)<8||strlen(Email)>100){ 

21. printf("\nInvalid Email length"); 

22. flag=0; 

23. valid=0; 

24. } 

25. if(flag==1){ 

26. if(strchr(Email,'.')==0||strchr(Email,'@')==0){ 

27. printf("\nEmail must contain . and @ characters"); 

28. valid=0; 

29. } 

30. } 

31. if(valid) { 

32. printf("\nFirst name: %s \t Address: %s \t Email: 
%s",fname,address,Email); 

33. } 

34. getch(); 

35. } 



(Contd.) 

 

 

 

Solution: 

The test cases to guarantee 100% statement and branch coverage are given in Table 4.2. 
 

Table 4.2. Test cases for statement coverage 

S. No. First name Address Email Expected output Paths 

1. ashok E-29, east- 

ofkailash 

abc@yahoo.com First name: ashok 

Address: E-29, east- 

ofkailash Email: abc@ 

yahoo.com 

1–12, 16, 20, 

25, 31–35 

2. ruc E29 abc 
 

 

Invalid address length 

1–25, 30, 31, 

34, 35 

    Invalid email length  

3. ruc E-29 abc@yahoocom 
 

 

Invalid address length 

1–20, 25–31, 

34, 35 

    Email must contain . and 

@ character 

 

mailto:abc@yahoo.com


(Contd.) 

 

 

Table 4.3. Test cases for path coverage 

S. No. 
First 

Address Email Expected output Paths 

 

Total paths of the program graph are given in Table 4.3. 
 

 

 
 

name  

1. - - - - 1–35 

2. - - - - 1–30, 34,35 

3. - - - - 1–25, 30–35 

4. ruc E29 abc 
 

 

Invalid address length 

1–25, 30, 31, 34, 

35 

   Invalid email length  

5. - - - - 1–20, 25–35 

6. ruc E-29 abc@yahoocom 
 

 

Invalid address length 

1–20, 25–31, 34, 

35 

   Email must contain . and 

@ character 

 

7. - - - - 1–20, 25, 30–35 

8. ruc E-29 Abs@yahoo.com 
 

 

Invalid address length 

1–20, 25, 30, 31, 

34, 35 

9. - - - - 1–16, 20–35 

10. - - - - 1–16, 20–31, 34, 

35 

11. - - - - 1–16, 20–25, 

30–35 

12. ruc E-29, east- 

ofkailash 

Abs 
 

 

Invalid email length 

1–16, 20–25, 30, 

31, 34, 35 

13. - - - - 1–16, 20, 25–35 

14. ruc E-29, east- 

ofkailash 

abc@yahoocom 
 

 

Email must contain . and 

1–16, 20, 25–31, 

34, 35 

   @ character  

15. - - - - 1–16, 20, 25, 

31–35 

16. ruc E-29, east- 

ofkailash 

abc@yahoo.com 
 

 1–16, 20, 25, 30, 

31, 34, 35 

17. - - - - 1–12, 16–35 

18. - - - - 1–12, 16–31, 

34,35 

19. - - - - 1–12, 16–25, 

30–35 

20. ashok E29 Abc Invalid address length 

Invalid email length 

1–12, 16–25, 30, 

31, 34, 35 

21. - - - - 1–12, 16–20, 

25–35 

mailto:Abs@yahoo.com
mailto:abc@yahoo.com


 

 

 

(Contd.) 
 

S. No. 
First 

name 
Address Email Expected output Paths 

22. ashok E29 abc@yahoocom Invalid address length 

Email must contain . and 

@ character 

1–12, 16–20, 

25–31, 34, 35 

23. - - - - 1–12, 16–20, 25, 

30–35 

24. ashok E29 abc@yahoo.com Invalid address length 1–12, 16–20, 25, 

30, 31, 34, 35 

25. - - - - 1–12, 16, 20–35 

26. - - - - 1–12, 16, 20–31, 

34, 35 

27. - - - - 1–12, 16, 20–25, 

30–35 

28. ashok E-29, east- 

ofkailash 

Abs Invalid email length 1–12, 16, 20–25, 

30, 31, 34, 35 

29. - - - - 1–12, 16, 20, 

25–35 

30. ashok E-29, east- 

ofkailash 

Abcyahoo.com Email must contain . and 

@ character 

1–12, 16, 20, 

25–31, 34, 35 

31. ashok E-29, east- 

ofkailash 

abc@yahoo.com First name: ashok 

Address: E-29, east- 

ofkailash Email: abc@ 

yahoo.com 

1–12, 16, 20, 25, 

31–35 

32. - - - - 1–12, 16, 20, 25, 

30, 31, 34, 35 

 

Example 4.3: Consider the program for classification of a triangle given in Figure 3.10. 

Derive test cases so that 100% statement coverage and path coverage is achieved. 

Solution: 

The test cases to guarantee 100% statement and branch coverage are given in Table 4.4. 

 

Table 4.4. Test cases for statement coverage 

S. No. a b c Expected output Paths 

1. 30 20 40 Obtuse angled triangle 1–16,20–27,34,41,42 

2. 30 40 50 Right angled triangle 1–16,20–25,28–30,34,41,42 

3. 40 50 60 Acute angled triangle 1–6,20–25,28,31–34,41,42 

4. 30 10 15 Invalid triangle 1–14,17–21,35–37,41,42 

5. 102 50 60 Input values out of range 1–13,21,35,38,39,40–42 

Total paths of the program graph are given in Table 4.5. 

mailto:abc@yahoo.com
mailto:abc@yahoo.com


 

 

1. # include < stdio.h> 

2. void main () 

3. { 

4. int a, b, c; 

5. a = b + c; 

6. printf (“%d”, a); 

7. } 

 
Table 4.5. Test cases for path coverage 

S. No. a b c Expected output Paths 

1. 102 –1 6 Input values out of range 1–13,21,35,38,39,40–42 

2. - - - - 1–14,17–19,20,21,35,38,39,40–42 

3. - - - - 1–16,20,21,35,38,39,40–42 

4. - - - - 1–13,21,35,36,37,41,42 

5. 30 10 15 Invalid triangle 1–14,17–21,35–37,41,42 

6. - - - - 1–16,20,21,35–37,41,42 

7. - - - - 1–13,21–25,28,31–34,41,42 

8. - - - - 1–14,17–25,28,31–34,41,42 

9. 40 50 60 Acute angled triangle 1–16,20–25,28,31–34,41,42 

10. - - - - 1–13,21–25,28–30,34,41,42 

11. - - - - 1–14,17–25,28–30,34,41,42 

12. 30 40 50 Right angled triangle 1–16,20–25,28–30,34,41,42 

13. - - - - 1–13,21–27,34,41,42 

14. - - - - 1–14,17–27,34,41,42 

15. 30 20 40 Obtuse angled triangle 1–16,20–27,34,41,42 

Thus, there are 15 paths, out of which 10 paths are not possible to be executed as per the logic 

of the program. 

 
DATA FLOW TESTING 

In control flow testing, we find various paths of a program and design test cases to execute 

those paths. We may like to execute every statement of the program at least once before the 

completion of testing. Consider the following program: 
 

What will be the output? The value of ‘a’ may be the previous value stored in the memory 

location assigned to variable ‘a’ or a garbage value. If we execute the program, we may get an 

unexpected value (garbage value). The mistake is in the usage (reference) of this variable 

without first assigning a value to it. We may assume that all variables are automatically 

assigned to zero initially. This does not happen always. If we define at line number 4, ‘static 

int a, b, c’, then all variables are given zero value initially. However, this is a language and 

compiler dependent feature and may not be generalized. 



 

 

 
Data flow testing may help us to minimize such mistakes. It has nothing to do with data- 

flow diagrams. It is based on variables, their usage and their definition(s) (assignment) in the 

program. The main points of concern are: 

(i) Statements where variables receive values (definition). 

(ii) Statements where these values are used (referenced). 

Data flow testing focuses on variable definition and variable usage. In line number 5 of the 

above program, variable ‘a’ is defined and variables ‘b’ and ‘c’ are used. The variables are 

defined and used (referenced) throughout the program. Hence, this technique concentrates on 

how a variable is defined and used at different places of the program. 

 
 Define/Reference Anomalies 

Some of the define / reference anomalies are given as: 

(i) A variable is defined but never used / referenced. 

(ii) A variable is used but never defined. 

(iii) A variable is defined twice before it is used. 

(iv) A variable is used before even first-definition. 

We may define a variable, use a variable and redefine a variable. So, a variable must be first 

defined before any type of its usage. Define / reference anomalies may be identified by static 

analysis of the program i.e. analyzing program without executing it. This technique uses the 

program graphs to understand the ‘define / use’ conditions of all variables. Some terms are 

used frequently in data flow testing and such terms are discussed in the next sub-section. 

 
 Definitions 

A program is first converted into a program graph. As we all know, every statement of a 

program is replaced by a node and flow of control by an edge to prepare a program graph. 

There may be many paths in the program graph. 
 

A node of a program graph is a defining node for a variable , if and only if, the 

value of the variable is defined in the statement corresponding to that node. It is 

represented as DEF ( , n) where   is the variable and n is the node corresponding to 

the statement in which is defined. 

(ii) Usage node 

A node of a program graph is a usage node for a variable , if and only if, the value of 

the variable is used in the statement corresponding to that node. It is represented as 

USE ( , n), where ‘ ’ is the variable and ‘n’ in the node corresponding to the statement 

in which ‘ ’ is used. 

A usage node USE ( , n) is a predicate use node (denoted as P-use), if and only if, the 

statement corresponding to node ‘n’ is a predicate statement otherwise USE ( , n) is a 

computation use node (denoted as C-use). 



 

 

S. No. Variable(s) Used at node 

S. No. Variable du-path(begin, end) 

 

(iii) Definition use Path 

A definition use path (denoted as du-path) for a variable ‘ ’ is a path between two 

nodes ‘m’ and ‘n’ where ‘m’ is the initial node in the path but the defining node for 

variable ‘ ’ (denoted as DEF ( , m)) and ‘n’ is the final node in the path but usage node 

for variable ‘ ’ (denoted as USE ( , n)). 

(iv) Definition clear path 

A definition clear path (denoted as dc-path) for a variable ‘ ’ is a definition use path 

with initial and final nodes DEF ( , m) and USE ( , n) such that no other node in the 

path is a defining node of variable ‘ ’. 
 

The du-paths and dc-paths describe the flow of data across program statements from 

statements where values are defined to statements where the values are used. A du-path for a 

variable ‘ ’ may have many redefinitions of variable ‘ ’ between initial node (DEF ( , m)) and 

final node (USE ( , n)). A dc-path for a variable ‘ ’ will not have any definition of variable ‘ ’ 

between initial node (DEF ( , m)) and final node (USE ( , n)). The du-paths that are not 

definition clear paths are potential troublesome paths. They should be identified and tested on 

topmost priority. 

 
 Identification of du and dc Paths 

The various steps for the identification of du and dc paths are given as: 

(i) Draw the program graph of the program. 

(ii) Find all variables of the program and prepare a table for define / use status of all 

variables using the following format: 
 

(iii) Generate all du-paths from define/use variable table of step (iii) using the following 

format: 

 

(iv) Identify those du-paths which are not dc-paths. 

 

 Testing Strategies Using du-Paths 

We want to generate test cases which trace every definition to each of its use and every use is 

traced to each of its definition. Some of the testing strategies are given as: 
 

All du-paths generated for all variables are tested. This is the strongest data flow testing 

strategy covering all possible du-paths. 



 

 

 

(ii) Test all uses 

Find at least one path from every definition of every variable to every use of that 

variable which can be reached by that definition. 

For every use of a variable, there is a path from the definition of that variable to the 

use of that variable. 

(iii) Test all definitions 

Find paths from every definition of every variable to at least one use of that variable; 

we may choose any strategy for testing. As we go from ‘test all du-paths’ (no. (i)) to 

‘test all definitions’ (no.(iii)), the number of paths are reduced. However, it is best to 

test all du-paths (no. (i)) and give priority to those du-paths which are not definition 

clear paths. The first requires that each definition reaches all possible uses through all 

possible du-paths, the second requires that each definition reaches all possible uses, 

and the third requires that each definition reaches at least one use. 

 

 Generation of Test Cases 

After finding paths, test cases are generated by giving values to the input parameter. We get 

different test suites for each variable. 

Consider the program given in Figure 3.11 to find the largest number amongst three 

numbers. Its program graph is given in Figure 3.12. There are three variables in the program 

namely A, B and C. Define /use nodes for all these variables are given below: 

 

S. No. Variable 
 

 Used at node 

1. A 6 11, 12, 13 

2. B 8 11, 20, 24 

3. C 10 12, 16, 20, 21 

The du-paths with beginning node and end node are given as: 

 Variable du-path (Begin, end)  

A  6, 11  

  6, 12  

  6, 13  

B  8, 11  
  8, 20  

  8, 24  

C  10, 12  

  10, 16  

  10, 20  

  10, 21  

The first strategy (best) is to test all du-paths, the second is to test all uses and the third is to 

test all definitions. The du-paths as per these three strategies are given as: 



 

 

Test all du-paths 

S. No. 
Inputs Expected 

Remarks 

Test All 

Inputs 
Expected Output Remarks 

 

  

 Paths 
 

 

All 6–11 Yes 

du paths 6–12 Yes 

and 6–13 Yes 

all uses 8–11 Yes 

(Both are same in this 8–11, 19, 20 Yes 

example) 8–11, 19, 20, 23, 24 Yes 
 10–12 Yes 
 10–12, 15, 16 Yes 
 10, 11, 19, 20 Yes 
 10, 11, 19–21 Yes 
 

 6–11 Yes 
 8–11 Yes 

 10–12 Yes 

Here all du-paths and all-uses paths are the same (10 du-paths). But in the 3rd case, for all 

definitions, there are three paths. 

Test cases are given below: 
 

 

 
A B C Output  

1. 9 8 7 9 6–11 

2. 9 8 7 9 6–12 

3. 9 8 7 9 6–13 

4. 7 9 8 9 8–11 

5. 7 9 8 9 8–11, 19, 20 

6. 7 9 8 9 8–11, 19, 20, 23, 24 

7. 8 7 9 9 10–12 

8. 8 7 9 9 10–12, ,15, 16 

9. 7 8 9 9 10, 11, 19, 20 

10. 7 8 9 9 10, 11, 19–21 

 

 

 

 
S. No. 

A
 B C  

1. 9 8 7 9 6–11 

2. 7 9 8 9 8–11 

3. 8 7 9 9 10–12 

In this example all du-paths and all uses yield the same number of paths. This may not 

always be true. If we consider the following graph and find du paths with all three strategies, 

we will get a different number of all-du paths and all-uses paths. 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Def/Use nodes table 

 
S. No. Variables  Used at node 

1. a 1 7, 10 

2. b 1 8, 9 

The du paths are identified as: 

 
S. No. Variables du-paths (Begin, end) 

1. a 1, 7 

  1, 10 

2. b 1, 8 
  1, 9 

The du-paths are identified as per three testing strategies: 

 
 Paths 

 

 

All du paths 1–4, 6, 7 Yes 

(8 paths) 1, 2, 5–7 Yes 
 1–4, 6, 9, 10 Yes 
 1, 2, 5, 6, 9, 10 Yes 
 1–4, 6, 7, 8 Yes 
 1, 2, 5–8 Yes 
 1–4, 6, 9 Yes 
 1, 2, 5, 6, 9 Yes 

  (Contd.) 



 

 

 

 
 
(Contd.) 

  

 Paths 
 

 

All uses 1–4, 6, 7 Yes 

(4 paths) 1–4, 6, 9, 10 
1–4, 6-8 

1–4, 6, 9 

Yes 

Yes 

Yes 
 

 

(2 paths) 

1–4, 6, 7 

1–4, 6–8 

Yes 

Yes 

Hence the number of paths is different in all testing strategies. When we find all du-paths, 

some paths may become impossible paths. We show them in order to show all combinations. 

Example 4.4: Consider the program for the determination of the division problem. Its input is 

a triple of positive integers (mark1, mark2, mark3) and values for each of these may be from 

interval [0, 100]. The program is given in Figure 3.15. The output may have one of the options 

given below: 

(i) Fail 

(ii) Third division 

(iii) Second division 

(iv) First division 

(v) First division with distinction 

(vi) Invalid marks 

Find all du-paths and identify those du-paths that are definition clear. Also find all du-paths, 

all-uses and all-definitions and generate test cases for these paths. 

Solution: 

(i) The program graph is given in Figure 3.16. The variables used in the program are 

mark1, mark2, mark3, avg. 

(ii) The define/ use nodes for all variables are given below: 

 
S. No. Variable  Used at node 

1. mark1 7 12, 16 

2. mark2 9 12, 16 

3. mark3 11 12, 16 

4. avg 16 17, 20, 23, 26 

(iii) The du-paths with beginning and ending nodes are given as: 

 

 

 

 

 

 

 

 
) 

S. No. Variable Du-path (begin, end)  

1. mark1 7, 12  

  7, 16  

2. mark2 9, 12  

  9, 16  

3. mark3 11, 12  

  11, 16  

   (Contd. 

 



 

 

All du-paths and all-uses 

Paths 

7–12 

7–12, 15, 16 

9–12 

9–12, 15, 16 

11, 12 

11, 12, 15, 16 

16, 17 

16, 17, 20 

16, 17, 20, 23 

16, 17, 20, 23, 26 

7–12 

9–12 

11, 12 

16, 17 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

 

(Contd.) 
 

S. No. Variable Du-path (begin, end) 

4. Avg 16, 17 

 16, 20 

16, 23 

16, 26 

(iv) All du-paths, all-uses and all-definitions are given below: 
 

Test cases for all du-paths and all-uses are given in Table 4.6 and test cases for all definitions 

are given in Table 4.7. 
 

Table 4.6. Test cases for all du-paths and all-uses 

S. No. mark1 mark2 mark3 Expected Output Remarks 

1. 101 50 50 Invalid marks 7–12 

2. 60 50 40 Second division 7–12, 15, 16 

3. 50 101 50 Invalid marks 9–12 

4. 60 70 80 First division 9–12, 15, 16 

5. 50 50 101 Invalid marks 11, 12 

6. 60 75 80 First division 11, 12, 15, 16 

7. 30 40 30 Fail 16, 17 

8. 45 50 50 Third division 16, 17, 20 

9. 55 60 50 Second division 16, 17, 20, 23 

10. 65 70 70 First division 16, 17, 20, 23, 26 

 

Table 4.7. 

S. No. 

 
mark1 

 
mark2 

 
mark3 

 
Expected Output 

 
Remarks 

1. 101 50 50 Invalid marks 7–12 

2. 50 101 50 Invalid marks 9–12 

3. 50 50 101 Invalid marks 11, 12 

4. 30 40 30 Fail 16, 17 



 

 

 
Example 4.5: Consider the program of classification of a triangle. Its input is a triple of 

positive integers (a, b and c) and values for each of these may be from interval [0, 100]. The 

program is given in Figure 3.18. The output may have one of the options given below: 

(i) Obtuse angled triangle 

(ii) Acute angled triangle 

(iii) Right angled triangle 

(iv) Invalid triangle 

(v) Input values out of range 

Find all du-paths and identify those du-paths that are definition clear. Also find all du-paths, 

all-uses and all definitions and generate test cases from them. 

Solution: 

(i) The program graph is given in Figure 3.19. The variables used are a, b, c, a1, a2, a3, 

valid. 

(ii) Define / use nodes for all variables are given below: 

 
S. No. Variable node Used at node 

1. a 8 13, 14, 22, 23, 24 

2. b 10 13, 14, 22, 23, 24 

3. c 12 13, 14, 22-24 

4. a1 22 25. 28 

5. a2 23 25, 28 

6. a3 24 25, 28 

7. valid 5, 15, 18 21, 35 

(iii) The du-paths with beginning and ending nodes are given as: 

 
S. No. Variable du-path (Begin, end)  

1. a 8, 13  

  8, 14  

  8, 22  

  8, 23  

  8, 24  

2. b 10, 13  

  10, 14  

  10, 22  

  10, 23  

  10, 24  

3. c 12, 13  

  12, 14  

  12, 22  

  12, 23  

  12, 24  

4. a1 22. 25  

  22, 28  

   (Contd.) 



 

 

 

(Contd.) 
 

S. No. Variable du-path (Begin, end) 

5. a2 23, 25 
  23, 28 

6. a3 24, 25 
  24, 28 

7. Valid 5, 21 

 5, 35 

15, 21 

15, 35 

18, 21 

18, 35 

All du-paths are given in Table 4.8 and the test cases for all du-paths are given in Table 4.9. 

 

Table 4.8. All du-paths 

All du-paths  All du paths 
 

 

8–13 Yes 12–14, 17–22 Yes 

8–14 Yes 12, 13, 21, 22 Yes 

8–16, 20–22 Yes 12–16, 20–23 Yes 

8–14, 17–22 Yes 12–14, 17–23 Yes 

8–13, 21,22 Yes 12, 13, 21–23 Yes 

8–16, 20–23 Yes 12–16, 20–24 Yes 

8–14, 17–23 Yes 12–14, 17–24 Yes 

8–13, 21–23 Yes 12, 13, 21–24 Yes 

8–16, 20–24 Yes 22–25 Yes 

8–14, 17–24 Yes 22–25, 28 Yes 

8–13, 21–24 Yes 23–25 Yes 

10–13 Yes 23–25, 28 Yes 

10–14 Yes 24, 25 Yes 

10–16, 20–22 Yes 24, 25, 28 Yes 

10–14, 17–22 Yes 5–16, 20, 21 No 

10–13, 21,22 Yes 5–14, 17–21 No 

10–16, 20–23 Yes 5–13, 21 Yes 

10–14, 17–23 Yes 5–16, 20, 21, 35 No 

10–13, 21–23 Yes 5–14, 17–21, 35 No 

10–16, 20–24 Yes 5–13, 21, 35 Yes 

10–14, 17–24 Yes 15, 16, 20, 21 Yes 

10–13, 21–24 Yes 15, 16, 20, 21, 35 Yes 

12, 13 Yes 18–21 Yes 

12–14 Yes 18–21, 35 Yes 

12–16, 20–22 Yes   



 

 

 
We consider all combinations for the design of du-paths. In this process, test cases 

corresponding to some paths are not possible, but these paths are shown in the list of ‘all du-

paths’. They may be considered only for completion purpose. 

 

Table 4.9. Test cases for all du-paths 

S. No. A b c Expected output Remarks 

1. 30 20 40 Obtuse angled triangle 8–13 

2. 30 20 40 Obtuse angled triangle 8–14 

3. 30 20 40 Obtuse angled triangle 8–16, 20–22 

4. - - - - 8–14, 17–22 

5. - - - - 8–13, 21,22 

6. 30 20 40 Obtuse angled triangle 8–16, 20–23 

7. - - - - 8–14, 17–23 

8. - - - - 8–13, 21–23 

9. 30 20 40 Obtuse angled triangle 8–16, 20–24 

10. - - - - 8–14, 17–24 

11. - - - - 8–13, 21–24 

12. 30 20 40 Obtuse angled triangle 10–13 

13. 30 20 40 Obtuse angled triangle 10–14 

14. 30 20 40 Obtuse angled triangle 10–16, 20–22 

15. - - - - 10–14, 17–22 

16. - - - - 10–13, 21,22 

17. 30 20 40 Obtuse angled triangle 10–16, 20–23 

18. - - - - 10–14, 17–23 

19. - - - - 10–13, 21–23 

20. 30 20 40 Obtuse angled triangle 10–16, 20–24 

21. - - - - 10–14, 17–24 

22. - - - - 10–13, 21–24 

23. 30 20 40 Obtuse angled triangle 12, 13 

24. 30 20 40 Obtuse angled triangle 12–14 

25. 30 20 40 Obtuse angled triangle 12–16, 20–22 

26. - - - - 12–14, 17–22 

27. - - - - 12, 13, 21, 22 

28. 30 20 40 Obtuse angled triangle 12–16, 20–23 

29. - - - - 12–14, 17–23 

30. - - - - 12, 13, 21–23 

31. 30 20 40 Obtuse angled triangle 12–16, 20–24 

32. - - - - 12–14, 17–24 

33. - - - - 12, 13, 21–24 

34. 30 20 40 Obtuse angled triangle 22–25 

(Contd.) 



 

 

 

(Contd.) 
 

S. No. A b c Expected output Remarks 

35. 30 40 50 Right angled triangle 22–25, 28 

36. 30 20 40 Obtuse angled triangle 23–25 

37. 30 40 50 Right angled triangle 23–25, 28 

38. 30 20 40 Obtuse angled triangle 24, 25 

39. 30 40 50 Right angled triangle 24, 25, 28 

40. 30 20 40 Obtuse angled triangle 5–16, 20, 21 

41. 30 10 15 Invalid triangle 5–14, 17–21 

42. 102 –1 6 Input values out of range 5–13, 21 

43. - - - - 5–16, 20, 21, 35 

44. 30 10 15 Invalid triangle 5–14, 17–21, 35 

45. 102 -1 6 Input values out of range 5–13, 21, 35 

46. 30 20 40 Obtuse angled triangle 15, 16, 20, 21 

47. - - - - 15, 16, 20, 21, 35 

48. 30 10 15 Invalid triangle 18–21 

49. 30 10 15 Invalid triangle 18–21, 35 

The ‘all-uses’ paths are given in Table 4.10 and the test cases for all du-paths are given in 

Table 4.11. The ‘all-definitions’ paths and the test cases are given in Tables 4.12 and 4.13 

respectively. 

 

Table 4.10. 

All uses 

  

All uses 

 
 

 

8–13 Yes 12–16, 20–24 Yes 

8–14 Yes 22–25 Yes 

8–16, 20–22 Yes 22–25, 28 Yes 

8–16, 20–23 Yes 23–25 Yes 

8–16, 20–24 Yes 23–25, 28 Yes 

10–13 Yes 24, 25 Yes 

10–14 Yes 24, 25, 28 Yes 

10–16, 20–22 Yes 5–16, 20, 21 No 

10–13, 21–23 Yes 5–14, 17–21, 35 No 

10–16, 20–24 Yes 15, 16, 20, 21 Yes 

12,13 Yes 15, 16, 20, 21, 35 Yes 

12–14 Yes 18–21 Yes 

12–16, 20, 21, 22 Yes 18–21, 35 Yes 

12–16, 20–23 Yes   



 

 

 
Table 4.11. Test cases for all uses paths 

S. No. a b c Expected output Remarks 

1. 30 20 40 Obtuse angled triangle 8–13 

2. 30 20 40 Obtuse angled triangle 8–14 

3. 30 20 40 Obtuse angled triangle 8–16, 20–22 

4. 30 20 40 Obtuse angled triangle 8–16, 20–23 

5. 30 20 40 Obtuse angled triangle 8–16, 20–24 

6. 30 20 40 Obtuse angled triangle 10–13 

7. 30 20 40 Obtuse angled triangle 10–14 

8. 30 20 40 Obtuse angled triangle 10–16, 20–22 

9. 30 20 40 Obtuse angled triangle 10–13, 21–23 

10. 30 20 40 Obtuse angled triangle 10–16, 20–24 

11. 30 20 40 Obtuse angled triangle 12,13 

12. 30 20 40 Obtuse angled triangle 12–14 

13. 30 20 40 Obtuse angled triangle 12–16, 20, 21, 22 

14. 30 20 40 Obtuse angled triangle 12–16, 20–23 

15. 30 20 40 Obtuse angled triangle 12–16, 20–24 

16. 30 20 40 Obtuse angled triangle 22–25 

17. 30 40 50 Right angled triangle 22–25, 28 

18. 30 20 40 Obtuse angled triangle 23–25 

19. 30 40 50 Right angled triangle 23–25, 28 

20. 30 20 40 Obtuse angled triangle 24, 25 

21. 30 40 50 Right angled triangle 24, 25, 28 

22. 30 20 40 Obtuse angled triangle 5–16, 20, 21 

23. 30 10 15 Invalid triangle 5–14, 17–21, 35 

24. 30 20 40 Obtuse angled triangle 15, 16, 20, 21 

25. - - - - 15, 16, 20, 21, 35 

26. 30 10 15 Invalid triangle 18–21 

27. 30 10 15 Invalid triangle 18–21, 35 
 

 

Table 4.12. 

8–13 

10–13 

12, 13 

22–25 

23–25 

24,25 

5–16, 20, 21 

15, 16, 20, 21 

18–21 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 



(Contd.) 

 

 

 
Table 4.13. 

S. No. 

 
a 

 
b 

 
c 

 
Expected output 

 
Remarks 

1. 30 20 40 Obtuse angled triangle 8–13 

2. 30 20 40 Obtuse angled triangle 10–13 

3. 30 20 40 Obtuse angled triangle 12, 13 

4. 30 20 40 Obtuse angled triangle 22–25 

5. 30 20 40 Obtuse angled triangle 23–25 

6. 30 20 40 Obtuse angled triangle 24,25 

7. 30 20 40 Obtuse angled triangle 5–16, 20, 21 

8. 30 20 40 Obtuse angled triangle 15, 16, 20, 21 

9. 30 10 15 Invalid triangle 18–21 

Example 4.6: Consider the program given in Figure 3.21 for the determination of day of the 

week. Its input is at triple of positive integers (day, month, year) from the interval 

1 day 31 

1 month 12 

1900 year  2058 

The output may be: 

[Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday] 

Find all du-paths and identify those du-paths that are definition clear. Also find all du-paths, 

all-uses and all-definitions and generate test cases for these paths. 

Solution: 

(i) The program graph is given in Figure 3.22. The variables used in the program are day, 

month, year, century, Y, Y1, M, date, validDate, leap. 

(ii) Define / use nodes for all variables are given below: 

 
S. No. Variable  Used at node 

1. Day 6 19, 27, 30, 37, 91 
   93, 96, 99, 102 

   105, 108, 111, 115 

2. Month 8 18, 26, 37, 54 
   62, 70, 73, 76, 79 
   82, 85, 93, 96, 99 

   102, 105, 108, 111, 115 

3. Year 10 11, 12, 14, 45, 47 
   51, 93, 96, 99, 102 

   105, 108, 111, 115 

4. Century 46, 50 91 

5. Y 53 91 

6. Y1 47, 51 53 



(Contd.) 

 

 

 

(Contd.) 
 

S. No. Variable 
 

 Used at node 

7. M 56, 59, 64 91 
  67, 71, 74  

  77, 80, 83  

  86, 89  

8. Date 91 92, 95, 98, 101, 104, 107 

9. ValidDate 3, 20, 23 44 
  28, 31, 34,  

  38, 41  

10. Leap 3, 13, 15 27, 55, 63 

(iii) The du-paths with beginning and ending nodes are given as: 

 

S. No. Variable du-path (begin, end) 

1. Day 6, 19 
  6, 27 
  6, 30 
  6, 37 
  6, 91 
  6, 93 
  6, 96 
  6, 99 
  6, 102 
  6, 105 
  6, 108 
  6, 111 
  6, 115 

2. Month 8, 18 

 8, 26 

8, 37 

8, 54 

8, 62 

8, 70 

8, 73 

8, 76 

8, 79 

8, 82 

8, 85 

8, 93 

8, 96 

8, 99 

8, 102 

8, 105 

8, 108 

8, 111 

8, 115 



 

 

 

(Contd.) 
 

S. No. Variable du-path (begin, end)  

3. Year 10, 11  

  10, 12  

  10, 14  

  10, 45  

  10, 47  

  10, 51  

  10, 93  

  10, 96  

  10, 99  

  10, 102  

  10, 105  

  10, 108  

  10, 111  

  10, 115  

4. Century 46, 91  

  50, 91  

5. Y 53, 91  

6. Y1 47, 53  

  51, 53  

7. M 56, 91  

  59, 91  

  64, 91  

  67, 91  

  71, 91  

  74, 91  

  77, 91  

  80, 91  

  83, 91  

  86, 91  

  89, 91  

8. Date 91, 92  

  91, 95  

  91, 98  

  91, 101  

  91, 104  

  91, 107  

9. ValidDate 3, 44  

  20, 44  

  23, 44  

  28, 44  

  31, 44  

  34, 44  

  38, 44  

  41, 44  

   (Contd.) 



 

 

S. No. 

10. 

Variable 

Leap 

du-path (begin, end) 

3, 27 

3, 55 

3, 63 

13, 27 

13, 55 

13, 63 

15, 27 

15, 55 

15, 63 

Table 4.14. 

All uses 

6–19 

6–18, 26, 27 

6–18, 26, 27, 30 

6–18, 26, 37 

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91 

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91–93 

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 96 

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 99 

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 102 

6–21, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 105 

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101,104, 107, 108 

6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107, 

110, 111 

6–11, 44, 114, 115 

8–18 

8–18, 26 

8–18, 26, 37 

8–21, 25, 43–48, 53, 54 

8–21, 25, 43–48, 53, 54, 62 

8–25, 43–48, 53, 54, 62, 70 

8–21, 25, 43–48, 53, 54, 62, 70, 73 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

 

(Contd.) 

There are more than 10,000 du-paths and it is neither possible nor desirable to show all of 

them. The all uses paths and their respective test cases are shown in Table 4.14 and Table 4.15 

respectively. The ‘all definitions’ paths are shown in Table 4.16 and their corresponding test 

cases are given in Table 4.17. 
 

(Contd.) 



 

 

 

(Contd.) 

All uses 

 
8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79 Yes 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79, 82 Yes 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79, 82, 85 Yes 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 93 Yes 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 96 Yes 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 99 Yes 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 102 Yes 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 105 Yes 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107, 108 Yes 

8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107, 

110, 111 

Yes 

8–11, 44, 114, 115 Yes 

10, 11 Yes 

10–12 Yes 

10–14 Yes 

10–21, 25, 43–45 Yes 

10–21, 25, 43–47 Yes 

10–21, 25, 43–45, 49–51 Yes 

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91–93 Yes 

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 96 Yes 

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 99 Yes 

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 102 Yes 

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 105 Yes 

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107, 

108 

10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 79–81, 91, 92, 95, 98, 101, 104, 107, 

110, 111 

Yes 

Yes 

10, 11, 44, 114, 115 Yes 

46–48, 53–57, 61, 91 Yes 

50–57, 61, 91 Yes 

53–61, 91 Yes 

47, 48, 53 Yes 

51–53 Yes 

56, 57, 61, 91 Yes 

59–61, 91 Yes 

 
 
 
 
 
 
 
 

 
(Contd.) 



 

 

 
 

(Contd.) 

All uses 

 
64, 65, 69, 91 Yes 

67–69, 91 Yes 

71, 72, 91 Yes 

74, 75, 91 Yes 

77, 78, 91 Yes 

80, 81, 91 Yes 

83, 84, 91 Yes 

86, 87, 91 Yes 

89, 90, 91 Yes 

91, 92 Yes 

91, 92, 95 Yes 

91, 92, 95, 98 Yes 

91, 92, 95, 98, 101 Yes 

91, 92, 95, 98, 101, 104 Yes 

91, 92, 95, 98, 101, 104, 107 Yes 

3–11, 44 No 

20, 21, 25, 43, 44 Yes 

23–25, 43, 44 Yes 

28, 29, 36, 43, 44 Yes 

31, 32, 36, 43, 44 Yes 

34–36, 43, 44 Yes 

38, 39, 43, 44 Yes 

41–44 Yes 

3–18, 26, 27 No 

3–18, 26, 37–39, 43–48, 53–55 No 

3–18, 26, 27, 30–32, 36, 43–48, 53, 54, 62, 63 No 

13–18, 26, 27 No 

13–18, 26, 37–39, 43–48, 53–55 No 

13–18, 26, 27, 30–32, 36, 43–48, 53, 54, 62, 63 No 

15–18, 26, 27 Yes 

15–18, 26, 37–39, 43–48, 53–55 Yes 

15–18, 26, 27, 30–32, 36, 43–48, 53, 54, 62, 63 Yes 



 

 

 

Table 4.15. Test cases for all uses 

S. No. Month Day Year Expected output Remarks 

1. 6 15 1900 Friday 6–19 

2. 2 15 1900 Thursday 6–18, 26, 27 

3. 2 15 1900 Thursday 6–18, 26, 27, 30 

4. 7 15 1900 Sunday 6–18, 26, 37 

5. 6 15 1900 Friday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91 

6. 6 10 1900 Sunday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91–93 

7. 6 11 1900 Monday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 96 

8. 6 12 1900 Tuesday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 99 

9. 6 13 1900 Wednesday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 101, 102 

10. 6 14 1900 Thursday 6–21, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 101, 104, 105 

11. 6 15 1900 Friday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 101,104, 107, 108 

12. 6 16 1900 Saturday 6–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 101, 104, 107, 110, 

111 

13. 6 15 2059 Invalid Date 6–11, 44, 114, 115 

14. 6 15 1900 Friday 8–18 

15. 2 15 1900 Thursday 8–18, 26 

16. 1 15 1900 Monday 8–18, 26, 37 

17. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54 

18. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54, 62 

19. 6 15 1900 Friday 8–25, 43–48, 53, 54, 62, 70 

20. 4 15 1900 Sunday 8–21, 25, 43–48, 53, 54, 62, 70, 73 

21. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76 

22. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79 

23. 9 15 1900 Saturday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79, 82 

(Contd.) 



(Contd.) 

 

 

 

 
 
(Contd.) 

     

S. No. Month Day Year Expected output Remarks 

24. 9 15 1900 Saturday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79, 82, 85 

25. 6 10 1900 Sunday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 93 

26. 6 11 1900 Monday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 96 

27. 6 12 1900 Tuesday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 99 

28. 6 13 1900 Wednesday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79,80, 81, 91, 92, 95, 98, 101, 102 

29. 6 14 1900 Thursday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79,80, 81, 91, 92, 95, 98, 101, 104, 105 

30. 6 15 1900 Friday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79, 80, 81, 91, 92, 95, 98, 101, 104, 107, 

     108 

31. 6 16 1900 Saturday 8–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79, 80, 81, 91, 92, 95, 98, 101, 104, 107, 

     110, 111 

32. 6 15 2059 Invalid Date 8–11, 44, 114, 115 

33. 6 15 1900 Friday 10, 11 

34. 6 15 1900 Friday 10–12 

35. 6 15 1900 Friday 10–14 

36. 6 15 1900 Friday 10–21, 25, 43–45 

37. 6 15 1900 Friday 10–21, 25, 43–47 

38. 6 15 2009 Monday 10–21, 25, 43–45, 49–51 

39. 6 10 1900 Sunday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91–93 

40. 6 11 1900 Monday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 96 

41. 6 12 1900 Tuesday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 99 

42. 6 13 1900 Wednesday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 101, 102 

43. 6 14 1900 Thursday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 101, 104, 105 

44. 6 15 1900 Friday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 101, 104, 107, 108 



(Contd.) 

 

 

 

(Contd.) 
 

S. No. Month Day Year Expected output Remarks 

45. 6 16 1900 Saturday 10–21, 25, 43–48, 53, 54, 62, 70, 73, 76, 

79–81, 91, 92, 95, 98, 101, 104, 107, 110, 

111 

46. 6 15 2059 Invalid Date 10, 11, 44, 114, 115 

47. 1 15 1900 Monday 46–48, 53–57, 61, 91 

48. 1 15 2009 Thursday 50–57, 61, 91 

49. 1 15 2009 Thursday 53–61, 91 

50. 6 15 1900 Friday 47, 48, 53 

51. 6 15 2009 Monday 51–53 

52. 1 15 2009 Thursday 56, 57, 61, 91 

53. 1 15 2000 Saturday 59–61, 91 

54. 1 15 2009 Thursday 64, 65, 69, 91 

55. 2 15 2000 Tuesday 67–69, 91 

56. 3 15 2009 Sunday 71, 72, 91 

57. 4 15 2009 Wednesday 74, 75, 91 

58. 5 15 2009 Friday 77, 78, 91 

59. 6 15 2009 Monday 80, 81, 91 

60. 8 15 2009 Saturday 83, 84, 91 

61. 9 15 2009 Tuesday 86, 87, 91 

62. 7 15 2009 Wednesday 89, 90, 91 

63. 5 7 2009 Sunday 91, 92 

64. 6 7 2009 Monday 91, 92, 95 

65. 7 7 2009 Tuesday 91, 92, 95, 98 

66. 8 7 2009 Wednesday 91, 92, 95, 98, 101 

67. 9 7 2009 Thursday 91, 92, 95, 98, 101, 104 

68. 10 7 2009 Friday 91, 92, 95, 98, 101, 104, 107 

69. 6 15 1900 Friday 3–11, 44 

70. 6 15 1900 Friday 20, 21, 25, 43, 44 

71. 6 31 2009 Invalid Date 23–25, 43, 44 



(Contd.) 

 

 

 

 
 
(Contd.) 

     

S. No. Month Day Year Expected output Remarks 

72. 2 15 2000 Tuesday 28, 29, 36, 43, 44 

73. 2 15 2009 Sunday 31, 32, 36, 43, 44 

74. 2 30 2009 Invalid Date 34–36, 43, 44 

75. 8 15 2009 Saturday 38,39, 43, 44 

76. 13 1 2009 Invalid Date 41–44 

77. 2 15 1900 Thursday 3–18, 26, 27 

78. 1 15 1900 Monday 3–18, 26, 37–39, 43–48, 53–55 

79. 2 15 1900 Thursday 3–18, 26, 27, 30–32, 36, 43–48, 53, 54, 

62, 63 

80. 2 15 1900 Thursday 13–18, 26, 27 

81. 1 15 1900 Monday 13–18, 26, 37–39, 43–48, 53–55 

82. 2 15 1900 Thursday 13–18, 26, 27, 30–32, 36, 43–48, 53, 54, 

62, 63 

83. 2 15 1900 Thursday 15–18, 26, 27 

84. 1 15 1900 Monday 15–18, 26, 37–39, 43–48, 53–55 

85. 2 15 1900 Thursday 15–18, 26, 27, 30–32, 36, 43–48, 53, 54, 

62, 63 
 

 

Table 4.16. 

6–19 

8–18 

10, 11 

46–48, 53–57, 61, 91 

50–57, 61, 91 

53–57, 61, 91 

47, 48, 53 

51–53 

56, 57, 61, 91 

59, 60, 61, 91 

64, 65, 69, 91 

67–69, 91 

71, 72, 91 

74, 75, 91 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 



 

 

 

(Contd.) 
 

 

  
 

 

77, 78, 91 Yes 

80, 81, 91 Yes 

83, 84, 91 Yes 

86, 87, 91 Yes 

89–91 Yes 

91, 92 Yes 

3–11, 44 No 

20, 21, 25, 43, 44 Yes 

23–25, 43, 44 Yes 

28, 29, 36, 43, 44 Yes 

31, 32, 36, 43, 44 Yes 

34–36, 43, 44 Yes 

38, 39, 43, 44 Yes 

41–44 Yes 

3–18, 26, 27 No 

13–18, 26, 27 No 

15–18, 26, 27 Yes 

 

Table 4.17. 

S. No. 

 

Month 

 

Day 

 

 

Year 

 

Expected output 

 

Remarks 

 

1. 6 15 1900 Friday 6–19  

2. 6 15 1900 Friday 8–18  

3. 6 15 1900 Friday 10, 11  

4. 1 15 1900 Monday 46–48, 53–57, 61, 91  

5. 1 15 2009 Thursday 50–57, 61, 91  

6. 1 15 2009 Thursday 53–57, 61, 91  

7. 6 15 1900 Friday 47, 48, 53  

8. 6 15 2009 Monday 51–53  

9. 1 15 2009 Thursday 56, 57, 61, 91  

10. 1 15 2000 Saturday 59, 60, 61, 91  

11. 1 15 2009 Thursday 64, 65, 69, 91  

12. 2 15 2000 Tuesday 67–69, 91  

13. 3 15 2009 Sunday 71, 72, 91  

14. 4 15 2009 Wednesday 74, 75, 91  

15. 5 15 2009 Friday 77, 78, 91  

16. 6 15 2009 Monday 80, 81, 91  

17. 8 15 2009 Saturday 83, 84, 91  

      (Contd.) 



 

 

 

(Contd.) 
 

S. No. Month Day Year Expected output Remarks 

18. 9 15 2009 Tuesday 86, 87, 91 

19. 7 15 2009 Wednesday 89–91 

20. 6 15 2009 Monday 91, 92 

21. 6 15 2059 Invalid Date 3–11, 44 

22. 6 15 1900 Friday 20, 21, 25, 43, 44 

23. 6 31 2009 Invalid Date 23–25, 43, 44 

24. 2 15 2000 Tuesday 28, 29, 36, 43, 44 

25. 2 15 2009 Sunday 31, 32, 36, 43, 44 

26. 2 30 2009 Invalid Date 34–36, 43, 44 

27. 8 15 2009 Saturday 38, 39, 43, 44 

28. 13 1 2009 Invalid Date 41–44 

29. 2 15 1900 Thursday 3–18, 26, 27 

30. 2 15 1900 Thursday 13–18, 26, 27 

31. 2 15 1900 Thursday 15–18, 26, 27 

 
SLICE BASED TESTING 

Program slicing was introduced by Mark Weiser [WEIS84] where we prepare various subsets 

(called slices) of a program with respect to its variables and their selected locations in the 

program. Each variable with one of its location will give us a program slice. A large program 

may have many smaller programs (its slices), each constructed for different variable subsets. 

The slices are typically simpler than the original program, thereby simplifying the process of 

testing of the program. Keith and James [KEIT91] have explained this concept as: 

“Program slicing is a technique for restricting the behaviour of a program to some 

specified subset of interest. A slice S( , n) of program P on variable , or set of variables, 

at statement n yields the portions of the program that contributed to the value of just 

before statement n is executed. S ( , n) is called a slicing criteria. Slices can be computed 

automatically on source programs by analyzing data flow. A program slice has the added 

advantage of being an executable program.” 

Hence, slices are smaller than the original program and may be executed independently. 

Only two things are important here, variable and its selected location in the program. 

 
 Guidelines for Slicing 

There are many variables in the program but their usage may be different in different statements. 

The following guidelines may be used for the creation of program slices. 

1. All statements where variables are defined and redefined should be considered. Consider 

the program for classification of a triangle (given in Figure 3.18) where variable ‘valid’ is 

defined at line number 5 and redefined at line number 15 and line number 18. 



 

 

 
5 int valid = 0 

15 valid = 1 

18 valid = –1 

Hence, we may create S(valid, 5), S(valid, 15) and S(valid, 18) slices for variable ‘valid’ 

of the program. 

2. All statements where variables receive values externally should be considered. Consider 

the triangle problem (given in Figure 3.18) where variables ‘a’, ‘b’ and ‘c’ receive values 

externally at line number 8, line number 10 and line number 12 respectively as shown 

below: 

8 scanf (“%lf”, &a); 

10 scanf (“%lf”, &b); 

12 scanf (“%lf”, &c); 

Hence, we may create S(a, 8), S(b, 10) and S(c, 12) slices for these variables. 

3. All statements where output of a variable is printed should be considered. Consider the 

program to find the largest amongst three numbers (given in Figure 3.11) where variable 

‘C’ is printed at line number 16 and 21 as given below: 

16 printf (“The largest number is: % f \n”, C); 

21 printf (“The largest number is: % f \n”, C) 

Hence, we may create S(C, 16) and S(C, 21) as slices for ‘C’ variable 

4. All statements where some relevant output is printed should be considered. Consider 

the triangle classification program where line number 26, 29, 32, 36 and 39 are used for 

printing the classification of the triangle (given in Figure 3.18) which is very relevant as 

per logic of the program. The statements are given as: 

26 printf (“Obtuse angled triangle”); 

29 printf (“Right angled triangle”); 

32 printf (“Acute angled triangle”); 

36 printf (“\nInvalid triangle”); 

39 printf (“\nInput Values out of Range”); 

We may create S(a1, 26), S(a1, 29), S(a1, 32), S(valid, 36) and S(valid, 39) as slices. 

These are important slices for the purpose of testing. 

5. The status of all variables may be considered at the last statement of the program. We 

consider the triangle classification program (given in figure 3.18) where line number 42 is 

the last statement of the program. We may create S(a1, 42), S(a2, 42), S(a3, 42), S(valid, 

42), S(a, 42), S(b,42) and S(c, 42) as slices. 

 
 Creation of Program Slices 

Consider the portion of a program given in Figure 4.2 for the identification of its slices. 
 

1. a = 3; 

2. b = 6; 

3. c = b2; 

4. d = a2  + b2; 

5. c = a + b; 

 
Figure 4.2. Portion of a program 



 

 

S(c, 5) 

= 3; 

= 6; 

= a + b; 

a 

b 

c 

1. 

2. 

5. 

S(c, 3) 

= 6; 

=   b2; 

2. b 

3. c 

1. main ( ) 

2. { 

3. int a, b, c, d, e; 

4. printf (“Enter the values of a, b and c \ n”); 

5. scanf (“%d %d %d”, &a, &b, &c); 

7. e = b + c; 

9. printf (“%d”, e); 

10. } 

 
We identify two slices for variable ‘c’ at statement number 3 and statement number 5 as 

given in Figure 4.3. 
 

Variable ‘c’ at statement 5 Variable ‘c’ at statement 5 

 
Figure 4.3. Two slices for variable ‘c’ 

 
Consider the program given in Figure 4.4. 

1. void main ( ) 

2. { 

3. int a, b, c, d, e; 

4. printf (“Enter the values of a, b and c \ n”); 

5. scanf (“%d %d %d”, & a, &b, &c); 

6. d = a+b; 

7. e = b+c: 

8. printf (“%d”, d); 

9. printf (“%d”, e); 

10. } 

 
Figure 4.4. Example program 

 
Many slices may be created as per criterion (mentioned in section 4.3.1) of the program 

given in the Figure 4.4. Some of these slices are shown below: 

 

 

Slice on criterion S (e, 10) = (1, 2, 3, 4, 5, 7, 9, 10) 



 

 

1. main ( ) 

2. { 

3. int a, b, c, d, e; 

4. printf (“Enter the values of a, b and c \ n”); 

5. scanf (“%d %d %d”, &a, &b, &c); 

6. d = a + b; 

8. printf (“%d”, d); 

10. } 

1. main ( ) 

2. { 

3. int a, b, c, d, e; 

4. printf (“Enter the values of a, b and c \ n”); 

5. scanf (“%d %d %d”, &a, &b, &c); 

7. e = b + c; 

10. } 

1. main ( ) 

2. { 

3. int a, b, c, d, e; 

4. printf (“Enter the values of a, b and c \ n”); 

5. scanf (“%d %d %d”, &a, &b, &c); 

6. d = a + b; 

10. } 

1. main ( ) 

2. { 

3. int a, b, c, d, e; 

4. printf (“Enter the values of a, b and c \ n”); 

5. scanf (“%d %d %d”, &a, &b, &c); 

10. } 

 

 

Slice on criterion S (d,10) = (1, 2, 3, 4, 5, 6, 8, 10) 

 

 

Slice on criterion S (e,7) = (1, 2, 3, 4, 5, 7,10) 

 

 

Slice on criterion S (d,6) = (1, 2, 3, 4, 5, 6, 10) 

 

 

Slice on criterion S (a, 5) = (1, 2, 3, 4, 5, 10) 



 

 

 
We also consider the program to find the largest number amongst three numbers as given in 

Figure 3.11. There are three variables A, B and C in the program. We may create many slices 

like S (A, 28), S (B, 28), S (C, 28) which are given in Figure 4.8. 

Some other slices and the portions of the program covered by these slices are given as: 

S (A, 6) = {1– 6, 28} 

S (A, 13) = {1–14, 18, 27, 28} 

S (B, 8) = {1– 4, 7, 8, 28} 

S (B, 24) = {1–11, 18–20, 22–28} 

S (C, 10) = {1– 4, 9, 10, 28} 

S (C, 16) = {1–12, 14–18, 27, 28} 

S (C, 21) = {1–11, 18–22, 26–28} 

It is a good programming practice to create a block even for a single statement. If we 

consider C++/C/Java programming languages, every single statement should be covered with 

curly braces { }. However, if we do not do so, the compiler will not show any warning / error 

message. In the process of generating slices we delete many statements (which are not required 

in the slice). It is essential to keep the starting and ending brackets of the block of the deleted 

statements. It is also advisable to give a comment ‘do nothing’ in order to improve the 

readability of the source code. 

 

#include<stdio.h> 

#include<conio.h> 

1. void main() 

 

 
1. 

#include<stdio.h> 

#include<conio.h> 

void main() 

2. { 2. { 

3. float A,B,C; 3. float A,B,C; 

4. clrscr(); 4. clrscr(); 

5. printf("Enter number 1:\n"); 5. printf("Enter number 1:\n"); 

6. scanf("%f", &A); 6. scanf("%f", &A); 

7. printf("Enter number 2:\n"); 7. printf("Enter number 2:\n"); 

8. scanf("%f", &B); 8. scanf("%f", &B); 

9. printf("Enter number 3:\n"); 9. printf("Enter number 3:\n"); 

10. scanf("%f", &C); 10. scanf("%f", &C); 

11. if(A>B) { 11. if(A>B) { /*do nothing*/ 

12. if(A>C) { 18. } 

13. printf("The largest number is: %f\n",A); 19. else { 

14. } 20. if(C>B) { /*do nothing*/ 

18. } 22. } 

27. getch(); 23. else { 

28. } 24. printf("The largest number is: %f\n",B); 

 25. } 

 26. } 

 27. getch(); 

 
(a) S(A, 28) ={1–14, 18, 27, 28} 

28. } 

(b) S(B, 28) ={1–11, 18–20, 22–28} 

(Contd.) 



 

 

 

(Contd.) 

#include<stdio.h> 

#include<conio.h> 

1. void main() 

2. { 

3. float A,B,C; 

4. clrscr(); 

5. printf("Enter number 1:\n"); 

6. scanf("%f", &A); 

7. printf("Enter number 2:\n"); 

8. scanf("%f", &B); 

9. printf("Enter number 3:\n"); 

10. scanf("%f", &C); 

11. if(A>B) { /*do nothing*/ 

18. } 

19. else { 

20. if(C>B) { 

21. printf("The largest number is: %f\n",C); 

22. } 

26. } 

27. getch(); 

28. } 
(c) S(C, 28)={1–11, 18–22, 26–28} 

Figure 4.5. Some slices of program in Figure 3.11 

 
A statement may have many variables. However, only one variable should be used to 

generate a slice at a time. Different variables in the same statement will generate a different 

program slice. Hence, there may be a number of slices of a program depending upon the slicing 

criteria. Every slice is smaller than the original program and can be executed independently. 

Each slice may have one or more test cases and may help us to focus on the definition, 

redefinition, last statement of the program, and printing/reading of a variable in the slice. 

Program slicing has many applications in testing, debugging, program comprehension and 

software measurement. A statement may have many variables. We should use only one variable 

of a statement for generating a slice. 

 
 Generation of Test Cases 

Every slice should be independently executable and may cover some lines of source code of 

the program as shown in previous examples. The test cases for the slices of the program given 

in Figure 3.3 (to find the largest number amongst three numbers) are shown in Table 4.18. The 

generated slices are S(A, 6), S(A, 13), S(A, 28), S(B, 8), S(B, 24), S(B, 28), S(C, 10), S(C, 16), 

S(C, 21), S(C, 28) as discussed in previous section 4.3.1. 



 

 

 

 

Table 4.18. 

S. No. Slice Lines covered A B C Expected output 

1. S(A, 6) 1–6, 28 9   No output 

2. S(A, 13) 1–14, 18, 27, 28 9 8 7 9 

3. S(A, 28) 1–14, 18, 27, 28 8 8 7 9 

4. S(B, 8) 1–4, 7, 8, 28  9  No output 

5. S(B, 24) 1–11, 18–20, 22–28 7 9 8 9 

6. S(B, 28) 1–11, 19, 20, 23–28 7 9 8 9 

7. S(C, 10) 1–4, 9, 10, 28   9 No output 

8. S(C, 16) 1–12, 14–18, 27, 28 8 7 9 9 

9. S(C, 21) 1–11, 18–22, 26–28 7 8 9 9 

10. S(C, 28) 1–11, 18–22, 26–28 7 8 9 9 

Slice based testing is a popular structural testing technique and focuses on a portion of the 

program with respect to a variable location in any statement of the program. Hence slicing 

simplifies the way of testing a program’s behaviour with respect to a particular subset of its 

variables. But slicing cannot test a behaviour which is not represented by a set of variables or 

a variable of the program. 

Example 4.7: Consider the program for determination of division of a student. Consider all 

variables and generate possible program slices. Design at least one test case from every slice. 

Solution: 

There are four variables – mark1, mark2, mark3 and avg in the program. We may create many 

slices as given below: 

S (mark1, 7) = {1–7, 34} 

S (mark1, 13) = {1–14, 33, 34} 

S (mark2, 9)   = {1–5, 8, 9, 34} 

S (mark2, 13) = {1–14, 33, 34} 

S (mark3, 11) = {1–5, 10, 11, 34} 

S (mark3, 13) = {1–14, 33, 34} 

S (avg, 16) = {1–12, 14–16, 32, 34} 

S (avg, 18) = {1–12, 14–19, 32–34} 

S (avg, 21) = {1–12, 14–17, 19–22, 29, 31–34} 

S (avg, 24) = {1–12, 14–17, 19, 20, 22–25, 29, 31–34} 

S (avg, 27) = {1–12, 14–17, 19, 20, 22, 23, 25–29, 31–34} 

S (avg, 30) = {1–12, 14–17, 19, 20, 22, 23, 25, 26, 28–34} 



 

 

 
The program slices are given in Figure 4.6 and their corresponding test cases are given in 

Table 4.19. 

 
 

 

1. 

#include<stdio.h> 

#include<conio.h> 

void main() 

 

 

1. 

#include<stdio.h> 

#include<conio.h> 

void main() 

2. { 2. { 

3. int mark1, mark2,mark3,avg; 3. int mark1, mark2,mark3,avg; 

4. clrscr(); 4. clrscr(); 

5. printf("Enter marks of 3 subjects 
(between 0-100)\n"); 

5. printf("Enter marks of 3 subjects (between 
0-100)\n"); 

6. printf("Enter marks of first 
subject:"); 

8. printf("Enter marks of second subject:"); 

7. scanf("%d", &mark1); 9. scanf("%d", &mark2); 

34. } 34. } 

 (a) S(mark1,7)/S(mark1,34)  (b) S(mark2,9)/S(mark2,34) 

 
#include<stdio.h> #include<stdio.h> 

#include<conio.h> #include<conio.h> 

1. void main() 1. void main() 

2. { 2. { 

3. int mark1, mark2,mark3,avg; 3. int mark1, mark2,mark3,avg; 

4. clrscr(); 4. clrscr(); 

5. printf("Enter marks of 3 subjects 
(between 0-100)\n"); 5. 

printf("Enter marks of 3 subjects (between 
0-100)\n"); 

10. printf("Enter marks of third subject:"); 6. printf("Enter marks of first subject:"); 

11. scanf("%d",&mark3); 7. scanf("%d", &mark1); 

34. } 8. printf("Enter marks of second subject:"); 

9. scanf("%d", &mark2); 

10. printf("Enter marks of third subject:"); 

11. scanf("%d",&mark3); 

12. 
if(mark1>100||mark1<0||mark2>100||mark2<0|| 
mark3>100||mark3<0){ 

13. printf("Invalid Marks! Please try again"); 

14. } 

33. getch(); 

34. } 

(c) S(mark3,11)/S(mark3,34) (d) S(mark1,13)/S(mark2,13)/S(mark3,13) 

(Contd.) 



 

 

 

(Contd.) 
 

#include<stdio.h> #include<stdio.h> 

#include<conio.h> #include<conio.h> 

1. void main() 1. void main() 

2. { 2. { 

3. int mark1, mark2,mark3,avg; 3. int mark1, mark2,mark3,avg; 

4. clrscr(); 4. clrscr(); 

5. printf("Enter marks of 3 subjects (between 
0-100)\n"); 

5. printf("Enter marks of 3 subjects 
(between 0-100)\n"); 

6. printf("Enter marks of first subject:"); 6. printf("Enter marks of first subject:"); 

7. scanf("%d", &mark1); 7. scanf("%d", &mark1); 

8. printf("Enter marks of second subject:"); 8. printf("Enter marks of second subject:"); 

9. scanf("%d", &mark2); 9. scanf("%d", &mark2); 

10. printf("Enter marks of third subject:"); 10. printf("Enter marks of third subject:"); 

11. scanf("%d",&mark3); 11. scanf("%d",&mark3); 

12. if(mark1>100||mark1<0||mark2>100||mark2 
<0||mark3>100||mark3<0){ /* do nothing*/ 

12. if(mark1>100||mark1<0||mark2>100||mark2 
<0||mark3>100||mark3<0){ 

14. } 14. } /* do nothing*/ 

15. else { 15. else { 

16. avg=(mark1+mark2+mark3)/3; 16. avg=(mark1+mark2+mark3)/3; 

17. if(avg<40){ 17. if(avg<40){ /* do nothing*/ 
 

18.   printf("Fail"); 19. } 

19.  }  20. else if(avg>=40&&avg<50) { 

32. }   21. printf("Third Division"); 

33. getch(); 22. } 

34. } 29. else { /* do nothing*/ 

  31. } 

  32. } 

  33. getch(); 

  34. } 

 (e) S(avg,18)  (f) S(avg,21) 

 
#include<stdio.h> 

 
#include<stdio.h> 

 #include<conio.h>  #include<conio.h> 

1. void main() 1. void main() 

2. { 2. { 

3. int mark1, mark2,mark3,avg; 3. int mark1, mark2,mark3,avg; 

4. clrscr(); 4. clrscr(); 

5. printf("Enter marks of 3 subjects (between 
0-100)\n"); 

5. printf("Enter marks of 3 subjects 
(between 0-100)\n"); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Contd.) 



 

 

 

(Contd.) 

6. printf("Enter marks of first subject:"); 6. printf("Enter marks of first subject:"); 

7. scanf("%d", &mark1); 7. scanf("%d", &mark1); 

8. printf("Enter marks of second subject:"); 8. printf("Enter marks of second subject:"); 

9. scanf("%d", &mark2); 9. scanf("%d", &mark2); 

10. printf("Enter marks of third subject:"); 10. printf("Enter marks of third subject:"); 

11. scanf("%d",&mark3); 11. scanf("%d",&mark3); 

12. if(mark1>100||mark1<0||mark2>100||mark2 
<0||mark3>100||mark3<0) { 
/* do nothing*/ 

12. if(mark1>100||mark1<0||mark2>100||mar 
k2<0||mark3>100||mark3<0) { 
/* do nothing*/ 

14. } 14. } 

15. else { 15. else { 

16. avg=(mark1+mark2+mark3)/3; 16. avg=(mark1+mark2+mark3)/3; 

17. if(avg<40) { /* do nothing*/ 17. if(avg<40) { /* do nothing*/ 

19. } 19.  } 

20. else if(avg>=40&&avg<50) { 
/* do nothing*/ 

20. else if(avg>=40&&avg<50) { 
/* do nothing*/ 

22. } 22. } 

23. else if(avg>=50&&avg<60) { 23. else if(avg>=50&&avg<60) { 

24. printf("Second Division"); 25. } 

25. } 26. else if(avg>=60&&avg<75) { 

29. else { /* do nothing*/ 27. printf("First Division"); 

31.  } 28. } 

32. } 29. else { /* do nothing*/ 

33. getch(); 31. } 

34. } 32. } 

33. getch(); 

34. } 

(g) S(avg,24) (h) S(avg,27) 

 

#include<stdio.h> 

#include<conio.h> 

1. void main() 

2. { 

3. int mark1, mark2,mark3,avg; 

4. clrscr(); 

5. printf("Enter marks of 3 subjects (between 0-100)\n"); 

6. printf("Enter marks of first subject:"); 

7. scanf("%d", &mark1); 

8. printf("Enter marks of second subject:"); 

 
 
 
 
 
 
 
 
 
 

 
(Contd.) 



 

 

 

(Contd.) 

9. scanf("%d", &mark2); 

10. printf("Enter marks of third subject:"); 

11. scanf("%d",&mark3); 

12. if(mark1>100||mark1<0||mark2>100||mark2<0||mark3>100||mark3<0) { /* do nothing*/ 

14. } 

15. else { 

16. avg=(mark1+mark2+mark3)/3; 

17. if(avg<40) { /* do nothing*/ 

19. } 

20. else if(avg>=40&&avg<50) {/* do nothing*/ 

22. } 

23. else if(avg>=50&&avg<60) {/* do nothing*/ 

25. } 

26. else if(avg>=60&&avg<75) {/* do nothing*/ 

28. } 

29. else { 

30. printf("First Division with Distinction"); 

31. } 

32. } 

33. getch(); 

34. } 

(i) S(avg,30)/S(avg,34) 

 
Figure 4.6. Slices of program for determination of division of a student 

 

Table 4.19. 

  
S. 

. 
Slice Line covered mark1 mark2 mark3 Expected output 

No 

1. S(mark1, 7) 1–7, 34 65   No output 

2. S(mark1, 13) 1–14, 33, 34 101 40 50 Invalid marks 

3. S(mark1, 34 ) 1–7, 34 65 
  

No output 

4. S(mark2, 9) 1–5, 8, 9, 34 
 

65 
 

No output 

5. S(mark2, 13) 1–14, 33, 34 40 101 50 Invalid marks 

6. S(mark2, 34) 1–5, 8, 9, 34 
 

65 
 

No output 

7. S(mark3, 11) 1–5, 10, 11, 34 
  

65 No output 

8. S(mark3, 13) 1–14, 33, 34 40 50 101 Invalid marks 

(Contd.) 



 

 

 

(Contd.) 

  
S. 

. 
Slice Line covered mark1 mark2 mark3 Expected output 

No 

9. S(mark3, 34) 1–5, 10, 11, 34   65 No output 

10. S(avg, 16) 1–12, 14–16, 32, 34 45 50 45 No output 

11. S(avg, 18) 1–12, 14–19, 32–34 40 30 20 Fail 

12. S(avg, 21) 1–12, 14–17, 19–22, 

29, 32–34 

45 50 45 Third division 

13. S(avg, 24) 1–12, 14–17, 19, 20, 

22–25, 29, 31–34 

55 60 57 Second division 

14. S(avg, 27) 1–12, 14–17, 19, 20, 

22, 23, 25–29, 31–34 

65 67 65 First division 

15. S(avg, 30) 1–12, 14–17, 19, 20, 

22, 23, 25, 26, 28–34 

79 80 85 First division with 

distinction 

16. S(avg, 34) 1–12, 14–17, 19, 20, 

22, 23, 25, 26, 28–34 

79 80 85 First division with 

distinction 

17. S(avg, 16) 1–12, 14–16, 32, 34 45 50 45 No output 

Example 4.8: Consider the program for classification of a triangle. Consider all variables and 

generate possible program slices. Design at least one test case from every slice. 

Solution: 

There are seven variables ‘a’, ‘b’, ‘c’, ‘a1’, ‘a2’, ‘a3’ and ‘valid’ in the program. We may create 

many slices as given below: 

i. S (a, 8) = {1–8, 42} 

ii. S (b, 10) = {1–6, 9, 10, 42} 

iii. S (c, 12) = {1–6, 11, 12, 42} 

iv. S (a1, 22) = {1–16, 20–22, 34, 42} 

v. S (a1, 26) = {1–16, 20–22, 25–27, 34, 41, 42} 

vi. S (a1, 29) = {1–16, 20–22, 25, 27–31, 33, 34, 41, 42} 

vii. S (a1, 32) = {1–16, 20–22, 25, 27, 28, 30–34, 41, 42} 

viii. S (a2, 23) = {1–16, 20, 21,23, 34, 42} 

ix. S (a2, 26) = {1–16, 20, 21, 23, 25–27, 34, 41, 42) 

x. S (a2, 29) = {1–16, 20, 21, 23, 25, 27–31, 33, 34, 41, 42} 

xi. S (a2, 32) = {1–16, 20, 21, 23, 25, 27, 28, 30–34, 41, 42} 

xii. S (a3, 26) = {1–16, 20, 21, 24–27, 34, 41, 42} 

xiii. S (a3, 29) = {1–16, 20, 21, 24, 25, 27–31, 33, 34, 41,42} 

xiv.   S (a3, 32) = {1–16, 20, 21, 24, 25, 27, 28, 30–34, 41, 42} 

xv. S (valid, 5) = {1–5, 42} 

xvi. S (valid, 15) = {1–16, 20, 42} 

xvii. S (valid, 18) = {1–14, 16–20, 42} 

xviii. S (valid, 36) = {1–14, 16–20, 21, 34–38, 40–42} 

xix. S (valid, 39) = {1–13, 20, 21, 34, 35, 37–42} 



 

 

 

The test cases of the above slices are given in Table 4.20. 
 

Table 4.20. 

S. 

No. 

 

Slice Path a b c Expected output 

1. S(a, 8)/S(a,42) 1–8, 42 20 No output 

2. S(b, 10)/S(b,42) 1–6, 9, 10, 42 20 No output 

3. S(c, 12)/S(c,42) 1–6, 11, 12, 42 20 No output 

4. S(a1, 22) 1–16, 20–22, 34, 42 30 20 40 No output 

5. S(a1, 26) 1–16, 20–22, 25–27, 34, 

41, 42 

6. S(a1, 29) 1–16, 20–22, 25, 27–31, 

33, 34, 41, 42 

7. S(a1, 32) 1–16, 20–22, 25, 27, 28, 

30–34, 41, 42 

30 20 40 Obtuse angled 

triangle 

30 40 50 Right angled triangle 

 
50 60 40 Acute angled tri- 

angle 

8. S(a1, 42) 1–16, 20–22, 34, 42 30 20 40 No output 

9. S(a2, 23) 1–16, 20, 21, 23, 34, 42 30 20 40 No output 

10. S(a2, 26) 1–16, 20, 21, 23, 25–27, 

34, 41, 42 

11. S(a2, 29) 1–16, 20, 21, 23, 25, 

27–31, 33, 34, 41, 42 

12. S(a2, 32) 1–16, 20, 21, 23, 25, 27, 28, 

30–34, 41, 42 

40 30 20 Obtuse angled 

triangle 

50 40 30 Right angled triangle 

 
40 50 60 Acute angled tri- 

angle 

13. S(a2, 42) 1–16, 20, 21, 23, 34, 42 30 20 40 No output 

14. S(a3, 24) 1–16, 20, 21, 24, 34, 42 30 20 40 No output 

15. S(a3, 26) 1–16, 20, 21, 24–27, 34, 

41, 42 

16. S(a3, 29) 1–16, 20, 21, 24, 25, 27–31, 

33, 34, 41, 42 

17. S(a3, 32) 1–16, 20, 21, 24, 25, 27, 28, 

30–34, 41, 42 

20 40 30 Obtuse angled 

triangle 

40 50 30 Right angled triangle 

 
50 40 60 Acute angled tri- 

angle 

18.    S(a3, 42) 1–16, 20, 21, 24, 34, 42          30      20    40    No output 

19.   S(valid,5) 1–2, 5, 42  No output 

20.   S(valid,15) 1–16, 20, 42 20   40    30    No output 

21.   S(valid,18) 1–14, 16–20, 42 30      10    15    No output 

22. S(valid,36) 1–14, 16–20, 21, 34–38, 

40–42 

30 10 15 Invalid triangle 

23. S(valid,39) 1–13, 20, 21, 34, 35, 37–42 102 –1 6 Input values out of 

range 

24. S(valid,42) 1–14, 16–20, 42 30 10 15 No output 



 

 

 
Example 4.9. Consider the program for determination of day of the week given in Figure 3.13. 

Consider variables day, validDate, leap and generate possible program slices. Design at least 

one test case from each slice. 

Solution: 

There are ten variables – day, month, year, century Y, Y1, M, date, valid date, and leap. We 

may create many slices for variables day, validDate and leap as given below: 

 
1. S(day, 6) = {1–6, 118} 

2. S(day, 93) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76, 

78–81, 88, 90–94, 113, 117, 118} 

3. S(day, 96) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76, 

78–81, 88, 90–92, 94–97, 110, 112, 113, 117, 118} 

4. S(day, 99) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76, 

78–81, 88, 90–92, 94, 95, 97–100, 110, 112, 113, 117, 118} 

5. S(day, 102) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76, 

78–81, 88, 90–92, 94, 95, 97, 98, 100–103, 110, 112, 113, 117, 

118} 

6. S(day, 105) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76, 

78–81, 88, 90–92, 94, 95, 97, 98, 100, 101, 103–106, 110, 112, 

113, 117, 118} 

7. S(day, 108) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76, 

78–81, 88, 90–92, 94, 95, 97, 98, 100, 101, 103, 104, 106–110, 

112, 113, 117, 118} 

8. S(day, 111) = {1–11, 18–21, 25, 43–48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76, 

78–81, 88, 90–92, 94, 95, 97, 98, 100, 101, 103, 104, 106, 107, 

109–113, 117, 118} 

9. S(day, 115) = {1–11, 43, 44, 113–118} 

10. S(day, 118) = {1–6, 118} 

11. S(validDate,3) = {1–3, 118} 

12. S(validDate,20) = {1–11, 18–21, 25, 43, 118} 

13. S(validDate,23) = {1–11, 18, 19, 21–25, 43, 118} 

14. S(validDate,28) = {1–13, 17, 18, 25, 26–29, 36, 40, 42, 43, 118} 

15. S(validDate,31) = {1–11, 18, 25, 26, 27, 29–33, 35, 36, 40, 42, 43, 118} 

16. S(validDate,34) = {1–11, 18, 25, 26, 27, 29, 30, 32–36, 40, 42, 43, 118} 

17.. S(validDate,38) = {1–11, 18, 25, 26, 36–40, 42, 43, 118} 

18. S(validDate,41) = {1–11, 18, 25, 26, 36, 37, 39–43, 118} 

19. S(validDate,118) = {1–11, 18, 25, 26, 36, 37, 39–43, 118} 

20. S(leap,3) = {1–3, 118} 

21. S(leap,13) = {1–13, 17, 43, 118} 

22. S(leap,15) = {1–17, 43, 118} 

23. S(leap,118) = {1–17, 43, 118} 



 

 

 

The test cases for the above slices are given in Table 4.21. 

 

Table 4.21. 

S. 

No. 
Slice Lines covered Month Day Year 

Expected 

output 

1. S(day, 6) 1–6, 118 6 - - No output 

2. S(day, 93) 1–11, 18–21, 25, 43–48, 53, 

54, 61, 62, 69, 70, 72, 73, 75, 

76, 78–81, 88, 90–94, 113, 

117, 118 

6 13 1999 Sunday 

3. S(day, 96) 1–11, 18–21, 25, 43–48, 53, 

54, 61, 62, 69, 70, 72, 73, 75, 

76, 78–81, 88, 90–92, 94–97, 

110, 112, 113, 117, 118 

6 14 1999 Monday 

4. S(day, 99) 1–11, 18–21, 25, 43–48, 53, 

54, 61, 62, 69, 70, 72, 73, 75, 

76, 78–81, 88, 90–92, 94, 95, 

97–100, 110, 112, 113, 117, 

118 

6 15 1999 Tuesday 

5. S(day, 102) 1–11, 18–21, 25, 43–48, 53, 

54, 61, 62, 69, 70, 72, 73, 75, 

76, 78–81, 88, 90–92, 94, 95, 

97, 98, 100–103, 110, 112, 

113, 117, 118 

6 16 1999 Wednesday 

6. S(day, 105) 1–11, 18–21, 25, 43–48, 53, 

54, 61, 62, 69, 70, 72, 73, 75, 

76, 78–81, 88, 90–92, 94, 95, 

97, 98, 100, 101, 103–106, 

110, 112, 113, 117, 118 

6 17 1999 Thursday 

7. S(day, 108) 1–11, 18–21, 25, 43–48, 53, 

54, 61, 62, 69, 70, 72, 73, 75, 

76, 78–81, 88, 90–92, 94, 95, 

97, 98, 100, 101, 103, 104, 

106–110, 112, 113, 117, 118 

6 18 1999 Friday 

8. S(day, 111) 1–11, 18–21, 25, 43–48, 53, 

54, 61, 62, 69, 70, 72, 73, 75, 

76, 78–81, 88, 90–92, 94, 95, 

97, 98, 100, 101, 103, 104, 

106, 107, 109–113, 117, 118 

6 19 1999 Saturday 

9. S(day, 115) 1–11, 43, 44, 113–118 6 31 2059 Invalid Date 

10. S(day, 118) 1–6, 118 6 19 1999 Saturday 

11. S(validDate,3) 1–3, 118 - - - No output 

12. S(validDate,20) 1–11, 18–21, 25, 43, 118 6 15 2009 No output 

13. S(validDate,23) 1–11, 18, 19, 21–25, 43, 118 6 31 2009 No output 

14. S(validDate,28) 1–13, 17, 18, 25, 26–29, 36, 

40, 42, 43, 118 

2 15 2000 No output 

      (Contd.) 



 

 

 

(Contd.) 
 

S. 

No. 
Slice Lines covered Month Day Year 

Expected 

output 

15. S(validDate,31) 1–11, 18, 25, 26, 27, 29–33, 

35, 36, 40, 42, 43, 118 

2 15 2009 No output 

16. S(validDate,34) 1–11, 18, 25, 26, 27, 29, 30, 

32–36, 40, 42, 43, 118 

2 29 2009 No output 

17. S(validDate,38) 1–11, 18, 25, 26, 36–40, 42, 

43, 118 

8 15 2009 No output 

18. S(validDate,41) 1–11, 18, 25, 26, 36, 37, 

39–43, 118 

13 15 2009 No output 

19. S(validDate,118) 1–11, 18, 25, 26, 36, 37, 

39–43, 118 

13 15 2009 No output 

20. S(leap,3) 1–3, 118 - - - No output 

21. S(leap,13) 1–13, 17, 43, 118 8 15 2000 No output 

22. S(leap,15) 1–17, 43, 118 8 15 1900 No output 

23. S(leap,118) 1–17, 43, 118 8 15 1900 No output 

 

MUTATION TESTING 

It is a popular technique to assess the effectiveness of a test suite. We may have a large number 

of test cases for any program. We neither have time nor resources to execute all of them. We 

may select a few test cases using any testing technique and prepare a test suite. How do we 

assess the effectiveness of a selected test suite? Is this test suite adequate for the program? If 

the test suite is not able to make the program fail, there may be one of the following reasons: 

(i) The test suite is effective but hardly any errors are there in the program. How will a test 

suite detect errors when they are not there? 

(ii) The test suite is not effective and could not find any errors. Although there may be 

errors, they could not be detected due to poor selection of test suite. How will errors be 

detected when the test suite is not effective? 

In both the cases, we are not able to find errors, but the reasons are different. In the first 

case, the program quality is good and the test suite is effective and in the second case, the 

program quality is not that good and the test suite is also not that effective. When the test suite 

is not able to detect errors, how do we know whether the test suite is not effective or the 

program quality is good? Hence, assessing the effectiveness and quality of a test suite is very 

important. Mutation testing may help us to assess the effectiveness of a test suite and may also 

enhance the test suite, if it is not adequate for a program. 

 
 Mutation and Mutants 

The process of changing a program is known as mutation. This change may be limited to one, 

two or very few changes in the program. We prepare a copy of the program under test and make 

a change in a statement of the program. This changed version of the program is known as a 



 

 

if(A>B){ 

 
mutant of the original program. The behaviour of the mutant may be different from the original 

program due to the introduction of a change. However, the original program and mutant are 

syntactically correct and should compile correctly. To mutate a program means to change a 

program. We generally make only one or two changes in order to assess the effectiveness of 

the selected test suite. We may make many mutants of a program by making small changes in 

the program. Every mutant will have a different change in a program. Consider a program to 

find the largest amongst three numbers as given in Figure 3.11 and its two mutants are given 

in Figure 4.7 and Figure 4.8. Every change of a program may give a different output as 

compared to the original program. 

Many changes can be made in the program given in Figure 3.11 till it is syntactically 
correct. Mutant M

1 
is obtained by replacing the operator ‘>’ of line number 11 by the operator 

‘ =’. Mutant M
2 

is obtained by changing the operator ‘>’ of line number 20 to operator ‘<’. 

These changes are simple changes. Only one change has been made in the original program to 
obtain mutant M

1 
and mutant M

2
. 

#include<stdio.h> 

#include<conio.h> 

1. void main() 

2. { 

3. float A,B,C; 

4. clrscr(); 

5. printf("Enter number 1:\n"); 

6. scanf("%f", &A); 

7. printf("Enter number 2:\n"); 

8. scanf("%f", &B); 

9. printf("Enter number 3:\n"); 

10. scanf("%f", &C); 

/*Check for greatest of three numbers*/ 

11. if(A=B) { mutated statement (‘>’ is replaced by ‘=’) 

12. if(A>C) { 
 

13.  printf("The largest number is: %f\n",A); 

14.  } 

15. else {  

16.  printf("The largest number is: %f\n",C); 

17.  } 

18. } 

19. else { 

20. if(C>B) { 

21. printf("The largest number is: %f\n",C); 

22. } 

23. else { 

24. printf("The largest number is: %f\n",B); 

25. } 

26. } 

(Contd.) 



 

 

if(C>B) { 

 

(Contd.) 

27. getch(); 

28. } 

M1 : First order mutant 

 
Figure 4.7. Mutant1 (M1) of program to find the largest among three numbers 

 
#include<stdio.h> 

#include<conio.h> 

1. void main() 

2. { 

3. float A,B,C; 

4. clrscr(); 

5. printf("Enter number 1:\n"); 

6. scanf("%f", &A); 

7. printf("Enter number 2:\n"); 

8. scanf("%f", &B); 

9. printf("Enter number 3:\n"); 

10. scanf("%f", &C); 

/*Check for greatest of three numbers*/ 

11. if(A>B) { 

12. if(A>C) { 

13. printf("The largest number is: %f\n",A); 

14. } 

15. else { 

16. printf("The largest number is: %f\n",C); 

17. } 

18. } 

19. else { 

20. if(C<B) { mutated statement (‘>’ is replaced by ‘<’) 

21.  printf("The largest number is: %f\n",C); 

22.  } 

23. else {  

24.  printf("The largest number is: %f\n",B); 

25.  } 

26. } 

27. getch(); 

28. } 

M2 : First order mutant 

 
Figure 4.8. Mutant2 (M2) of program to find the largest among three numbers 



 

 

if(C>B) { 

if(A>B) { 

 

The mutants generated by making only one change are known as first order mutants. We may 

obtain second order mutants by making two simple changes in the program and third order mutants 

by making three simple changes, and so on. The second order mutant (M
3
) of the program given in 

Figure 3.11 is obtained by making two changes in the program and thus changing operator ‘>’ of 

line number 11 to operator ‘<’ and operator ‘>’ of line number 20 to ‘ ’ as given in Figure 4.9. The 

second order mutants and above are called higher order mutants. Generally, in practice, we prefer 

to use only first order mutants in order to simplify the process of mutation. 

 
#include<stdio.h> 

#include<conio.h> 

1. void main() 

2. { 

3. float A,B,C; 

4. clrscr(); 

5. printf("Enter number 1:\n"); 

6. scanf("%f", &A); 

7. printf("Enter number 2:\n"); 

8. scanf("%f", &B); 

9. printf("Enter number 3:\n"); 

10. scanf("%f", &C); 

/*Check for greatest of three numbers*/ 

11. if(A<B) { mutated statement (replacing ‘>’ by ‘<’) 

12. if(A>C) { 
 

13.  printf("The largest number is: %f\n",A); 

14.  } 

15. else {  

16.  printf("The largest number is: %f\n",C); 

17.  } 

18. } 

19. else { 

20. if(C B) { mutated statement (replacing ‘>’by ‘ ’) 
 

21.  printf("The largest number is: %f\n",C); 

22.  } 

23. else {  

24.  printf("The largest number is: %f\n",B); 

25.  } 

26. } 

27. getch(); 

28. } 

M3 : Second order mutant 

Figure 4.9. Mutant3 (M3) of program to find the largest among three numbers 



 

 

 

 Mutation Operators 

Mutants are produced by applying mutant operators. An operator is essentially a grammatical 

rule that changes a single expression to another expression. The changed expression should be 

grammatically correct as per the used language. If one or more mutant operators are applied to 

all expressions of a program, we may be able to generate a large set of mutants. We should 

measure the degree to which the program is changed. If the original expression is x + 1, and 

the mutant for that expression is x + 2, that is considered as a lesser change as compared to a 

mutant where the changed expression is (y * 2) by changing both operands and the operator. 

We may have a ranking scheme, where a first order mutant is a single change to an expression, 

a second order mutant is a mutation to a first order mutant, and so on. Higher order mutants 

become difficult to manage, control and trace. They are not popular in practice and first order 

mutants are recommended to be used. To kill a mutant, we should be able to execute the 

changed statement of the program. If we are not able to do so, the fault will not be detected. If 

x – y is changed to x – 5 to make a mutant, then we should not use the value of y to be equal 

to 5. If we do so, the fault will not be revealed. Some of the mutant operators for object 

oriented languages like Java, C++ are given as: 

(i) Changing the access modifier, like public to private. 

(ii) Static modifier change 

(iii) Argument order change 

(iv) Super Keyword change 

(v) Operator change 

(vi) Any operand change by a numeric value. 

 

 Mutation Score 

When we execute a mutant using a test suite, we may have any of the following outcomes: 

(i) 

 
(ii) 

The results of the program are affected by the change and any test case of the test suite 

detects it. If this happens, then the mutant is called a killed mutant. 

The results of the program are not affected by the change and any test case of the test 

suite does not detect the mutation. The mutant is called a live mutant. 

The mutation score associated with a test suite and its mutants is calculated as: 

 

Mutation Score 
Number of mutants killed 

Total number of mutants 

The total number of mutants is equal to the number of killed mutants plus the number of 

live mutants. The mutation score measures how sensitive the program is to the changes and 

how accurate the test suite is. A mutation score is always between 0 and 1. A higher value of 

mutation score indicates the effectiveness of the test suite although effectiveness also depends 

on the types of faults that the mutation operators are designed to represent. 

The live mutants are important for us and should be analyzed thoroughly. Why is it that any 

test case of the test suite not able to detect the changed behaviour of the program? One of the 

reasons may be that the changed statement was not executed by these test cases. If executed, 



 

 

Table 4.22. Mutated statements 

Mutant No. Line no. Original line 

M1 11 if(A>B) 

M2 11 if(A>B) 

M3 12 if(A>C) 

M4 20 if(C>B) 

M5 16 printf(“The Largest number 

is:%f\n”,C); 

if (A<B) 

if(A>(B+C)) 

if(A<C) 

if(C=B) 

printf(“The Largest number 

is:%f\n”,B); 

 
then also it has no effect on the behaviour of the program. We should write new test cases for 

live mutants and kill all these mutants. The test cases that identify the changed behaviour 

should be preserved and transferred to the original test suite in order to enhance the capability 

of the test suite. Hence, the purpose of mutation testing is not only to assess the capability of 

a test suite but also to enhance the test suite. Some mutation testing tools are also available in 

the market like Insure++, Jester for Java (open source) and Nester for C++ (open source). 

Example 4.10: Consider the program to find the largest of three numbers as given in figure 

3.11. The test suite selected by a testing technique is given as: 

 
S. No. A B C Expected Output 

1. 6 10 2 10 

2. 10 6 2 10 

3. 6 2 10 10 

4. 6 10 20 20 

Generate five mutants (M
1 

to M
5
) and calculate the mutation score of this test suite. 

Solution: 

The mutated line numbers and changed lines are shown in Table 4.22. 

 

The actual output obtained by executing the mutants M
1
-M

5 
is shown in Tables 4.23-4.27. 

 

Table 4.23. Actual output of mutant M1 

Test case A B C Expected output Actual output 

1. 6 10 2 10 6 

2. 10 6 2 10 6 

3. 6 2 10 10 10 

4. 6 10 20 20 20 

 

Table 4.24. Actual output of mutant M2 

Test case A B C Expected output Actual output 

1. 6 10 2 10 10 

2. 10 6 2 10 10 

3. 6 2 10 10 10 

4. 6 10 20 20 20 



 

 

 
Table 4.25. Actual output of mutant M3 

Test case A B C Expected output Actual output 

1. 6 10 2 10 10 

2. 10 6 2 10 2 

3. 6 2 10 10 6 

4. 6 10 20 20 20 

 

 

Table 4.26. Actual output of mutant M4 

Test case A B C Expected output Actual output 

1. 6 10 2 10 10 

2. 10 6 2 10 10 

3. 6 2 10 10 10 

4. 6 10 20 20 10 

 
Table 4.27. Actual output of mutant M5 

Test case A B C Expected output Actual output 

1. 6 10 2 10 10 

2. 10 6 2 10 10 

3. 6 2 10 10 2 

4. 6 10 20 20 20 

 

Mutation Score 
Number of mutants killed 

Total number of mutants 

4 
 

5 

0.8  

Higher the mutant score, better is the effectiveness of the test suite. The mutant M
2 
is live 

in the example. We may have to write a specific test case to kill this mutant. The additional test 
case is given in Table 4.28. 

 

Table 4.28. 

Test case 

 

  

A 

 
B 

 
C 

 
Expected output 

5. 10 5 6 10 

Now when we execute the test case 5, the actual output will be different from the expected 

output (see Table 4.29), hence the mutant will be killed. 

 

Table 4.29. Output of added test case 

Test case A B C Expected output Actual output 

5. 10 5 6 10 6 



 

 

Table 4.33. 

Mutant 

No. 

M
1
 

M
2 

M
3 

M
4 

M
5
 

Line 

no. 

13 

14 

21 

23 

25 

Original line 

if(a>0&&a<=100&&b>0&&b<=10 if(a>0||a<=100&&b>0&&b<=100& 

0&&c>0&&c<=100) { &c>0&&c<=100) { 

if((a+b)>c&&(b+c)>a&&(c+a)>b) { if((a+b)>c&&(b+c)>a&&(b+a)>b) { 

if(valid==1) { if(valid>1) { 

a2=(b*b+c*c)/(a*a); a2=(b*b+c*c)*(a*a); 

if(a1<1||a2<1||a3<1) { if(a1>1||a2<1||a3<1) { 

 
This test case is very important and should be added to the given test suite. Therefore, the 

revised test suite is given in Table 4.30. 

 

Table 4.30. 

Test case 

 
A 

 
B 

 
C 

 
Expected output 

1. 6 10 2 10 

2. 10 6 2 10 

3. 6 2 10 10 

4. 6 10 20 20 

5. 10 5 6 10 

Example 4.11: Consider the program for classification of triangle given in Figure 3.18. The 

test suite A and B are selected by two different testing techniques and are given in Table 4.31 

and Table 4.32, respectively. The five first order mutants and the modified lines are given in 

Table 4.33. Calculate the mutation score of each test suite and compare their effectiveness. 

Also, add any additional test case, if required. 
 

Table 4.31. 

Test case 

 
a 

 
b 

 
c 

 
Expected output 

1. 30 40 90 Invalid triangle 

2. 30 20 40 Obtuse angled triangle 

3. 50 40 60 Acute angled triangle 

4. 30 40 50 Right angled triangle 

5. –1 50 40 Input values are out of range 

6. 50 150 90 Input values are out of range 

7. 50 40 –1 Input values are out of range 

 

Table 4.32. 

Test case 

 
a 

 
b 

 
c 

 
Expected output 

1. 40 90 20 Invalid triangle 

2. 40 30 60 Obtuse angled triangle 

3. 40 50 60 Acute angled triangle 

4. 30 40 50 Right angled triangle 

5. –1 50 40 Input values are out of range 

6. 30 101 90 Input values are out of range 
7. 30 90 0 Input values are out of range 

 



 

 

 
Solution: 

 

The actual outputs of mutants M
1
-M

5 
on test suite A are shown in Tables 4.34-4.38. 

 

Table 4.34. Actual output of M1(A) 

Test case a b c Expected output Actual output 

1. 30 40 90 Invalid triangle Invalid triangle 

2. 30 20 40 Obtuse angled triangle Obtuse angled triangle 

3. 50 40 60 Acute angled triangle Acute angled triangle 

4. 30 40 50 Right angled triangle Right angled triangle 

5. –1 50 40 Input values are out of range Invalid triangle 

6. 50 150 90 Input values are out of range Invalid triangle 

7. 50 40 –1 Input values are out of range Invalid triangle 

 

Table 4.35. Actual output of M2(A) 

Test case a b c Expected output Actual output 

1. 30 40 90 Invalid triangle Invalid triangle 

2. 30 20 40 Obtuse angled triangle Obtuse angled triangle 

3. 50 40 60 Acute angled triangle Acute angled triangle 

4. 30 40 50 Right angled triangle Right angled triangle 

5. –1 50 40 Input values are out of range Input values are out of range 

6. 50 150 90 Input values are out of range Input values are out of range 

7. 50 40 –1 Input values are out of range Input values are out of range 

 

Table 4.36. Actual output of M3(A) 

Test case a b c Expected output Actual output 

1. 30 40 90 Invalid triangle Invalid triangle 

2. 30 20 40 Obtuse angled triangle Input values are out of range 

3. 50 40 60 Acute angled triangle Input values are out of range 

4. 30 40 50 Right angled triangle Input values are out of range 

5. –1 50 40 Input values are out of range Input values are out of range 

6. 50 150 90 Input values are out of range Input values are out of range 

7. 50 40 –1 Input values are out of range Input values are out of range 

 

Table 4.37. Actual output of M4(A) 

Test case a b c Expected output Actual output 

1. 30 40 90 Invalid triangle Invalid triangle 

2. 30 20 40 Obtuse angled triangle Obtuse angled triangle 

3. 50 40 60 Acute angled triangle Acute angled triangle 

4. 30 40 50 Right angled triangle Right angled triangle 

5. –1 50 40 Input values are out of range Input values are out of range 

6. 50 150 90 Input values are out of range Input values are out of range 

7. 50 40 –1 Input values are out of range Input values are out of range 



 

 

 
Table 4.38. Actual output of M5(A) 

Test case a b c Expected output Actual output 

1. 30 40 90 Invalid triangle Invalid triangle 

2. 30 20 40 Obtuse angled triangle Acute angled triangle 

3. 50 40 60 Acute angled triangle Obtuse angled triangle 

4. 30 40 50 Right angled triangle Right angled triangle 

5. –1 50 40 Input values are out of range Input values are out of range 

6. 50 150 90 Input values are out of range Input values are out of range 

7. 50 40 –1 Input values are out of range Input values are out of range 

Two mutants are M
2 

and M
4 
are live. Thus, the mutation score using test suite A is 0.6. 

Mutation Score 
Number of mutants killed 

Total number of mutants 

3 
 

5 

0.6  
 

The actual outputs of mutants M
1
-M

5 
on test suite B are shown in Tables 4.39-4.43. 

 

Table 4.39. Actual output of M1 

Test case a b c Expected output Actual output 

1. 40 90 20 Invalid triangle Invalid triangle 

2. 40 30 60 Obtuse angled triangle Obtuse angled triangle 

3. 40 50 60 Acute angled triangle Acute angled triangle 

4. 30 40 50 Right angled triangle Right angled triangle 

5. –1 50 40 Input values are out of range Invalid triangle 

6. 30 101 90 Input values are out of range Obtuse angled triangle 

7. 30 90 0 Input values are out of range Invalid triangle 

 

 

Table 4.40. Actual output of M2 

Test case a b c Expected output Actual output 

1. 40 90 20 Invalid triangle Obtuse angled triangle 

2. 40 30 60 Obtuse angled triangle Obtuse angled triangle 

3. 40 50 60 Acute angled triangle Acute angled triangle 

4. 30 40 50 Right angled triangle Right angled triangle 

5. –1 50 40 Input values are out of range Input values are out of range 

6. 30 101 90 Input values are out of range Input values are out of range 

7. 30 90 0 Input values are out of range Input values are out of range 



 

 

 
Table 4.41. Actual output of M3 

Test case a b c Expected output Actual output 

1. 40 90 20 Invalid triangle Invalid triangle 

2. 40 30 60 Obtuse angled triangle Input values are out of range 

3. 40 50 60 Acute angled triangle Input values are out of range 

4. 30 40 50 Right angled triangle Input values are out of range 

5. –1 50 40 Input values are out of range Input values are out of range 

6. 30 101 90 Input values are out of range Input values are out of range 

7. 30 90 0 Input values are out of range Input values are out of range 

 

Table 4.42. Actual output of M4 

Test case a b c Expected output Actual output 

1. 40 90 20 Invalid triangle Invalid triangle 

2. 40 30 60 Obtuse angled triangle Obtuse angled triangle 

3. 40 50 60 Acute angled triangle Acute angled triangle 

4. 30 40 50 Right angled triangle Right angled triangle 

5. –1 50 40 Input values are out of range Input values are out of range 

6. 30 101 90 Input values are out of range Input values are out of range 

7. 30 90 0 Input values are out of range Input values are out of range 

 

Table 4.43. Actual output of M5 

Test case a b c Expected output Actual output 

1. 40 90 20 Invalid triangle Invalid triangle 

2. 40 30 60 Obtuse angled triangle Acute angled triangle 

3. 40 50 60 Acute angled triangle Obtuse angled triangle 

4. 30 40 50 Right angled triangle Right angled triangle 

5. –1 50 40 Input values are out of range Input values are out of range 

6. 30 101 90 Input values are out of range Input values are out of range 

7. 30 90 0 Input values are out of range Input values are out of range 

 

Mutation Score 
Number of mutants killed 

Total number of mutants 

4 
 

5 

0.8  
 

The mutation score of Test suite B is higher as compared to the mutation score of test suite 

A, hence test suite B is more effective in comparison to test suite A. In order to kill the live 

mutant (M
4
), an additional test case should be added to test suite B as shown in Table 4.44. 

 

Table 4.44. 

Test case 

 

 

a 

 

b 

 

c 

 

Expected output 

8. 40 30 20 Obtuse angled triangle 



 

 

 

The revised test suite B is given in Table 4.45. 

 

Table 4.45. 

Test case 

 
a 

 
b 

 
c 

 
Expected output 

1. 40 90 20 Invalid triangle 

2. 40 30 60 Obtuse angled triangle 

3. 40 50 60 Acute angled triangle 

4. 30 40 50 Right angled triangle 

5. –1 50 40 Input values are out of range 

6. 30 101 90 Input values are out of range 

7. 30 90 0 Input values are out of range 

8. 40 30 20 Obtuse angled triangle 

 

 


