

Introduction

UNIT-1

Introduction & Functional Testing

TESTING PROCESS

Testing is an important aspect of the software development life cycle. It is basically the

process of testing the newly developed software, prior to its actual use. The program is

executed with desired input(s) and the output(s) is/are observed accordingly. The observed

output(s) is/are compared with expected output(s). If both are same, then the program is said

to be correct as per specifications, otherwise there is something wrong somewhere in the

program. Testing is a very expensive process and consumes one-third to one-half of the cost

of a typical development project. It is largely a systematic process but partly intuitive too.

Hence, good testing process entails much more than just executing a program a few times to

see its correctness.

 What is Software Testing?

Good testing entails more than just executing a program with desired input(s). Let’s consider

a program termed as ‘Minimum’ (see Figure 1.1) that reads a set of integers and prints the

smallest integer. We may execute this program using Turbo C complier with a number of inputs

and compare the expected output with the observed output as given in Table 1.1.

LINE NUMBER /*SOURCE CODE*/

#include<stdio.h>

#include<limits.h>

#include<conio.h>

1. void Minimum();

2. void main()

3. {

4. Minimum();

5. }

6. void Minimum()

7. {

8. int array[100];

9. int Number;

10. int i;

11. int tmpData;

12. int Minimum=INT_MAX;

13. clrscr();

14. "printf("Enter the size of the array:");

15. scanf("%d",&Number);

16. for(i=0;i<Number;i++) {

17. printf("Enter A[%d]=",i+1);

18. scanf("%d",&tmpData);

19. tmpData=(tmpData<0)?-tmpData:tmpData;

20. array[i]=tmpData;

21. }

22. i=1;

23. while(i<Number-1) {

24. if(Minimum>array[i])

25. {

26. Minimum=array[i];

27. }

28. i++;

29. }

Introduction

30. printf("Minimum = %d\n", Minimum);

31. getch();

32. }

Figure 1.1. Program ‘Minimum’ to find the smallest integer out of a set of integers

Table 1.1. Inputs and outputs of the program ‘Minimum’

Test Case Inputs Expected Observed Match?

Size Set of Integers Output Output

1. 5 6, 9, 2, 16, 19 2 2 Yes

2. 7 96, 11, 32, 9, 39, 99, 91 9 9 Yes

3. 7 31, 36, 42, 16, 65, 76, 81 16 16 Yes

4. 6 28, 21, 36, 31, 30, 38 21 21 Yes

5. 6 106, 109, 88, 111, 114, 116 88 88 Yes

6. 6 61, 69, 99, 31, 21, 69 21 21 Yes

7. 4 6, 2, 9, 5 2 2 Yes

8. 4 99, 21, 7, 49 7 7 Yes

There are 8 sets of inputs in Table 1.1. We may feel that these 8 test cases are sufficient for

such a trivial program. In all these test cases, the observed output is the same as the expected

output. We may also design similar test cases to show that the observed output is matched with

the expected output. There are many definitions of testing. A few of them are given below:

(i) Testing is the process of demonstrating that errors are not present.

(ii) The purpose of testing is to show that a program performs its intended functions

correctly.

(iii) Testing is the process of establishing confidence that a program does what it is supposed

to do.

The philosophy of all three definitions is to demonstrate that the given program behaves as

per specifications. We may write 100 sets of inputs for the program ‘Minimum’ and show that

this program behaves as per specifications. However, all three definitions are not correct. They

describe almost the opposite of what testing should be viewed as. Forgetting the definitions for

the moment, whenever we want to test a program, we want to establish confidence about the

correctness of the program. Hence, our objective should not be to show that the program works

as per specifications. But, we should do testing with the assumption that there are faults and

our aim should be to remove these faults at the earliest. Thus, a more appropriate definition is

[MYER04]: “Testing is the process of executing a program with the intent of finding

faults.” Human beings are normally goal oriented. Thus, establishment of a proper objective

is essential for the success of any project. If our objective is to show that a program has no

errors, then we shall sub-consciously work towards this objective. We shall intend to choose

those inputs that have a low probability of making a program fail as we have seen in Table 1.1,

where all inputs are purposely selected to show that the program is absolutely correct. On the

contrary, if our objective is to show that a program has errors, we may select those test cases

which have a higher probability of finding errors. We shall focus on weak and critical portions

of the program to find more errors. This type of testing will be more useful and meaningful.

We again consider the program ‘Minimum’ (given in Figure 1.1) and concentrate on some

typical and critical situations as discussed below:

(i) A very short list (of inputs) with the size of 1, 2, or 3 elements.

(ii) An empty list i.e. of size 0.

Table 1.2. Some critical/typical situations of the program ‘Minimum’

S. No. Inputs

Set of Integers

Expected

Output

Observed Output Match?

Size

Case 1

A very short list

with size 1, 2 or 3

A
B

C

D

E

F

1
2

2

3

3

3

90
12, 10

10, 12

12, 14, 36

36, 14, 12

14, 12, 36

90
10

10

12

12

12

2147483647
2147483647

2147483647

14

14

12

No
No

No

No

No

Yes

(iii) A list where the minimum element is the first or last element.

(iv) A list where the minimum element is negative.

(v) A list where all elements are negative.

(vi) A list where some elements are real numbers.

(vii) A list where some elements are alphabetic characters.

(viii) A list with duplicate elements.

(ix) A list where one element has a value greater than the maximum permissible limit of an

integer.

We may find many similar situations which may be very challenging and risky for this

program and each such situation should be tested separately. In Table 1.1, we have selected

elements in every list to cover essentially the same situation: a list of moderate length,

containing all positive integers, where the minimum is somewhere in the middle. Table 1.2

gives us another view of the same program ‘Minimum’ and the results are astonishing to

everyone. It is clear from the outputs that the program has many failures.

Case 2
An empty list, i.e.

A

0

–

Error

2147483647

No

of size 0 message

Case 3

A list where the A 5 10, 23, 34, 81, 97 10 23 No

minimum element B 5 97, 81, 34, 23, 10 10 23 No

element

Case 4
A list where the A 4 10, –2, 5, 23 –2 2 No

minimum element B 4 5, –25, 20, 36 –25 20 No

is negative

Case 5

A list where all A 5 –23, –31, –45, –78 31 No

elements are –56, –78

negative B 5 –6, –203, –56, –203 56 No

Case 6
 –78, –2

A list where some A 5 12, 34.56, 6.9, 6.9 34 (The program No

elements are real
numbers

 62.14, 19 does not take values
for index 3,4 and 5)

 B 5.4 2, 3, 5, 6, 9 2 858993460 (The

program does not

take any array value)

No

 (Contd.)

(Contd.)

Table 1.3. Possible reasons of failures for all nine cases

S. No. Possible Reasons

Case 1

A very short list with size 1, 2 or 3

and/or end value of the index of the usable array has not

been handled properly (see line numbers 22 and 23).

Case 2

An empty list i.e. of size 0 The program proceeds without checking the size of the

array (see line numbers 15 and 16).

Case 3

A list where the minimum element is Same as for Case 1.

Case 4

A list where the minimum element is

negative

Case 5

A list where all elements are negative

The program converts all negative integers into positive

integers (see line number 19).

Same as for Case 4.

(Contd.)

S. No.
Size

Inputs

Set of Integers

Expected
Output

Observed Output Match?

Case 7

A list where some

A 5

23, 2I, 26, 6, 9

6

2 (The program does

No

elements are

characters

 not take any other

index value for 3, 4

and 5)

 B 1I 2, 3, 4, 9, 6, 5, 2 2147483647 No

Case 8

 11, 12, 14, 21, 22 (Program does not

take any other index

value)

A list with dupli- A 5 3, 4, 6, 9, 6 3 4 No

cate elements

Case 9

B 5 13, 6, 6, 9, 15 6 6 Yes

A list where one A 5 530, 23 1 No

element has a 4294967297, 23,

value greater than

the maximum

permissible limit

of an integer

 46, 59

What are the possible reasons for so many failures shown in Table 1.3? We should read our

program ‘Minimum’ (given in Figure 1.1) very carefully to find reasons for so many failures.

The possible reasons of failures for all nine cases discussed in Table 1.2 are given in Table 1.3.

It is clear from Table 1.3 that this program suffers from serious design problems. Many

important issues are not handled properly and therefore, we get strange observed outputs. The

causes of getting these particular values of observed outputs are given in Table 1.4.

(Contd.)

Table 1.4. Reasons for observed output

Cases

1 (a)

1 (b)

1 (c)
1 (d)
1 (e)

1 (f)

Observed Output

2147483647

2147483647

2147483647
14
14

12

Remarks

the maximum value of a 32 bit integer to which a variable minimum

is initialized.

middle value is 14.

2 (a) 2147483647

Fortunately, the middle value is the minimum value and thus the

result is correct.

The maximum value of a 32 bit integer to which a variable minimum

is initialized.

3 (a) 23

3 (b) 23 value 23 is the minimum value in the remaining list.

4 (a) 2

4 (b) 20 converted negative integer(s) to positive integer(s).
5 (a) 31 Same as Case 4.

5 (b) 56

6 (a) 34 After getting ‘.’ of 34.56, the program was terminated and 34 was

displayed. However, the program has also ignored 12, being the

6 (b)

7 (a)

858993460

2

7 (b) 2147483647

Garbage value.

After getting ‘I’ in the second index value ‘2I’, the program

terminated abruptly and displayed 2.

The input has a non digit value. The program displays the value to

which variable ‘minimum’ is initialized.

8 (a) 4

minimum in the remaining list.

8 (b) 6

values are ignored.

9 (a) 1

signed integer data type used in the program.

S. No.

Case 6

A list where some elements are real

numbers

Possible Reasons

The program uses scanf() function to read the values. The

scanf() has unpredictable behaviour for inputs not accord-

Case 7
A list where some elements are

alphabetic characters

Case 8
A list with duplicate elements

Same as for Case 6.

Case 9
A list with one value greater than

the maximum permissible limit of an

integer

(a) Same as for Case 1.

(b) We are getting the correct result because the minimum

value is in the middle of the list and all values are positive.

This is a hardware dependent problem. This is the case

integer. In this example, 32 bits integers are used.

(Contd.)

Modifications in the program ‘Minimum’

Table 1.4 has given many reasons for undesired outputs. These reasons help us to identify the

causes of such failures. Some important reasons are given below:

(i) The program has ignored the first and last values of the list

The program is not handling the first and last values of the list properly. If we see the

line numbers 22 and 23 of the program, we will identify the causes. There are two

faults. Line number 22 “i = 1;” should be changed to “i = 0;” in order to handle the first

value of the list. Line number 23 “while (i<Number -1)” should be changed to “while

(i<=Number-1)” in order to handle the last value of the list.

(ii) The program proceeds without checking the size of the array

If we see line numbers 14 and 15 of the program, we will come to know that the program

is not checking the size of the array / list before searching for the minimum value. A list

cannot be of zero or negative size. If the user enters a negative or zero value of size or value

greater than the size of the array, an appropriate message should be displayed. Hence after

line number 15, the value of the size should be checked as under:

if (Number < = 0||Number>100)

{

printf ("Invalid size specified");

}

If the size is greater than zero and lesser than 101, then the program should proceed

further, otherwise it should be terminated.

(iii) Program has converted negative values to positive values

Line number 19 is converting all negative values to positive values. That is why the

program is not able to handle negative values. We should delete this line to remove

this fault.

The modified program, based on the above three points is given in Figure 1.2. The nine

cases of Table 1.2 are executed on this modified program and the results are given in

Table 1.5.

LINE NUMBER /*SOURCE CODE*/

#include<stdio.h>

#include<limits.h>

#include<conio.h>

1. void Minimum();

2. void main()

3. {

4. Minimum();

5. }

6. void Minimum()

7. {

8. int array[100];

9. int Number;

(Contd.)

10. int i;

11. int tmpData;

12. int Minimum=INT_MAX;

13. clrscr();

14. printf("Enter the size of the array:");

15. scanf("%d",&Number);

16. if(Number<=0||Number>100) {

17. printf("Invalid size specified");

18. }

19. else {

20. for(i=0;i<Number;i++) {

21. printf("Enter A[%d]=",i+1);

22. scanf("%d",&tmpData);

23. /*tmpData=(tmpData<0)?-tmpData:tmpData;*/

24. array[i]=tmpData;

25. }

26. i=0;

27. while(i<=Number-1) {

28. if(Minimum>array[i])

29. {

30. Minimum=array[i];

31. }

32. i++;

33. }

34. printf("Minimum = %d\n", Minimum);

35. }

36. getch();

37. }

Figure 1.2. Modified program ‘Minimum’ to find the smallest integer out of a set of integers

Table 1.5 gives us some encouraging results. Out of 9 cases, only 3 cases are not matched.

Six cases have been handled successfully by the modified program given in Figure 1.2. The

cases 6 and 7 are failed due to the scanf() function parsing problem. There are many ways to

handle this problem. We may design a program without using scanf() function at all.

However, scanf() is a very common function and all of us use it frequently. Whenever any

value is given using scanf() which is not as per specified format, scanf() behaves very

notoriously and gives strange results. It is advisable to display a warning message for the user

before using the scanf() function. The warning message may compel the user to enter values

in the specified format only. If the user does not do so, he/she may have to suffer the

consequences accordingly. The case 9 problem is due to the fixed maximal size of the

integers in the machine and the language used. This also has to be handled through a warning

message to the user. The further modified program based on these observations is given in

the Figure 1.3.

Table 1.5

Sr. No.
Inputs Expected

Observed

Match?

Case 1

Size Set of Integers Output Output

A very short list with

size 1, 2 or 3

Case 2

A 1 90 90 90 Yes

B 2 12, 10 10 10 Yes

C 2 10, 12 10 10 Yes

D 3 12, 14, 36 12 12 Yes

E 3 36, 14, 12 12 12 Yes

F 3 14, 12, 36 12 12 Yes

An empty list, i.e. of

size 0

Case 3

A 0 – Error

message

Error

message

Yes

A list where the mini-

mum element is the

A 5 10, 23, 34, 81, 97 10 10 Yes

B 5 97, 81, 34, 23, 10 10 10 Yes

Case 4

A list where the

minimum element is

negative

Case 5

A 4 10, –2, 5, 23 –2 –2 Yes

B 4 5, –25, 20, 36 –25 –25 Yes

A list where all

elements are

negative

Case 6

A list where some

elements are real

A 5 –23, –31, –45,

–56, –78
B 5 –6, –203, –56,

–78, –2

A 5 12, 34.56, 6.9,

62.14, 19

–78 –78 Yes

–203 –203 Yes

6.9 34 No

numbers

Case 7

A list where some ele-

ments are alphabetic

characters

B 5.4 2, 3, 5, 6, 9 2 858993460 No

A 5 23, 2I, 26, 6, 9 6 2 No

B 1I 2, 3, 4, 9, 6, 5, 11, 2 858993460 No
 12, 14, 21, 22

Case 8

A list with duplicate A 5 3,4,6,9, 6 3 3 Yes

elements B 5 13, 6, 6, 9, 15 6 6 Yes

Case 9
A list where one

A

5

530, 42949672

23

1

No

element has a value 97, 23, 46, 59

greater than the maxi-

mum permissible limit

of an integer

LINE NUMBER /*SOURCE CODE*/

#include<stdio.h>

#include<limits.h>

#include<conio.h>

1. void Minimum();

2. void main()

3. {

4. Minimum();

5. }

6. void Minimum()

7. {

8. int array[100];

9. int Number;

10. int i;

11. int tmpData;

12. int Minimum=INT_MAX;

13. clrscr();

14. printf("Enter the size of the array:");

15. scanf("%d",&Number);

16. if(Number<=0||Number>100) {

17. printf("Invalid size specified");

18. }

19. else {

20. printf("Warning: The data entered must be a valid integer and

must be between %d to %d, INT_MIN, INT_MAX\n");

21. for(i=0;i<Number;i++) {

22. printf("Enter A[%d]=",i+1);

23. scanf("%d",&tmpData);

24. /*tmpData=(tmpData<0)?-tmpData:tmpData;*/

25. array[i]=tmpData;

26. }

27. i=0;

28. while(i<=Number-1) {

29. if(Minimum>array[i])

30. {

31. Minimum=array[i];

32. }

33. i++;

34. }

35. printf("Minimum = %d\n", Minimum);

36. }

37. getch();

38. }

Figure 1.3. Final program ‘Minimum’ to find the smallest integer out of a set of integers

Our goal is to find critical situations of any program. Test cases shall be designed for every

critical situation in order to make the program fail in such situations. If it is not possible to remove

a fault then proper warning messages shall be given at proper places in the program. The aim of

the best testing person should be to fix most of the faults. This is possible only if our intention is

to show that the program does not work as per specifications. Hence, as given earlier, the most

appropriate definition is “Testing is the process of executing a program with the intent of

finding faults.” Testing never shows the absence of faults, but it shows that the faults are present

in the program.

 Why Should We Test?

Software testing is a very expensive and critical activity; but releasing the software without

testing is definitely more expensive and dangerous. No one would like to do it. It is like

running a car without brakes. Hence testing is essential; but how much testing is required? Do

we have methods to measure it? Do we have techniques to quantify it? The answer is not easy.

All projects are different in nature and functionalities and a single yardstick may not be helpful

in all situations. It is a unique area with altogether different problems.

The programs are growing in size and complexity. The most common approach is ‘code and

fix’ which is against the fundamental principles of software engineering. Watts S. Humphrey,

of Carnegie Mellon University [HUMP02] conducted a multiyear study of 13000 programs

and concluded that “On average professional coders make 100 to 150 errors in every thousand

lines of code they write.” The C. Mann [MANN02] used Humphrey’s figures on the business

operating system Windows NT 4 and gave some interesting observations: “Windows NT 4

code size is of 16 million lines. Thus, this would have been written with about two million

mistakes. Most would have been too small to have any effect, but some thousands would have

caused serious problems. Naturally, Microsoft exhaustively tested Windows NT 4 before

release, but in almost any phase of tests, they would have found less than half the defects. If

Microsoft had gone through four rounds of testing, an expensive and time consuming

procedure, the company would have found at least 15 out of 16 bugs. This means five defects

per thousand lines of code are still remaining. This is very low. But the software would still

have (as per study) as many as 80,000 defects.”

The basic issue of this discussion is that we cannot release a software system without
adequate testing. The study results may not be universally applicable but, at least, they give us

some idea about the depth and seriousness of the problem. When to release the software is a

very important decision. Economics generally plays an important role. We shall try to find

more errors in the early phases of software development. The cost of removal of such errors

will be very reasonable as compared to those errors which we may find in the later phases of

software development. The cost to fix errors increases drastically from the specification phase

to the test phase and finally to the maintenance phase as shown in Figure 1.4.

If an error is found and fixed in the specification and analysis phase, it hardly costs anything.

We may term this as ‘1 unit of cost’ for fixing an error during specifications and analysis

phase. The same error, if propagated to design, may cost 10 units and if, further propagated to

coding, may cost 100 units. If it is detected and fixed during the testing phase, it may lead to

1000 units of cost. If it could not be detected even during testing and is found by the customer

after release, the cost becomes very high. We may not be able to predict the cost of failure for

a life critical system’s software. The world has seen many failures and these failures have been

costly to the software companies.

The fact is that we are releasing software that is full of errors, even after doing sufficient

testing. No software would ever be released by its developers if they are asked to certify that

the software is free of errors. Testing, therefore, continues to the point where it is considered

that the cost of testing processes significantly outweighs the returns.

Figure 1.4. Phase wise cost of fixing an error

 Who Should We Do the Testing?

Testing a software system may not be the responsibility of a single person. Actually, it is a

team work and the size of the team is dependent on the complexity, criticality and functionality

of the software under test. The software developers should have a reduced role in testing, if

possible. The concern here is that the developers are intimately involved with the development

of the software and thus it is very difficult for them to point out errors from their own creations.

Beizer [BE1Z90] explains this situation effectively when he states, “There is a myth that if we

were really good at programming, there would be no bugs to catch. If we could really

concentrate; if everyone used structured programming, top down design, decision figures; if

programs were written in SQUISH; if we had the right silver bullets, then there would be no

bugs. So goes the myth. There are bugs, the myth says because we are bad at what we do; and

if we are bad at it, we should feel guilty about it. Therefore, testing and test design amount to

an admission of failures, which instils a goodly dose of guilt. The tedium of testing is just

punishment for our errors. Punishment for what? For being human? Guilt for what? For not

achieving human perfection? For not being able to distinguish between what another developer

thinks and what he says? For not being telepathic? For not solving human communication

problems that have been kicked around by philosophers and theologians for 40 centuries.”

Table 1.6. Persons and their roles during development and testing

S. No.

1.

2.

3.

Persons

Customer

Project Manager

Software Developer(s)

Roles

Provides funding, gives requirements, approves changes and

some test results.

Plans and manages the project.

Designs, codes and builds the software; participates in source

4.

5.

Testing co-ordinator(s)

Testing person(s)

-
ments and functional and technical documents.

Executes the tests and documents results.

The testing persons must be cautious, curious, critical but non-judgmental and good

communicators. One part of their job is to ask questions that the developers might not be able

to ask themselves or are awkward, irritating, insulting or even threatening to the developers.

Some of the questions are [BENT04]:

(i) How is the software?

(ii) How good is it?

(iii) How do you know that it works? What evidence do you have?

(iv) What are the critical areas?

(v) What are the weak areas and why?

(vi) What are serious design issues?

(vii) What do you feel about the complexity of the source code?

The testing persons use the software as heavily as an expert user on the customer side. User

testing almost invariably recruits too many novice users because they are available and the

software must be usable by them. The problem is that the novices do not have domain

knowledge that the expert users have and may not recognize that something is wrong.

Many companies have made a distinction between development and testing phases by

making different people responsible for each phase. This has an additional advantage. Faced

with the opportunity of testing someone else’s software, our professional pride will demand

that we achieve success. Success in testing is finding errors. We will therefore strive to reveal

any errors present in the software. In other words, our ego would have been harnessed to the

testing process, in a very positive way, in a way, which would be virtually impossible, had we

been testing our own software [NORM89]. Therefore, most of the times, the testing persons

are different from development persons for the overall benefit of the system. The developers

provide guidelines during testing; however, the overall responsibility is owned by the persons

who are involved in testing. Roles of the persons involved during development and testing are

given in Table 1.6.

 What Should We Test?

Is it possible to test the program for all possible valid and invalid inputs? The answer is always

negative due to a large number of inputs. We consider a simple example where a program has

two 8 bit integers as inputs. Total combinations of inputs are 28 28. If only one second is

Line Numbers

1

2, 3, 4

5

6, 7, 8

End

Symbol for representation

A

B

C

D

E

required (possible only with automated testing) to execute one set of inputs, it may take 18

hours to test all possible combinations of inputs. Here, invalid test cases are not considered

which may also require a substantial amount of time. In practice, inputs are more than two and

the size is also more than 8 bits. What will happen when inputs are real and imaginary

numbers? We may wish to go for complete testing of the program, which is neither feasible

nor possible. This situation has made this area very challenging where the million dollar

question is, “How to choose a reasonable number of test cases out of a large pool of test

cases?” Researchers are working very hard to find the answer to this question. Many testing

techniques attempt to provide answers to this question in their own ways. However, we do not

have a standard yardstick for the selection of test cases.

We all know the importance of this area and expect some drastic solutions in the future. We

also know that every project is a new project with new expectations, conditions and constraints.

What is the bottom line for testing? At least, we may wish to touch this bottom line, which may

incorporate the following:

(i) Execute every statement of the program at least once.

(ii) Execute all possible paths of the program at least once.

(iii) Execute every exit of the branch statement at least once.

This bottom line is also not easily achievable. Consider the following piece of source code:

1. if (x > 0)

2. {

3. a = a + b;

4. }

5. if (y>10)

6. {

7. c=c+d;

8. }

This code can be represented graphically as:

The possible paths are: ACE, ABCE, ACDE and ABCDE. However, if we choose x = 9 and

y = 15, all statements are covered. Hence only one test case is sufficient for 100% statement

coverage by traversing only one path ABCDE. Therefore, 100% statement coverage may not

be sufficient, even though that may be difficult to achieve in real life programs.

Myers [MYER04] has given an example in his book entitled “The art of software testing”

which shows that the number of paths is too large to test. He considered a control flow graph

(as given in Figure 1.5) of a 10 to 20 statement program with ‘DO Loop’ that iterates up to 20

times. Within ‘DO Loop’ there are many nested ‘IF’ statements. The assumption is that all

decisions in the program are independent of each other. The number of unique paths is nothing

but the number of unique ways to move from point X to point Y. Myers further stated that

executing every statement of the program at least once may seem to be a reasonable goal.

However many portions of the program may be missed with this type of criteria.

Figure 1.5. Control flow graph of a 10 to 20 statement program [MYER04]

“The total number of paths is approximately 1014 or 100 trillion. It is computed from

520 + 519 + ………51 , where 5 is the number of independent paths of the control flow graph.

If we write, execute and verify a test case every five minutes, it would take approximately one

billion years to try every path. If we are 300 times faster, completing a test case one per second,

we could complete the job in 3.2 million years.” This is an extreme situation; however, in

reality, all decisions are not independent. Hence, the total paths may be less than the calculated

paths. But real programs are much more complex and larger in size. Hence, ‘testing all paths’

is very difficult if not impossible to achieve.

We may like to test a program for all possible valid and invalid inputs and furthermore, we

may also like to execute all possible paths; but practically, it is quite difficult. Every exit

condition of a branch statement is similarly difficult to test due to a large number of such

conditions. We require effective planning, strategies and sufficient resources even to target the

minimum possible bottom line. We should also check the program for very large numbers,

very small numbers, numbers that are close to each other, negative numbers, some extreme

cases, characters, special letters, symbols and some strange cases.

SOME TERMINOLOGIES

Some terminologies are discussed in this section, which are inter-related and confusing but

commonly used in the area of software testing.

 Program and Software

Both terms are used interchangeably, although they are quite different. The software is the

superset of the program(s). It consists of one or many program(s), documentation manuals and

operating procedure manuals. These components are shown in Figure 1.6.

Figure 1.6. Components of the software

The program is a combination of source code and object code. Every phase of the software

development life cycle requires preparation of a few documentation manuals which are shown

in Figure 1.7. These are very helpful for development and maintenance activities.

Figure 1.7. Documentation manuals

Operating procedure manuals consist of instructions to set up, install, use and to maintain

the software. The list of operating procedure manuals / documents is given in Figure 1.8.

System overview Installation guide

Reference guide

Beginner’s guide

tutorial

Terminology and

help manual

System administration
guide

Maintenance guide

Figure 1.8. Operating system manuals

 Verification and Validation

These terms are used interchangeably and some of us may also feel that both are synonyms.

The Institute of Electrical and Electronics Engineers (IEEE) has given definitions which are

largely accepted by the software testing community. Verification is related to static testing

which is performed manually. We only inspect and review the document. However, validation

is dynamic in nature and requires the execution of the program.

Verification: As per IEEE [IEEE01], “It is the process of evaluating the system or component

to determine whether the products of a given development phase satisfy the conditions imposed

at the start of that phase.” We apply verification activities from the early phases of the software

development and check / review the documents generated after the completion of each phase.

Hence, it is the process of reviewing the requirement document, design document, source code

and other related documents of the project. This is manual testing and involves only looking at

the documents in order to ensure what comes out is what we expected to get.

Validation: As per IEEE [IEEE01], “It is the process of evaluating a system or component

during or at the end of development process to determine whether it satisfies the specified

requirements.” It requires the actual execution of the program. It is dynamic testing and

requires a computer for execution of the program. Here, we experience failures and identify

the causes of such failures.

Hence, testing includes both verification and validation. Thus

Testing = Verification + Validation

Both are essential and complementary activities of software testing. If effective verification is

carried out, it may minimize the need of validation and more number of errors may be detected

in the early phases of the software development. Unfortunately, testing is primarily validation

oriented.

Table 1.7. Test case template

Part I (Before Execution)

1.

2.

3.

4.

5.

6.

7.

Purpose of test case:
Pre-condition(s):
(optional)
Input(s) :

Expected Output(s) :

Post-condition(s) :

Written by :

Date of design :

Part II (After Execution)

1.

2.

Output(s) :

Post-condition(s) :
(optional)

 Fault, Error, Bug and Failure

All terms are used interchangeably although error, mistake and defect are synonyms in software

testing terminology. When we make an error during coding, we call this a ‘bug’. Hence, error /

mistake / defect in coding is called a bug.

A fault is the representation of an error where representation is the mode of expression such

as data flow diagrams, ER diagrams, source code, use cases, etc. If fault is in the source code,

we call it a bug.

A failure is the result of execution of a fault and is dynamic in nature. When the expected

output does not match with the observed output, we experience a failure. The program has to

execute for a failure to occur. A fault may lead to many failures. A particular fault may cause

different failures depending on the inputs to the program.

 Test, Test Case and Test Suite

Test and test case terms are synonyms and may be used interchangeably. A test case consists

of inputs given to the program and its expected outputs. Inputs may also contain pre-

condition(s) (circumstances that hold prior to test case execution), if any, and actual inputs

identified by some testing methods. Expected output may contain post-condition(s)

(circumstances after the execution of a test case), if any, and outputs which may come as a

result when selected inputs are given to the software. Every test case will have a unique

identification number. When we do testing, we set desire pre-condition(s), if any, given

selected inputs to the program and note the observed output(s). We compare the observed

output(s) with the expected output(s) and if they are the same, the test case is successful. If

they are different, that is the failure condition with selected input(s) and this should be recorded

properly in order to find the cause of failure. A good test case has a high probability of showing

a failure condition. Hence, test case designers should identify weak areas of the program and

design test cases accordingly. The template for a typical test case is given in Table 1.7.

(Contd.)

Part II (After Execution)

3.

4.

5.

6.

7.

Pass / fail :

If fails, any possible reason of failure (optional) :

Suggestions (optional)

Run by :

Date of suggestion :

(Contd.)

The set of test cases is called a test suite. We may have a test suite of all test cases, test suite

of all successful test cases and test suite of all unsuccessful test cases. Any combination of test

cases will generate a test suite. All test suites should be preserved as we preserve source code

and other documents. They are equally valuable and useful for the purpose of maintenance of

the software. Sometimes test suite of unsuccessful test cases gives very important information

because these are the test cases which have made the program fail in the past.

 Deliverables and Milestones

Different deliverables are generated during various phases of the software development. The

examples are source code, Software Requirements and Specification document (SRS),

Software Design Document (SDD), Installation guide, user reference manual, etc.

The milestones are the events that are used to ascertain the status of the project. For instance,

finalization of SRS is a milestone; completion of SDD is another milestone. The milestones

are essential for monitoring and planning the progress of the software development.

 Alpha, Beta and Acceptance Testing

Customers may use the software in different and strange ways. Their involvement in testing

may help to understand their minds and may force developers to make necessary changes in

the software. These three terms are related to the customer’s involvement in testing with

different meanings.

Acceptance Testing: This term is used when the software is developed for a specific customer.

The customer is involved during acceptance testing. He/she may design adhoc test cases or

well-planned test cases and execute them to see the correctness of the software. This type of

testing is called acceptance testing and may be carried out for a few weeks or months. The

discovered errors are fixed and modified and then the software is delivered to the customer.

Alpha and Beta Testing: These terms are used when the software is developed as a product

for anonymous customers. Therefore, acceptance testing is not possible. Some potential

customers are identified to test the product. The alpha tests are conducted at the developer’s

site by the customer. These tests are conducted in a controlled environment and may start when

the formal testing process is near completion. The beta tests are conducted by potential

customers at their sites. Unlike alpha testing, the developer is not present here. It is carried out

in an uncontrolled real life environment by many potential customers. Customers are expected

to report failures, if any, to the company. These failure reports are studied by the developers

and appropriate changes are made in the software. Beta tests have shown their advantages in

the past and releasing a beta version of the software to the potential customer has become a

common practice. The company gets the feedback of many potential customers without

making any payment. The other good thing is that the reputation of the company is not at stake

even if many failures are encountered.

 Quality and Reliability

Software reliability is one of the important factors of software quality. Other factors are

understandability, completeness, portability, consistency, maintainability, usability, efficiency,

etc. These quality factors are known as non-functional requirements for a software system.

Software reliability is defined as “the probability of failure free operation for a specified time

in a specified environment” [ANSI91]. Although software reliability is defined as a probabilistic

function and comes with the notion of time, it is not a direct function of time. The software does

not wear out like hardware during the software development life cycle. There is no aging concept

in software and it will change only when we intentionally change or upgrade the software.

Software quality determines how well the software is designed (quality of design), and how

well the software conforms to that design (quality of conformance).

Some software practitioners also feel that quality and reliability is the same thing. If we are

testing a program till it is stable, reliable and dependable, we are assuring a high quality

product. Unfortunately, that is not necessarily true. Reliability is just one part of quality. To

produce a good quality product, a software tester must verify and validate throughout the

software development process.

 Testing, Quality Assurance and Quality Control

Most of us feel that these terms are similar and may be used interchangeably. This creates

confusion about the purpose of the testing team and Quality Assurance (QA) team. As we have

seen in the previous section (1.2.1), the purpose of testing is to find faults and find them in the

early phases of software development. We remove faults and ensure the correctness of removal

and also minimize the effect of change on other parts of the software.

The purpose of QA activity is to enforce standards and techniques to improve the

development process and prevent the previous faults from ever occurring. A good QA activity

enforces good software engineering practices which help to produce good quality software.

The QA group monitors and guides throughout the software development life cycle. This is a

defect prevention technique and concentrates on the process of the software development.

Examples are reviews, audits, etc.

Quality control attempts to build a software system and test it thoroughly. If failures are

experienced, it removes the cause of failures and ensures the correctness of removal. It

concentrates on specific products rather than processes as in the case of QA. This is a defect

detection and correction activity which is usually done after the completion of the software

development. An example is software testing at various levels.

 Static and Dynamic Testing

Static testing refers to testing activities without executing the source code. All verification

activities like inspections, walkthroughs, reviews, etc. come under this category of testing.

This, if started in the early phases of the software development, gives good results at a very

reasonable cost. Dynamic testing refers to executing the source code and seeing how it

performs with specific inputs. All validation activities come in this category where execution

of the program is essential.

 Testing and Debugging

The purpose of testing is to find faults and find them as early as possible. When we find any

such fault, the process used to determine the cause of this fault and to remove it is known as

debugging. These are related activities and are carried out sequentially.

BOUNDARY VALUE ANALYSIS

This is a simple but popular functional testing technique. Here, we concentrate on input values

and design test cases with input values that are on or close to boundary values. Experience has

shown that such test cases have a higher probability of detecting a fault in the software.

Suppose there is a program ‘Square’ which takes ‘x’ as an input and prints the square of ‘x’as

output. The range of ‘x’ is from 1 to 100. One possibility is to give all values from 1 to 100

one by one to the program and see the observed behaviour. We have to execute this program

100 times to check every input value. In boundary value analysis, we select values on or close

to boundaries and all input values may have one of the following:

(i) Minimum value

(ii) Just above minimum value

(iii) Maximum value

(iv) Just below maximum value

(v) Nominal (Average) value

These values are shown in Figure 2.2 for the program ‘Square’.

Figure 2.2. Five values for input ‘x’ of ‘Square’ program

These five values (1, 2, 50, 99 and 100) are selected on the basis of boundary value analysis

and give reasonable confidence about the correctness of the program. There is no need to select

all 100 inputs and execute the program one by one for all 100 inputs. The number of inputs

selected by this technique is 4n + 1 where ‘n’ is the number of inputs. One nominal value is

selected which may represent all values which are neither close to boundary nor on the

boundary. Test cases for ‘Square’ program are given in Table 2.1.

Table 2.1. Test cases for the ‘Square’ program

Test Case Input x Expected output

1. 1 1

2. 2 4

3. 50 2500

4. 99 9801

5. 100 10000

Consider a program ‘Addition’ with two input values x and y and it gives the addition of x and

y as an output. The range of both input values are given as:

100 x 300

200 y 400

The selected values for x and y are given in Figure 2.3.

Figure 2.3. Selected values for input values x and y

The ‘x’ and ‘y’ inputs are required for the execution of the program. The input domain of

this program ‘Addition’ is shown in Figure 2.4. Any point within the inner rectangle is a

legitimate input to the program.

Figure 2.4. Valid input domain for the program ‘Addition’

We also consider ‘single fault’ assumption theory of reliability which says that failures are

rarely the result of the simultaneous occurrence of two (or more) faults. Normally, one fault is

responsible for one failure. With this theory in mind, we select one input value on boundary

(minimum), just above boundary (minimum +), just below boundary (maximum –), on boundary

(maximum), nominal (average) and other n-1 input values as nominal values. The inputs are

shown graphically in Figure 2.5 and the test cases for ‘Addition’ program are given in Table

2.2.

Figure 2.5. Graphical representation of inputs

Table 2.2. Test cases for the program ‘Addition’

Test Case x y Expected Output

1. 100 300 400

2. 101 300 401

3. 200 300 500

4. 299 300 599

5. 300 300 600

6. 200 200 400

7. 200 201 401

8. 200 300 500

9. 200 399 599

10. 200 400 600

In Table 2.2, two test cases are common (3 and 8), hence one must be selected. This

technique generates 9 test cases where all inputs have valid values. Each dot of the Figure 2.5

represents a test case and inner rectangle is the domain of legitimate input values. Thus, for a

program of ‘n’ variables, boundary value analysis yields 4n + 1 test cases.

Example 2.1: Consider a program for the determination of the largest amongst three numbers.

Its input is a triple of positive integers (say x,y and z) and values are from interval [1, 300].

Design the boundary value test cases.

Solution: The boundary value test cases are given in Table 2.3.

Table 2.3.

Test Case x y z Expected output

1. 1 150 150 150

2. 2 150 150 150

3. 150 150 150 150

4. 299 150 150 299

5. 300 150 150 300

6. 150 1 150 150

7. 150 2 150 150

8. 150 299 150 299

9. 150 300 150 300

10. 150 150 1 150

11. 150 150 2 150

12. 150 150 299 299

13. 150 150 300 300

Example 2.2: Consider a program for the determination of division of a student based on the

marks in three subjects. Its input is a triple of positive integers (say mark1, mark2, and mark3)

and values are from interval [0, 100].

The division is calculated according to the following rules:

Marks Obtained Division

(Average)

75 – 100 First Division with distinction

60 – 74 First division

50 – 59 Second division

40 – 49 Third division

0 – 39 Fail

Total marks obtained are the average of marks obtained in the three subjects i.e.

Average = (mark1 + mark 2 + mark3) / 3

The program output may have one of the following words:

[Fail, Third Division, Second Division, First Division, First Division with Distinction]

Design the boundary value test cases.

Solution: The boundary value test cases are given in Table 2.4.

Table 2.4. Boundary value test cases for the program determining the division of a student

Test Case mark1 mark2 mark3 Expected Output

1. 0 50 50 Fail

2. 1 50 50 Fail

3. 50 50 50 Second Division

4. 99 50 50 First Division

5. 100 50 50 First Division

 (Contd.)

(Contd.)

Test Case mark1 mark2 mark3 Expected Output

6. 50 0 50 Fail

7. 50 1 50 Fail

8. 50 99 50 First Division

9. 50 100 50 First Division

10. 50 50 0 Fail

11. 50 50 1 Fail

12. 50 50 99 First Division

13. 50 50 100 First Division

Example 2.3: Consider a program for classification of a triangle. Its input is a triple of

positive integers (say a, b, c) and the input parameters are greater than zero and less than or

equal to 100.

The triangle is classified according to the following rules:

Right angled triangle: c2 = a2 + b2 or a2 = b2 + c2 or b2 = c2 + a2

Obtuse angled triangle: c2 > a2 + b2 or a2 > b2 + c2 or b2 > c2 + a2

Acute angled triangle: c2 < a2 + b2 and a2 < b2 + c2 and b2 < c2 + a2

The program output may have one of the following words:

[Acute angled triangle, Obtuse angled triangle, Right angled triangle, Invalid triangle]

Design the boundary value test cases.

Solution: The boundary value analysis test cases are given in Table 2.5.

Table 2.5.

Test Case

a

b

c

Expected Output

1. 1 50 50 Acute angled triangle

2. 2 50 50 Acute angled triangle

3. 50 50 50 Acute angled triangle

4. 99 50 50 Obtuse angled triangle

5. 100 50 50 Invalid triangle

6. 50 1 50 Acute angled triangle

7. 50 2 50 Acute angled triangle

8. 50 99 50 Obtuse angled triangle

9. 50 100 50 Invalid triangle

10. 50 50 1 Acute angled triangle

11. 50 50 2 Acute angled triangle

12. 50 50 99 Obtuse angled triangle

13. 50 50 100 Invalid triangle

Example 2.4: Consider a program for determining the day of the week. Its input is a triple of

day, month and year with the values in the range

1 month 12

1 day 31

1900 year 2058

The possible outputs would be the day of the week or invalid date. Design the boundary

value test cases.

Solution: The boundary value test cases are given in Table 2.6.

Table 2.6. Boundary value test cases for the program determining the day of the week

Test Case month day year Expected Output

1. 1 15 1979 Monday

2. 2 15 1979 Thursday

3. 6 15 1979 Friday

4. 11 15 1979 Thursday

5. 12 15 1979 Saturday

6. 6 1 1979 Friday

7. 6 2 1979 Saturday

8. 6 30 1979 Saturday

9. 6 31 1979 Invalid Date

10. 6 15 1900 Friday

11. 6 15 1901 Saturday

12. 6 15 2057 Friday

13. 6 15 2058 Saturday

 Robustness Testing

This is the extension of boundary value analysis. Here, we also select invalid values and see

the responses of the program. Invalid values are also important to check the behaviour of the

program. Hence, two additional states are added i.e. just below minimum value (minimum

value –) and just above maximum value (maximum value +). We want to go beyond the

legitimate domain of input values. This extended form of boundary value analysis is known as

robustness testing. The inputs are shown graphically in Figure 2.6 and the test cases for the

program ‘Addition’ are given in Table 2.7. There are four additional test cases which are

outside the legitimate input domain. Thus, the total test cases in robustness testing are 6n + 1,

where ‘n’ is the number of input values. All input values may have one of the following

values:

(i) Minimum value

(ii) Just above minimum value

(iii) Just below minimum value

(iv) Just above maximum value

(v) Just below maximum value

(vi) Maximum value

(vii) Nominal (Average) value

Figure 2.6. Graphical representation of inputs

Table 2.7.

Test Case

x

y

Expected Output

1. 99 300 Invalid Input

2. 100 300 400

3. 101 300 401

4. 200 300 500

5. 299 300 599

6. 300 300 600

7. 301 300 Invalid Input

8. 200 199 Invalid Input

9. 200 200 400

10. 200 201 401

11. 200 399 599

12. 200 400 600

13. 200 401 Invalid Input

 Worst-Case Testing

This is a special form of boundary value analysis where we don’t consider the ‘single fault’

assumption theory of reliability. Now, failures are also due to occurrence of more than one

fault simultaneously. The implication of this concept in boundary value analysis is that all

input values may have one of the following:

(i) Minimum value

(ii) Just above minimum value

(iii) Just below maximum value

(iv) Maximum value

(v) Nominal (Average) value

The restriction of one input value at any of the above mentioned values and other input

values must be at nominal is not valid in worst-case testing. This will increase the number of

test cases from 4n + 1 test cases to 5n test cases, where ‘n’ is the number of input values. The

inputs for ‘Addition’ program are shown graphically in Figure 2.7. The program ‘Addition’

will have 52 = 25 test cases and these test cases are given in Table 2.8.

Figure 2.7. Graphical representation of inputs

Table 2.8. Worst test cases for the program ‘Addition’

Test Case x y Expected Output

1. 100 200 300

2. 100 201 301

3. 100 300 400

4. 100 399 499

5. 100 400 500

6. 101 200 301

7. 101 201 302

8. 101 300 401

9. 101 399 500

10. 101 400 501

11. 200 200 400

12. 200 201 401

13. 200 300 500

14. 200 399 599

(Contd.)

(Contd.)

Test Case x y Expected Output

15. 200 400 600

16. 299 200 499

17. 299 201 500

18. 299 300 599

19. 299 399 698

20. 299 400 699

21. 300 200 500

22. 300 201 501

23. 300 300 600

24. 300 399 699

25. 300 400 700

This is a more comprehensive technique and boundary value test cases are proper sub-sets

of worst case test cases. This requires more effort and is recommended in situations where

failure of the program is extremely critical and costly [JORG07].

 Robust Worst-Case Testing

In robustness testing, we add two more states i.e. just below minimum value (minimum value–)

and just above maximum value (maximum value+). We also give invalid inputs and observe

the behaviour of the program. A program should be able to handle invalid input values,

otherwise it may fail and give unexpected output values. There are seven states (minimum -,

minimum, minimum +, nominal, maximum –, maximum, maximum +) and a total of 7n test

cases will be generated. This will be the largest set of test cases and requires the maximum

effort to generate such test cases. The inputs for the program ‘Addition’ are graphically shown

in Figure 2.8. The program ‘Addition’ will have 72 = 49 test cases and these test cases are

shown in Table 2.9.

Figure 2.8. Graphical representation of inputs

Table 2.9.

Test Case x y Expected Output

1. 99 199 Invalid input

2. 99 200 Invalid input

3. 99 201 Invalid input

4. 99 300 Invalid input

5. 99 399 Invalid input

6. 99 400 Invalid input

7. 99 401 Invalid input

8. 100 199 Invalid input

9. 100 200 300

10. 100 201 301

11. 100 300 400

12. 100 399 499

13. 100 400 500

14. 100 401 Invalid input

15. 101 199 Invalid input

16. 101 200 301

17. 101 201 302

18. 101 300 401

19. 101 399 500

20. 101 400 501

21. 101 401 Invalid input

22. 200 199 Invalid input

23. 200 200 400

24. 200 201 401

25. 200 300 500

26. 200 399 599

27. 200 400 600

28. 200 401 Invalid input

29. 299 199 Invalid input

30. 299 200 499

31. 299 201 500

32. 299 300 599

33. 299 399 698

34. 299 400 699

35. 299 401 Invalid input

36. 300 199 Invalid input

37. 300 200 500

38. 300 201 501

39. 300 300 600

40. 300 399 699

41. 300 400 700

42. 300 401 Invalid input

43. 301 199 Invalid input

44. 301 200 Invalid input

45. 301 201 Invalid input

46. 301 300 Invalid input

47. 301 399 Invalid input

48. 301 400 Invalid input

49. 301 401 Invalid input

 Applicability

Boundary value analysis is a simple technique and may prove to be effective when used

correctly. Here, input values should be independent which restricts its applicability in many

programs. This technique does not make sense for Boolean variables where input values are

TRUE and FALSE only, and no choice is available for nominal values, just above boundary

values, just below boundary values, etc. This technique can significantly reduce the number of

test cases and is suited to programs in which input values are within ranges or within sets. This

is equally applicable at the unit, integration, system and acceptance test levels. All we want is

input values where boundaries can be identified from the requirements.

Example 2.5: Consider the program for the determination of the largest amongst three

numbers as explained in example 2.1. Design the robust test cases and worst case test cases for

this program.

Solution: The robust test cases and worst test cases are given in Table 2.10 and Table 2.11

respectively.

Table 2.10.

Test Case

x

y

z

Expected output

1. 0 150 150 Invalid input

2. 1 150 150 150

3. 2 150 150 150

4. 150 150 150 150

5. 299 150 150 299

6. 300 150 150 300

7. 301 150 150 Invalid input

8. 150 0 150 Invalid input

9. 150 1 150 150

10. 150 2 150 150

11. 150 299 150 299

12. 150 300 150 300

13. 150 301 150 Invalid input

14. 150 150 0 Invalid input

15. 150 150 1 150

16. 150 150 2 150

17. 150 150 299 299

18. 150 150 300 300

19. 150 150 301 Invalid input

Table 2.11.

Test Case

x

y

z

Expected output

1. 1 1 1 1

2. 1 1 2 2

3. 1 1 150 150

(Contd.)

(Contd.)

(Contd.)

Test Case x y z Expected output

4. 1 1 299 299

5. 1 1 300 300

6. 1 2 1 2

7. 1 2 2 2

8. 1 2 150 150

9. 1 2 299 299

10. 1 2 300 300

11. 1 150 1 150

12. 1 150 2 150

13. 1 150 150 150

14. 1 150 299 299

15. 1 150 300 300

16. 1 299 1 299

17. 1 299 2 299

18. 1 299 150 299

19. 1 299 299 299

20. 1 299 300 300

21. 1 300 1 300

22. 1 300 2 300

23. 1 300 150 300

24. 1 300 299 300

25. 1 300 300 300

26. 2 1 1 2

27. 2 1 2 2

28. 2 1 150 150

29. 2 1 299 299

30. 2 1 300 300

31. 2 2 1 2

32. 2 2 2 2

33. 2 2 150 150

34. 2 2 299 299

35. 2 2 300 300

36. 2 150 1 150

37. 2 150 2 150

38. 2 150 150 150

39. 2 150 299 299

40. 2 150 300 300

41. 2 299 1 299

42. 2 299 2 299

43. 2 299 150 299

44. 2 299 299 299

45. 2 299 300 300

46. 2 300 1 300

47. 2 300 2 300

48. 2 300 150 300

49. 2 300 299 300

(Contd.)

(Contd.)

Test Case x y z Expected output

50. 2 300 300 300

51. 150 1 1 150

52. 150 1 2 150

53. 150 1 150 150

54. 150 1 299 299

55. 150 1 300 300

56. 150 2 1 150

57. 150 2 2 150

58. 150 2 150 150

59. 150 2 299 299

60. 150 2 300 300

61. 150 150 1 150

62. 150 150 2 150

63. 150 150 150 150

64. 150 150 299 299

65. 150 150 300 300

66. 150 299 1 299

67. 150 299 2 299

68. 150 299 150 299

69. 150 299 299 299

70. 150 299 300 300

71. 150 300 1 300

72. 150 300 2 300

73. 150 300 150 300

74. 150 300 299 300

75. 150 300 300 300

76. 299 1 1 299

77. 299 1 2 299

78. 299 1 150 299

79. 299 1 299 299

80. 299 1 300 300

81. 299 2 1 299

82. 299 2 2 299

83. 299 2 150 299

84. 299 2 299 299

85. 299 2 300 300

86. 299 150 1 299

87. 299 150 2 299

88. 299 150 150 299

89. 299 150 299 299

90. 299 150 300 300

91. 299 299 1 299

92. 299 299 2 299

93. 299 299 150 299

94. 299 299 299 299

95. 299 299 300 300

(Contd.)

(Contd.)

Test Case x y z Expected output

96. 299 300 1 300

97. 299 300 2 300

98. 299 300 150 300

99. 299 300 299 300

100. 299 300 300 300

101. 300 1 1 300

102. 300 1 2 300

103. 300 1 150 300

104. 300 1 299 300

105. 300 1 300 300

106. 300 2 1 300

107. 300 2 2 300

108. 300 2 150 300

109. 300 2 299 300

110. 300 2 300 300

111. 300 150 1 300

112. 300 150 2 300

113. 300 150 150 300

114. 300 150 299 300

115. 300 150 300 300

116. 300 299 1 300

117. 300 299 2 300

118. 300 299 150 300

119. 300 299 299 300

120. 300 299 300 300

121. 300 300 1 300

122. 300 300 2 300

123. 300 300 150 300

124. 300 300 299 300

125. 300 300 300 300

Example 2.6: Consider the program for the determination of division of a student based on

marks obtained in three subjects as explained in example 2.2. Design the robust test cases and

worst case test cases for this program.

Solution: The robust test cases and worst test cases are given in Table 2.12 and Table 2.13

respectively.

Table 2.12.

Test Case

mark1

mark2

mark3

Expected Output

1. –1 50 50 Invalid marks

2. 0 50 50 Fail

3. 1 50 50 Fail

4. 50 50 50 Second Division

5. 99 50 50 First Division

6. 100 50 50 First Division

(Contd.)

(Contd.)

Test Case mark1 mark2 mark3 Expected Output

7. 101 50 50 Invalid marks

8. 50 –1 50 Invalid marks

9. 50 0 50 Fail

10. 50 1 50 Fail

11. 50 99 50 First Division

12. 50 100 50 First Division

13. 50 101 50 Invalid marks

14. 50 50 –1 Invalid marks

15. 50 50 0 Fail

16. 50 50 1 Fail

17. 50 50 99 First Division

18. 50 50 100 First Division

19. 50 50 101 Invalid Marks

Table 2.13. Worst case test cases for the program for determining the division of a student

Test Case mark1 mark2 mark3 Expected Output

1 0 0 0 Fail
2. 0 0 1 Fail

3. 0 0 50 Fail

4. 0 0 99 Fail

5. 0 0 100 Fail

6. 0 1 0 Fail

7. 0 1 1 Fail

8. 0 1 50 Fail

9. 0 1 99 Fail

10. 0 1 100 Fail

11. 0 50 0 Fail

12. 0 50 1 Fail

13. 0 50 50 Fail

14. 0 50 99 Third division

15. 0 50 100 Second division

16. 0 99 0 Fail

17. 0 99 1 Fail

18. 0 99 50 Third division

19. 0 99 99 First division

20. 0 99 100 First division

21. 0 100 0 Fail

22. 0 100 1 Fail

23. 0 100 50 Second division

24. 0 100 99 First division

25. 0 100 100 First division

26. 1 0 0 Fail

27. 1 0 1 Fail

28. 1 0 50 Fail

29. 1 0 99 Fail

30. 1 0 100 Fail

31. 1 1 0 Fail
32. 1 1 1 Fail

(Contd.)

(Contd.)

Test Case mark1 mark2 mark3 Expected Output

33. 1 1 50 Fail

34. 1 1 99 Fail

35. 1 1 100 Fail

36. 1 50 0 Fail

37. 1 50 1 Fail

38. 1 50 50 Fail

39. 1 50 99 Second division

40. 1 50 100 Second division

41. 1 99 0 Fail

42. 1 99 1 Fail

43. 1 99 50 Second division

44. 1 99 99 First division

45. 1 99 100 First division

46. 1 100 0 Fail

47. 1 100 1 Fail

48. 1 100 50 Second division

49. 1 100 99 First division

50. 1 100 100 First division

51. 50 0 0 Fail

52. 50 0 1 Fail

53. 50 0 50 Fail

54. 50 0 99 Third division

55. 50 0 100 Second division

56. 50 1 0 Fail

57. 50 1 1 Fail

58. 50 1 50 Fail

59. 50 1 99 Second division

60. 50 1 100 Second division

61. 50 50 0 Fail

62. 50 50 1 Fail

63. 50 50 50 Second division

64. 50 50 99 First division

65. 50 50 100 First division

66. 50 99 0 Third division

67. 50 99 1 Second division

68. 50 99 50 First division

69. 50 99 99 First division with distinction

70. 50 99 100 First division with distinction

71. 50 100 0 Second division

72. 50 100 1 Second division

73. 50 100 50 First division

74. 50 100 99 First division

75. 50 100 100 First division with distinction

76. 99 0 0 Fail

77. 99 0 1 Fail

78. 99 0 50 Third division

79. 99 0 99 First division

80. 99 0 100 First division

81. 99 1 0 Fail

82. 99 1 1 Fail

(Contd.)

Test Case mark1 mark2 mark3 Expected Output

83. 99 1 50 Second division

84. 99 1 99 First division

85. 99 1 100 First division

86. 99 50 0 Third division

87. 99 50 1 Second division

88. 99 50 50 First division

89. 99 50 99 First division with distinction

90. 99 50 100 First division with distinction

91. 99 99 0 First division

92. 99 99 1 First division

93. 99 99 50 First division with distinction

94. 99 99 99 First division with distinction

95. 99 99 100 First division with distinction

96. 99 100 0 First division

97. 99 100 1 First division

98. 99 100 50 First division with distinction

99. 99 100 99 First division with distinction

100. 99 100 100 First division with distinction

101. 100 0 0 Fail

102. 100 0 1 Fail

103. 100 0 50 Second division

104. 100 0 99 First division

105. 100 0 100 First division

106. 100 1 0 Fail

107. 100 1 1 Fail

108. 100 1 50 Second division

109. 100 1 99 First division

110. 100 1 100 First division

111. 100 50 0 Second division

112. 100 50 1 Second division

113. 100 50 50 First division

114. 100 50 99 First division with distinction

115. 100 50 100 First division with distinction

116. 100 99 0 First division

117. 100 99 1 First division

118. 100 99 50 First division with distinction

119. 100 99 99 First division wit distinction

120. 100 99 100 First division with distinction

121. 100 100 0 First division

122. 100 100 1 First division

123. 100 100 50 First division with distinction

124. 100 100 99 First division with distinction

125. 100 100 100 First division with distinction

Example 2.7: Consider the program for classification of a triangle in example 2.3. Generate

robust and worst test cases for this program.

Solution: Robust test cases and worst test cases are given in Table 2.14 and Table 2.15

respectively.

Table 2.14.

Test Case a b c Expected Output

1. 0 50 50 Input values out of range

2. 1 50 50 Acute angled triangle

3. 2 50 50 Acute angled triangle

4. 50 50 50 Acute angled triangle

5. 99 50 50 Obtuse angled triangle

6. 100 50 50 Invalid triangle

7. 101 50 50 Input values out of range

8. 50 0 50 Input values out of range

9. 50 1 50 Acute angled triangle

10. 50 2 50 Acute angled triangle

11. 50 99 50 Obtuse angled triangle

12. 50 100 50 Invalid triangle

13. 50 101 50 Input values out of range

14. 50 50 0 Input values out of range

15. 50 50 1 Acute angled triangle

16. 50 50 2 Acute angled triangle

17. 50 50 99 Obtuse angled triangle

18. 50 50 100 Invalid triangle

19. 50 50 101 Input values out of range

Table 2.15.

Test Case a b c Expected Output

1. 1 1 1 Acute angled triangle

2. 1 1 2 Invalid triangle

3. 1 1 50 Invalid triangle

4. 1 1 99 Invalid triangle

5. 1 1 100 Invalid triangle

6. 1 2 1 Invalid triangle

7. 1 2 2 Acute angled triangle

8. 1 2 50 Invalid triangle

9. 1 2 99 Invalid triangle

10. 1 2 100 Invalid triangle

11. 1 50 1 Invalid triangle

12. 1 50 2 Invalid triangle

13. 1 50 50 Acute angled triangle

14. 1 50 99 Invalid triangle

15. 1 50 100 Invalid triangle

16. 1 99 1 Invalid triangle

17. 1 99 2 Invalid triangle

(Contd.)

(Contd.)

(Contd.)

Test Case a b c Expected Output

18. 1 99 50 Invalid triangle

19. 1 99 99 Acute angled triangle

20. 1 99 100 Invalid triangle

21. 1 100 1 Invalid triangle

22. 1 100 2 Invalid triangle

23. 1 100 50 Invalid triangle

24. 1 100 99 Invalid triangle

25. 1 100 100 Acute angled triangle

26. 2 1 1 Invalid triangle

27. 2 1 2 Acute angled triangle

28. 2 1 50 Invalid triangle

29. 2 1 99 Invalid triangle

30. 2 1 100 Invalid triangle

31. 2 2 1 Acute angled triangle

32. 2 2 2 Acute angled triangle

33. 2 2 50 Invalid triangle

34. 2 2 99 Invalid triangle

35. 2 2 100 Invalid triangle

36. 2 50 1 Invalid triangle

37. 2 50 2 Invalid triangle

38. 2 50 50 Acute angled triangle

39. 2 50 99 Invalid triangle

40. 2 50 100 Invalid triangle

41. 2 99 1 Invalid triangle

42. 2 99 2 Invalid triangle

43. 2 99 50 Invalid triangle

44. 2 99 99 Acute angled

45. 2 99 100 Obtuse angled triangle

46. 2 100 1 Invalid triangle

47. 2 100 2 Invalid triangle

48. 2 100 50 Invalid triangle

49. 2 100 99 Obtuse angled triangle

50. 2 100 100 Acute angled triangle

51. 50 1 1 Invalid triangle

52. 50 1 2 Invalid triangle

53. 50 1 50 Acute angled triangle

54. 50 1 99 Invalid triangle

55. 50 1 100 Invalid triangle

56. 50 2 1 Invalid triangle

(Contd.)

(Contd.)

Test Case a b c Expected Output

57. 50 2 2 Invalid triangle

58. 50 2 50 Acute angled triangle

59. 50 2 99 Invalid triangle

60. 50 2 100 Invalid triangle

61. 50 50 1 Acute angled triangle

62. 50 50 2 Acute angled triangle

63. 50 50 50 Acute angled triangle

64. 50 50 99 Obtuse angled triangle

65. 50 50 100 Invalid triangle

66. 50 99 1 Invalid triangle

67. 50 99 2 Invalid triangle

68. 50 99 50 Obtuse angled triangle

69. 50 99 99 Acute angled triangle

70. 50 99 100 Acute angled triangle

71. 50 100 1 Invalid triangle

72. 50 100 2 Invalid triangle

73. 50 100 50 Invalid triangle

74. 50 100 99 Acute angled triangle

75. 50 100 100 Acute angled triangle

76. 99 1 1 Invalid triangle

77. 99 1 2 Invalid triangle

78. 99 1 50 Invalid triangle

79. 99 1 99 Acute angled triangle

80. 99 1 100 Invalid triangle

81. 99 2 1 Invalid triangle

82. 99 2 2 Invalid triangle

83. 99 2 50 Invalid triangle

84. 99 2 99 Acute angled triangle

85. 99 2 100 Obtuse angled triangle

86. 99 50 1 Invalid triangle

87. 99 50 2 Invalid triangle

88. 99 50 50 Obtuse angled triangle

89. 99 50 99 Acute angled triangle

90. 99 50 100 Acute angled triangle

91. 99 99 1 Acute angled triangle

92. 99 99 2 Acute angled triangle

93. 99 99 50 Acute angled triangle

94. 99 99 99 Acute angled triangle

95. 99 99 100 Acute angled triangle

(Contd.)

Test Case a b c Expected Output

96. 99 100 1 Invalid triangle

97. 99 100 2 Obtuse angled triangle

98. 99 100 50 Acute angled triangle

99. 99 100 99 Acute angled triangle

100. 99 100 100 Acute angled triangle

101. 100 1 1 Invalid triangle

102. 100 1 2 Invalid triangle

103. 100 1 50 Invalid triangle

104. 100 1 99 Invalid triangle

105. 100 1 100 Acute angled triangle

106. 100 2 1 Invalid triangle

107. 100 2 2 Invalid triangle

108. 100 2 50 Invalid triangle

109. 100 2 99 Obtuse angled triangle

110. 100 2 100 Acute angled triangle

111. 100 50 1 Invalid triangle

112. 100 50 2 Invalid triangle

113. 100 50 50 Invalid triangle

114. 100 50 99 Acute angled triangle

115. 100 50 100 Acute angled triangle

116. 100 99 1 Invalid triangle

117. 100 99 2 Obtuse angled triangle

118. 100 99 50 Acute angled triangle

119. 100 99 99 Acute angled triangle

120. 100 99 100 Acute angled triangle

121. 100 100 1 Acute angled triangle

122. 100 100 2 Acute angled triangle

123. 100 100 50 Acute angled triangle

124. 100 100 99 Acute angled triangle

125. 100 100 100 Acute angled triangle

Example 2.8: Consider the program for the determination of day of the week as explained in

example 2.4. Design the robust and worst test cases for this program.

Solution: Robust test cases and worst test cases are given in Table 2.16 and Table 2.17

respectively.

(Contd.)

Table 2.16.

Test Case

month

day

year

Expected Output

1. 0 15 1979 Invalid date

2. 1 15 1979 Monday

3. 2 15 1979 Thursday

4. 6 15 1979 Friday

5. 11 15 1979 Thursday

6. 12 15 1979 Saturday

7. 13 15 1979 Invalid date

8. 6 0 1979 Invalid date

9. 6 1 1979 Friday

10. 6 2 1979 Saturday

11. 6 30 1979 Saturday

12. 6 31 1979 Invalid date

13. 6 32 1979 Invalid date

14. 6 15 1899 Invalid date (out of range)

15. 6 15 1900 Friday

16. 6 15 1901 Saturday

17. 6 15 2057 Friday

18. 6 15 2058 Saturday

19. 6 15 2059 Invalid date (out of range)

Table 2.17. Worst case test cases for the program determining day of the week

Test Case month day year Expected Output

1. 1 1 1900 Monday

2. 1 1 1901 Tuesday

3. 1 1 1979 Monday

4. 1 1 2057 Monday

5. 1 1 2058 Tuesday

6. 1 2 1900 Tuesday

7. 1 2 1901 Wednesday

8. 1 2 1979 Tuesday

9. 1 2 2057 Tuesday

10. 1 2 2058 Wednesday

11. 1 15 1900 Monday

12. 1 15 1901 Tuesday

13. 1 15 1979 Monday

14. 1 15 2057 Monday

15. 1 15 2058 Tuesday

(Contd.)

(Contd.)

Test Case month day year Expected Output

16. 1 30 1900 Tuesday

17. 1 30 1901 Wednesday

18. 1 30 1979 Tuesday

19. 1 30 2057 Tuesday

20. 1 30 2058 Wednesday

21. 1 31 1900 Wednesday

22. 1 31 1901 Thursday

23. 1 31 1979 Wednesday

24. 1 31 2057 Wednesday

25. 1 31 2058 Thursday

26. 2 1 1900 Thursday

27. 2 1 1901 Friday

28. 2 1 1979 Thursday

29. 2 1 2057 Thursday

30. 2 1 2058 Friday

31. 2 2 1900 Friday

32. 2 2 1901 Saturday

33. 2 2 1979 Friday

34. 2 2 2057 Friday

35. 2 2 2058 Saturday

36. 2 15 1900 Thursday

37. 2 15 1901 Friday

38. 2 15 1979 Thursday

39. 2 15 2057 Thursday

40. 2 15 2058 Friday

41. 2 30 1900 Invalid date

42. 2 30 1901 Invalid date

43. 2 30 1979 Invalid date

44. 2 30 2057 Invalid date

45. 2 30 2058 Invalid date

46. 2 31 1900 Invalid date

47. 2 31 1901 Invalid date

48. 2 31 1979 Invalid date

49. 2 31 2057 Invalid date

50. 2 31 2058 Invalid date

51. 6 1 1900 Friday

52. 6 1 1901 Saturday

(Contd.)

(Contd.)

Test Case month day year Expected Output

53. 6 1 1979 Friday

54. 6 1 2057 Friday

55. 6 1 2058 Saturday

56. 6 2 1900 Saturday

57. 6 2 1901 Sunday

58. 6 2 1979 Saturday

59. 6 2 2057 Saturday

60. 6 2 2058 Sunday

61. 6 15 1900 Friday

62. 6 15 1901 Saturday

63. 6 15 1979 Friday

64. 6 15 2057 Friday

65. 6 15 2058 Saturday

66. 6 30 1900 Saturday

67. 6 30 1901 Sunday

68. 6 30 1979 Saturday

69. 6 30 2057 Saturday

70. 6 30 2058 Sunday

71. 6 31 1900 Invalid date

72. 6 31 1901 Invalid date

73. 6 31 1979 Invalid date

74. 6 31 2057 Invalid date

75. 6 31 2058 Invalid date

76. 11 1 1900 Thursday

77. 11 1 1901 Friday

78. 11 1 1979 Thursday

79. 11 1 2057 Thursday

80. 11 1 2058 Friday

81. 11 2 1900 Friday

82. 11 2 1901 Saturday

83. 11 2 1979 Friday

84. 11 2 2057 Friday

85. 11 2 2058 Saturday

86. 11 15 1900 Thursday

87. 11 15 1901 Friday

88. 11 15 1979 Thursday

89. 11 15 2057 Thursday

(Contd.)

Test Case month day year Expected Output

90. 11 15 2058 Friday

91. 11 30 1900 Friday

92. 11 30 1901 Saturday

93. 11 30 1979 Friday

94. 11 30 2057 Friday

95. 11 30 2058 Saturday

96. 11 31 1900 Invalid date

97. 11 31 1901 Invalid date

98. 11 31 1979 Invalid date

99. 11 31 2057 Invalid date

100. 11 31 2058 Invalid date

101. 12 1 1900 Saturday

102. 12 1 1901 Sunday

103. 12 1 1979 Saturday

104. 12 1 2057 Saturday

105. 12 1 2058 Sunday

106. 12 2 1900 Sunday

107. 12 2 1901 Monday

108. 12 2 1979 Sunday

109. 12 2 2057 Sunday

110. 12 2 2058 Monday

111. 12 15 1900 Saturday

112. 12 15 1901 Sunday

113. 12 15 1979 Saturday

114. 12 15 2057 Saturday

115. 12 15 2058 Sunday

116. 12 30 1900 Sunday

117. 12 30 1901 Monday

118. 12 30 1979 Sunday

119. 12 30 2057 Sunday

120. 12 30 2058 Monday

121. 12 31 1900 Monday

122. 12 31 1901 Tuesday

123. 12 31 1979 Monday

124. 12 31 2057 Monday

125. 12 31 2058 Tuesday

Table 2.18.

Test Case

I
1

I
2

I
3

Input x

0

50

101

Expected Output

Invalid Input

2500

Invalid Input

EQUIVALENCE CLASS TESTING

As we have discussed earlier, a large number of test cases are generated for any program. It is

neither feasible nor desirable to execute all such test cases. We want to select a few test cases

and still wish to achieve a reasonable level of coverage. Many test cases do not test any new

thing and they just execute the same lines of source code again and again. We may divide input

domain into various categories with some relationship and expect that every test case from a

category exhibits the same behaviour. If categories are well selected, we may assume that if

one representative test case works correctly, others may also give the same results. This

assumption allows us to select exactly one test case from each category and if there are four

categories, four test cases may be selected. Each category is called an equivalence class and

this type of testing is known as equivalence class testing.

 Creation of Equivalence Classes

The entire input domain can be divided into at least two equivalence classes: one containing

all valid inputs and the other containing all invalid inputs. Each equivalence class can further

be sub-divided into equivalence classes on which the program is required to behave differently.

The input domain equivalence classes for the program ‘Square’ which takes ‘x’ as an input

(range 1-100) and prints the square of ‘x’ (seen in Figure 2.2) are given as:

(i) I
1

= { 1 x 100 }(Valid input range from 1 to 100)

(ii) I
2

= { x < 1 } (Any invalid input where x is less than 1)
(iii) I

3
= { x > 100 } (Any invalid input where x is greater than 100)

Three test cases are generated covering every equivalence class and are given in Table 2.18.

The following equivalence classes can be generated for program ‘Addition’ for input

domain:

(i) I
1

= { 100 x 300 and 200 y 400 } (Both x and y are valid values)

(ii) I
2

= { 100 x 300 and y < 200 } (x is valid and y is invalid)

(iii) I
3

= { 100 x 300 and y > 400 } (x is valid and y is invalid)

(iv) I
4

= { x < 100 and 200 y 400 } (x is invalid and y is valid)

(v) I
5

= { x > 300 and 200 y 400 } (x is invalid and y is valid)

(vi) I
6

= { x < 100 and y < 200 } (Both inputs are invalid)
(vii) I

7
= { x < 100 and y > 400} (Both inputs are invalid)

(viii) I
8

= { x > 300 and y < 200 } (Both inputs are invalid)
(ix) I

9
= { x > 300 and y > 400 } (Both inputs are invalid)

Table 2.19. Test cases for the program ‘Addition’

I3 200 401 Invalid input

The graphical representation of inputs is shown in Figure 2.9 and the test cases are given in

Table 2.19.

Figure 2.9. Graphical representation of inputs

Test Case x y Expected Output

I
1
 200 300 500

I
2
 200 199 Invalid input

I
4
 99 300 Invalid input

I
5
 301 300 Invalid input

I
6
 99 199 Invalid input

I
7
 99 401 Invalid input

I
8
 301 199 Invalid input

I
9
 301 401 Invalid input

The equivalence classes of input domain may be mutually exclusive (as shown in Figure

2.10 (a)) and they may have overlapping regions (as shown in Figure 2.10 (b)).

We may also partition output domain for the design of equivalence classes. Every output

will lead to an equivalence class. Thus, for ‘Square’ program, the output domain equivalence

classes are given as:

O
1

= {square of the input number ‘x’}

O
2

= {Invalid input)

The test cases for output domain are shown in Table 2.20. Some of input and output domain

test cases may be the same.

Figure 2.10. Equivalence classes of input domain

Table 2.20.

Test Case

Input x

Expected Output

O
1
 50 2500

O
2
 0 Invalid Input

We may also design output domain equivalence classes for the program ‘Addition’ as given

below:

O
1

= { Addition of two input numbers x and y }

O
2

= {Invalid Input}

The test cases are given in Table 2.21.

Table 2.21.

Test Case

x

y

Expected Output

O
1
 200 300 500

O
2
 99 300 Invalid Input

In the above two examples, valid input domain has only one equivalence class. We may

design more numbers of equivalence classes based on the type of problem and nature of inputs

and outputs. Here, the most important task is the creation of equivalence classes which require

domain knowledge and experience of testing. This technique reduces the number of test cases

that should be designed and executed.

 Applicability

It is applicable at unit, integration, system and acceptance test levels. The basic requirement is

that inputs or outputs must be partitioned based on the requirements and every partition will

give a test case. The selected test case may test the same thing, as would have been tested by

another test case of the same equivalence class, and if one test case catches a bug, the other

probably will too. If one test case does not find a bug, the other test cases of the same

equivalence class may also not find any bug. We do not consider dependencies among different

variables while designing equivalence classes.

The design of equivalence classes is subjective and two testing persons may design two

different sets of partitions of input and output domains. This is understandable and correct as

long as the partitions are reviewed and all agree that they acceptably cover the program under

test.

Example 2.9: Consider the program for determination of the largest amongst three numbers

specified in example 2.1. Identify the equivalence class test cases for output and input domain.

Solution: Output domain equivalence classes are:

O
1
= {<x, y, z > : Largest amongst three numbers x, y, z }

O
2
= {<x, y, z > : Input values(s) is /are out of range with sides x, y, z }

The test cases are given in Table 2.22.

2

Input domain based equivalence classes are:

I
1

= { 1 x 300 and 1 y 300 and 1 z 300 } (All inputs are valid)

I
2

= { x < 1 and 1 y 300 and 1 z 300 } (x is invalid , y is valid and z is valid)

I
3

= { 1 x 300 and y < 1 and 1 z 300 } (x is valid, y is invalid and z is valid)

I
4

= { 1 x 300 and 1 y 300 and z < 1 } (x is valid, y is valid and z is invalid)

I
5

= { x > 300 and 1 y 300 and 1 z 300 } (x is invalid, y is valid and z is valid)

I
6

= { 1 x 300 and y > 300 and 1 z 300 } (x is valid, y is invalid and z is valid)

I
7

= { 1 x 300 and 1 y 300 and z > 300 } (x is valid, y is valid and z is invalid)

I
8

= { x < 1 and y < 1 and 1 z 300 } (x is invalid, y is invalid and z is valid)

I
9

= { 1 x 300 and y < 1 and z < 1 } (x is valid, y is invalid and z is invalid)

I
10

= { x < 1 and 1 y 300 and z < 1 } (x is invalid, y is valid and z is invalid)

I
11

= { x > 300 and y > 300 and 1 z 300 } (x is invalid, y is invalid and z is valid)

I
12

= { 1 x 300 and y > 300 and z > 300 }(x is valid, y is invalid and z is invalid)

I
13

= { x > 300 and 1 y 300 and z > 300 } (x is invalid, y is valid and z is invalid)

I
14

= { x < 1 and y > 300 and 1 z 300 } (x is invalid, y is invalid and z is valid)

I
15

= { x > 300 and y < 1 and 1 z 300 } (x is invalid, y is invalid and z is valid)

I
16

= {1 x 300 and y < 1 and z > 300 } (x is valid, y is invalid and z is invalid)

Table 2.22.

Test Case

x

y

z

Expected Output

O
1

O

150

301

140

50

110

50

150

Input values are out of

range

I

17
= { 1 x 300 and y > 300 and z < 1 } (x is valid, y is invalid and z is invalid)

I
18

= { x < 1 and 1 y 300 and z > 300 } (x is invalid, y is valid and z is invalid)

I
19

= { x > 300 and 1 y 300 and z < 1 } (x is invalid, y is valid and z is invalid)

I
20

= { x < 1 and y < 1 and z < 1 } (All inputs are invalid)

I
21

= { x > 300 . and y > 300 and z > 300 } (All inputs are invalid)

I
22

= { x < 1 and y < 1 and z > 300 } (All inputs are invalid)

I
23

= { x < 1 and y > 300 and z < 1 } (All inputs are invalid)

1
24

= { x > 300 and y < 1 and z < 1 } (All inputs are invalid)

1
25

= { x > 300 and y > 300 and z < 1 } (All inputs are invalid)

I
26

= { x > 300 and y < 1 and z > 300 } (All inputs are invalid)

I
27

= { x < 1 and y > 300 and z > 300 } (All inputs are invalid)

The input domain test cases are given in Table 2.23.

Table 2.23. Input domain test case

Test Case x y z Expected Output

I
1

150 40 50 150

I
2

0 50 50 Input values are out of range

I
3

50 0 50 Input values are out of range

I
4

50 50 0 Input values are out of range

I
5

101 50 50 Input values are out of range

I
6

50 101 50 Input values are out of range

I
7

50 50 101 Input values are out of range

I
8

0 0 50 Input values are out of range

I
9

50 0 0 Input values are out of range

I
10

0 50 0 Input values are out of range

I
11

301 301 50 Input values are out of range

I
12

50 301 301 Input values are out of range

I
13

301 50 301 Input values are out of range

I
14

0 301 50 Input values are out of range

I
15

301 0 50 Input values are out of range

I
16

50 0 301 Input values are out of range

I
17

50 301 0 Input values are out of range

I
18

0 50 301 Input values are out of range

I
19

301 50 0 Input values are out of range

 (Contd.)

(Contd.)

Test Case x y z Expected Output

I
20

0 0 0 Input values are out of range

I
21

301 301 301 Input values are out of range

I
22

0 0 301 Input values are out of range

I
23

0 301 0 Input values are out of range

I
24

301 0 0 Input values are out of range

I
25

301 301 0 Input values are out of range

I
26

301 0 301 Input values are out of range

I
27

0 301 301 Input values are out of range

Example 2.10: Consider the program for the determination of division of a student as

explained in example 2.2. Identify the equivalence class test cases for output and input

domains.

Solution: Output domain equivalence class test cases can be identified as follows:

O
1

= { <mark1, mark2, mark3> : First Division with distinction if average > = 75 }

O
2

= { <mark1, mark2, mark3> : First Division if 60 average 74}

O
3

= { <mark1, mark2, mark3> : Second Division if 50 average 59 }

O
4

= { <mark1, mark2, mark3> : Third Division if 40 average 49 }

O
5

= { <mark1, mark2, mark3> : Fail if average <40 }

O
6

= { <mark1, mark2, mark3> : Invalid marks if marks are not between 0 to 100 }

The test cases generated by output domain are given in Table 2.24.

Table 2.24. Output domain test cases

Test Case mark1 mark2 mark3 Expected Output

O
1
 75 80 85 First division with distinction

O
2
 68 68 68 First division

O
3
 55 55 55 Second division

O
4
 45 45 45 Third division

O
5
 25 25 25 Fail

O
6
 -1 50 50 Invalid marks

We may have another set of test cases based on input domain.

I
1

= { 0 mark1 100 and 0 mark2 100 and 0 mark3 100 } (All inputs are
valid)

I
2

= { mark1 < 0 and 0 mark2 100 and 0 mark3 100 } (mark1 is invalid, mark2

is valid and mark3 is valid)

I

3
= { 0 mark1 100 and mark2 < 0 and 0 mark3 100 } (mark1 is valid, mark2 is

invalid and mark3 is valid)

I
4

= { 0 mark1 100 and 0 mark2 100 and mark3 < 0 } (mark1 is valid, mark2 is

valid and mark3 is invalid)

I
5

= { mark1 > 100 and 0 mark2 100 and 0 mark3 100 } (mark1 is invalid,

mark2 is valid and mark3 is valid)

I
6

= (0 mark1 100 and mark2 > 100 and 0 mark3 100 } (mark1 is valid, mark2

is invalid and mark3 is valid)

I
7

= { 0 mark1 100 and 0 mark2 100 and mark3 > 100 } (mark 1 is valid, mark2

is valid and mark3 is invalid)

I
8

= { mark1 < 0 and mark2 < 0 and 0 mark3 100 } (mark1 is invalid, mark2 is

invalid and mark3 is valid)

I
9

= { 0 mark1 100 and mark2 < 0 and mark3 < 0 } (mark1 is valid, mark2 is invalid

and mark3 is invalid)

I
10

= { mark1 < 0 and 0 mark2 100 and mark3 < 0 } (mark1 is invalid, mark2 is valid

and mark3 is invalid)

I
11

= { mark1 > 100 and mark2 > 100 and 0 mark3 100 } (mark1 is invalid, mark2

is invalid and mark3 is valid)

I
12

= { 0 mark1 100 and mark2 > 100 and mark3 > 100 } (mark1 is valid, mark2 is

invalid and mark3 is invalid)

I
13

= { mark1 > 100 and 0 mark2 100 and mark3 > 100 } (mark1 is invalid, mark2

is valid and mark3 is invalid)

I
14

= { mark1 < 0 and mark2 > 100 and 0 mark3 100 } (mark1 is invalid, mark2 is

invalid and mark 3 is valid)

I
15

= { mark1 > 100 and mark2 < 0 and 0 mark3 100 }{ (mark1 is invalid, mark2 is

invalid and mark3 is valid)

I
16

= { 0 mark1 100 and mark2 < 0 and mark3 > 100 } (mark1 is valid, mark2 is

invalid and mark3 is invalid)

I
17

= { 0 mark1 100 and mark2 > 100 and mark3 < 0 } (mark1 is valid, mark2 is

invalid and mark3 is invalid)

I
18

= { mark1 < 0 and 0 mark2 100 and mark3 > 100 } (mark1 is invalid, mark2 is

valid and mark3 is invalid)

I
19

= { mark1 > 100 and 0 mark2 100 and mark3 < 0 } (mark1 is invalid, mark2 is

valid and mark3 is invalid)

I
20

= { mark1 < 0 and mark2 < 0 and mark3 < 0 } (All inputs are invalid)

I
21

= { mark1 > 100 and mark2 > 100 and mark3 > 100 } (All inputs are invalid)

I
22

= { mark1 < 0 and mark2 < 0 and mark3 > 100 } (All inputs are invalid)

I
23

= { mark1 < 0 and mark2 > 100 and mark3 < 0 } (All inputs are invalid)

I
24

= { mark1 > 100 and mark2 < 0 and mark3 < 0 } (All inputs are invalid)

I
25

= {mark1 > 100 and mark2 > 100 and mark3 < 0 } (All inputs are invalid)

I

26
= { mark1 > 100 and mark2 < 0 and mark3 > 100 } (All inputs are invalid)

I
27

= { mark1 < 0 and mark2 > 100 and mark3 > 100 } (All inputs are invalid)

Thus, 27 test cases are generated on the basis of input domain and are given in Table 3.25.

Table 2.25. Input domain test cases

Test Case mark1 mark2 mark3 Expected Output

I
1

50 50 50 Second division

I
2

1 50 50 Invalid marks

I
3

50 –1 50 Invalid marks

I
4

50 50 –1 Invalid marks

I
5

101 50 50 Invalid marks

I
6

50 101 50 Invalid marks

I
7

50 50 101 Invalid marks

I
8

1 –1 50 Invalid marks

I
9

50 –1 –1 Invalid marks

I
10

1 50 –1 Invalid marks

I
11

101 101 50 Invalid marks

I
12

50 101 101 Invalid marks

I
13

101 50 101 Invalid marks

I
14

1 101 50 Invalid marks

I
15

101 –1 50 Invalid marks

I
16

50 –1 101 Invalid marks

I
17

50 101 –1 Invalid marks

I
18

1 50 101 Invalid marks

I
19

101 50 –1 Invalid marks

I
20

1 –1 –1 Invalid marks

I
21

101 101 101 Invalid marks

I
22

1 –1 101 Invalid marks

I
23

1 101 –1 Invalid marks

I
24

101 –1 –1 Invalid marks

I
25

101 101 –1 Invalid marks

I
26

101 –1 101 Invalid marks

I
27

1 101 101 Invalid marks

Hence, the total number of equivalence class test cases are 27 (input domain) + 6 (output

domain) which is equal to 33.

Example 2.11: Consider the program for classification of a triangle specified in example 2.3.

Identify the equivalence class test cases for output and input domain.

Solution: Output domain equivalence classes are:

O

1
= { < a, b, c > : Right angled triangle with sides a, b, c }

O
2
= { < a, b, c > : Acute angled triangle with sides a, b, c }

O
3
= { < a, b, c > : Obtuse angled triangle with sides a, b, c}

O
4
= { < a, b, c > : Invalid triangle with sides a, b, c, }

O
5
= { < a, b, c > : Input values(s) is /are out of range with sides a, b, c }

The test cases are given in Table 2.26.

Table 2.26.

Test Case

a

b

c

Expected Output

O
1
 50 40 30 Right angled triangle

O
2
 50 49 49 Acute angled triangle

O
3
 57 40 40 Obtuse angled triangle

O
4
 50 50 100 Invalid triangle

O
5
 101 50 50 Input values are out of range

Input domain based equivalence classes are:

I
1

= { 1 a 100 and 1 b 100 and 1 c 100 } (All inputs are valid)

I
2

= { a < 1 and 1 b 100 and 1 c 100 } (a is invalid , b is valid and c is

valid)

I
3

= { 1 a 100 and b < 1 and 1 c 100 } (a is valid, b is invalid and c is

valid)

I
4

= { 1 a 100 and 1 b 100 and c < 1 } (a is valid, b is valid and c is

invalid)

I
5

= { a > 100 and 1 b 100 and 1 c 100 } (a is invalid, b is valid and c is

valid)

I
6

= { 1 a 100 and b > 100 and 1 c 100 } (a is valid, b is invalid and c is

valid)

I
7

= { 1 a 100 and 1 b 100 and c > 100 } (a is valid, b is valid and c is

invalid)

I
8

= { a < 1 and b < 1 and 1 c 100 } (a is invalid, b is invalid and c is

valid)

I
9

= { 1 a 100 and b < 1 and c < 1 } (a is valid, b is invalid and c is

invalid)

I
10

= { a < 1 and 1 b 100 and c < 1 } (a is invalid, b is valid and c is

invalid)

I
11

= { a > 100 and b > 100 and 1 c 100 } (a is invalid, b is invalid and c is

valid)

I
12

= { 1 a 100 and b > 100 and c > 100 }(a is valid, b is invalid and c is
invalid)

I
13

= { a > 100 and 1 b 100 and c > 100 } (a is invalid, b is valid and c is

invalid)

I

14
=

I
15

=

I
16

= {1 a 100 and b < 1 and c > 100 } (a is valid, b is invalid and c is

invalid)

I
17

= { 1 a 100 and b > 100 and c < 1 } (a is valid, b is invalid and c is

invalid)

I
18

= { a < 1 and 1 b 100 and c > 100 } (a is invalid, b is valid and c is

invalid)

I
19

= { a > 100 and 1 b 100 and c < 1 } (a is invalid, b is valid and c is

invalid)

I
20

= { a < 1 and b < 1 and c < 1 } (All inputs are invalid)

I
21

= { a > 100 and b > 100 and c > 100 } (All inputs are invalid)

I
22

= { a < 1 and b < 1 and c > 100 } (All inputs are invalid)

I
23

= { a < 1 and b > 100 and c < 1 } (All inputs are invalid)

1
24

= { a > 100 and b < 1 and c < 1 } (All inputs are invalid)

1
25

= { a > 100 and b > 100 and c < 1 } (All inputs are invalid)

I
26

= { a > 100 and b < 1 and c > 100 } (All inputs are invalid)

I
27

= { a < 1 and b > 100 and c > 100 } (All inputs are invalid)

Some input domain test cases can be obtained using the relationship amongst a, b and c.

I
28

= { a2 = b2 + c2 }

I
29

= { b2 = c2 + a2 }

I
30

= { c2 = a2 + b2 }

I
31

= { a2 > b2 + c2 }

I
32

= { b2 > c2 + a2 }

I
33

= { c2 > a2 + b2 }

I
34

= { a2 < b2 + c2 }

I
35

= { b2 < c2 + a2 }

I
36

= { c2 < a2 + b2 }

I
37

= { a = b + c }

I
38

= { a > b + c }

I
39

= { b = c + a }

I
40

= { b > c + a }

I
41

= { c = a + b }

I
42

= { c > a + b }

I
43

= { a2 < b2 + c2 && b2 < c2 + a2 && c2 < a2 + b2 }

The input domain test cases are given in Table 2.27.

{ a < 1 and b > 100 and 1

valid)

c 100 } (a is invalid, b is invalid and c is

{ a > 100 and b < 1 and 1

valid)
c 100 } (a is invalid, b is invalid and c is

Table 2.27. Input domain test cases

Test Case a b c Expected Output

I
1

50 50 50 Acute angled triangle
I
2

0 50 50 Input values are out of range

I
3

50 0 50 Input values are out of range

I
4

50 50 0 Input values are out of range

I
5

101 50 50 Input values are out of range

I
6

50 101 50 Input values are out of range

I
7

50 50 101 Input values are out of range
I
8

0 0 50 Input values are out of range

I
9

50 0 0 Input values are out of range
I
10

0 50 0 Input values are out of range

I
11

101 101 50 Input values are out of range
I
12

50 101 101 Input values are out of range

I
13

101 50 101 Input values are out of range
I
14

0 101 50 Input values are out of range

I
15

101 0 50 Input values are out of range
I
16

50 0 101 Input values are out of range
I
17

50 101 0 Input values are out of range
I
18

0 50 101 Input values are out of range

I
19

101 50 0 Input values are out of range
I
20

0 0 0 Input values are out of range

I
21

101 101 101 Input values are out of range
I
22

0 0 101 Input values are out of range
I
23

0 101 0 Input values are out of range

I
24

101 0 0 Input values are out of range

I
25

101 101 0 Input values are out of range

I
26

101 0 101 Input values are out of range
I
27

0 101 101 Input values are out of range
I
28

50 40 30 Right angled triangle
I
29

40 50 30 Right angled triangle
I
30

40 30 50 Right angled triangle
I
31

57 40 40 Obtuse angled triangle
I
32

40 57 50 Obtuse angled triangle
I
33

40 40 57 Obtuse angled triangle
I
34

50 49 49 Acute angled triangle
I
35

49 50 49 Acute angled triangle
I
36

49 49 50 Acute angled triangle

I
37

100 50 50 Invalid triangle

I
38

100 40 40 Invalid triangle
I
39

50 100 50 Invalid triangle
I
40

40 100 40 Invalid triangle

I
41

50 50 100 Invalid triangle
I
42

40 40 100 Invalid triangle
I
43 49 49 50 Acute angled triangle

Hence, total number of equivalence class test cases are 43 (input domain) and 5 (output

domain) which is equal to 48.

Example 2.12: Consider the program for determining the day of the week as explained in

example 2.4. Identify the equivalence class test cases for output and input domains.

Solution: Output domain equivalence classes are:

O
1

= { < Day, Month, Year > : Monday for all valid inputs }

O
2

= { < Day, Month, Year > : Tuesday for all valid inputs }

O
3
= { < Day, Month, Year > : Wednesday for all valid inputs}

O
4

= { < Day, Month, Year > : Thursday for all valid inputs}

O
5

= { < Day, Month, Year > : Friday for all valid inputs}

O
6

= { < Day, Month, Year > : Saturday for all valid inputs}

O
7

= { < Day, Month, Year > : Sunday for all valid inputs}

O
8

= { < Day, Month, Year > : Invalid Date if any of the input is invalid}

O
9

= { < Day, Month, Year > : Input out of range if any of the input is out of range}

The output domain test cases are given in Table 2.28.

Table 2.28. Output domain equivalence class test cases

Test Case month day year Expected Output

O
1
 6 11 1979 Monday

O
2
 6 12 1979 Tuesday

O
3
 6 13 1979 Wednesday

O
4
 6 14 1979 Thursday

O
5
 6 15 1979 Friday

O
6
 6 16 1979 Saturday

O
7
 6 17 1979 Sunday

O
8
 6 31 1979 Invalid date

O
9
 6 32 1979 Inputs out of range

The input domain is partitioned as given below:

(i) Valid partitions

M1: Month has 30 Days

M2 : Month has 31 Days

M3 : Month is February

D1 : Days of a month from 1 to 28

D2 : Day = 29

D3 : Day = 30

D4 : Day = 31

Y1 : 1900 year 2058 and is a common year

Y2 : 1900 year 2058 and is a leap year.

(ii) Invalid partitions

M4 : Month < 1

M5 : Month > 12

D5 : Day < 1

D6 : Day > 31

Y3 : Year < 1900

Y4 : Year > 2058

We may have following equivalence classes which are based on input domain:

(a) Only for valid input domain

I
1
= { M1 and D1 and Y1 } (All inputs are valid)

I
2
= { M2 and D1 and Y1 } (All inputs are valid)

I
3
= { M3 and D1 and Y1 } (All inputs are valid)

I
4
= { M1 and D2 and Y1 } (All inputs are valid)

I
5
= { M2 and D2 and Y1 } (All inputs are valid)

I
6
= { M3 and D2 and Y1 } (All inputs are valid)

I
7
= { M1 and D3 and Y1 } (All inputs are valid)

I
8
= { M2 and D3 and Y1 } (All inputs are valid)

I
9
= { M3 and D3 and Y1 } (All inputs are valid)

I
10

= { M1 and D4 and Y1 } (All inputs are valid)

I
11

= { M2 and D4 and Y1 } (All inputs are valid)

I
12

= { M3 and D4 and Y1 } (All inputs are valid)

I
13

= { M1 and D1 and Y2 } (All Inputs are valid)

I
14

= { M2 and D1 and Y2 } (All inputs are valid)

I
15

= { M3 and D1 and Y2 } (All inputs are valid)

I
16

= { M1 and D2 and Y2 } (All inputs are valid)

I
17

= { M2 and D2 and Y2 } (All inputs are valid)

I
18

= { M3 and D2 and Y2 } (All inputs are valid)

I
19

= { M1 and D3 and Y2 } (All inputs are valid)

I
20

= { M2 and D3 and Y2 } (All inputs are valid)

I
21

= { M3 and D3 and Y2 } (All inputs are valid)

I
22

= { M1 and D4 and Y2 } (All inputs are valid)

I
23

= { M2 and D4 and Y2 } (All inputs are valid)

I
24

= { M3 and D4 and Y2 } (All inputs are valid)

(b) Only for Invalid input domain

I
25

= { M4 and D1 and Y1 } (Month is invalid, Day is valid and Year is valid)

I
26

= { M5 and D1 and Y1 } (Month is invalid, Day is valid and Year is valid)

I
27

= { M4 and D2 and Y1 } (Month is invalid, Day is valid and Year is valid)

I
28

= { M5 and D2 and Y1 } (Month is invalid, Day is valid and Year is valid)

I
29

= { M4 and D3 and Y1 } (Month is invalid, Day is valid and Year is valid)

I
30

= { M5 and D3 and Y1 } (Month is invalid, Day is valid and Year is valid)

I

31
= { M4 and D4 and Y1 } (Month is invalid, Day is valid and Year is valid)

I
32

= { M5 and D4 and Y1 } (Month is invalid, Day is valid and year is valid)

I
33

= { M4 and D1 and Y2 } (Month is invalid, Day is valid and Year is valid)

I
34

= { M5 and D1 and Y2 } (Month is invalid, Day is valid and Year is valid)

I
35

= { M4 and D2 and Y2 } (Month is invalid, Day is valid and Year is valid)

I
36

= { M5 and D2 and Y2 } (Month is invalid, Day is valid and Year is valid)

I
37

= { M4 and D3 and Y2 } (Month is invalid, Day is valid and Year is valid)

I
38

= { M5 and D3 and Y2 } (Month is invalid, Day is valid and Year is valid)

I
39

= { M4 and D4 and Y2 } (Month is invalid, Day is valid and Year is valid)

I
40

= { M5 and D4 and Y2 } (Month is invalid, Day is valid and Year is valid)

I
41

= { M1 and D5 and Y1 } (Month is valid, Day is invalid and Year is valid)

I
42

= { M1 and D6 and Y1 } (Month is valid, Day is invalid and Year is valid)

I
43

= { M2 and D5 and Y1 } (Month is valid, Day is invalid and Year is valid)

I
44

= { M2 and D6 and Y1 } (Month is valid, Day is invalid and Year is valid)

I
45

= { M3 and D5 and Y1 } (Month is valid, Day is invalid and Year is valid)

I
46

= { M3 and D6 and Y1 } (Month is valid, Day is invalid and Year is valid)

I
47

= { M1 and D5 and Y2 } (Month is valid, Day is invalid and Year is valid)

I
48

= { M1 and D6 and Y2 } (Month is valid, Day is invalid and Year is valid)

I
49

= { M2 and D5 and Y2 } (Month is valid, Day is invalid and Year is valid)

I
50

= { M2 and D6 and Y2 } (Month is valid, Day is invalid and Year is valid)

I
51

= { M3 and D5 and Y2 } (Month is valid, Day is invalid and Year is valid)

I
52

= { M3 and D6 and Y2 } (Month is valid, Day is invalid and Year is valid)

I
53

= { M1 and D1 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
54

= { M1 and D1 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
55

= { M2 and D1 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
56

= { M2 and D1 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
57

= { M3 and D1 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
58

= { M3 and D1 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
59

= { M1 and D2 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
60

= { M1 and D2 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
61

= { M2 and D2 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
62

= { M2 and D2 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
63

= { M3 and D2 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
64

= { M3 and D2 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
65

= { M1 and D3 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
66

= { M1 and D3 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
67

= { M2 and D3 and Y3 } (Month is valid, Day is valid and Year is invalid)

I

68
= { M2 and D3 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
69

= { M3 and D3 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
70

= { M3 and D3 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
71

= { M1 and D4 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
72

= { M1 and D4 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
73

= { M2 and D4 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
74

= { M2 and D4 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
75

= { M3 and D4 and Y3 } (Month is valid, Day is valid and Year is invalid)

I
76

= { M3 and D4 and Y4 } (Month is valid, Day is valid and Year is invalid)

I
77

= { M4 and D5 and Y1 } (Month is invalid, Day is invalid and Year is valid)

1
78

= { M4 and D5 and Y2 } (Month is invalid, Day is invalid and year is valid)

I
79

= { M4 and D6 and Y1 } (Month is invalid, Day is invalid and Year is valid)

I
80

= { M4 and D6 and Y2 } (Month is invalid, Day is invalid and Year is valid)

I
81

= { M5 and D5 and Y1 } (Month is invalid, Day is invalid and Year is valid)

I
82

= { M5 and D5 and Y2 } (Month is invalid, Day is invalid and Year is valid)

I
83

= { M5 and D6 and Y1 } (Month is invalid, Day is invalid and Year is valid)

I
84

= { M5 and D6 and Y2 } (Month is invalid, Day is invalid and Year is valid)

I
85

= { M4 and D1 and Y3 } (Month is invalid, Day is valid and Year is invalid)

I
86

= { M4 and D1 and Y4 } (Month is invalid, Day is valid and Year is invalid)

I
87

= { M4 and D2 and Y3 } (Month is invalid, Day is valid and Year is invalid)

I
88

= { M4 and D2 and Y4 } (Month is invalid, Day is valid and Year is invalid)

I
89

= { M4 and D3 and Y3 } (Month is invalid, Day is valid and Year is invalid)

I
90

= { M4 and D3 and Y4 } (Month is invalid, day is valid and Year is invalid)

I
91

= { M4 and D4 and Y3 } (Month is invalid, Day is valid and Year is invalid)

I
92

= { M4 and D4 and Y4 } (Month is invalid, Day is valid and Year is invalid)

I
93

= { M5 and D1 and Y3 } (Month is invalid, Day is valid and Year is invalid)

I
94

= { M5 and D1 and Y4 } (Month is invalid, Day is valid and Year is invalid)

I
95

= { M5 and D2 and Y3 } (Month is invalid, Day is valid and year is invalid)

I
96

= { M5 and D2 and Y4 } (Month is invalid, Day is valid and Year is invalid)

I
97

= { M5 and D3 and Y3 } (Month is invalid, Day is valid and Year is invalid)

I
98

= { M5 and D3 and Y4 } (Month is invalid, Day is valid and Year is invalid)

I
99

= { M5 and D4 and Y3 } (Month is invalid, Day is valid and Year is invalid)

I
100

= { M5 and D4 and Y4 } (Month is invalid, Day is valid and Year is invalid)

I
101

= { M1 and D5 and Y3 } (Month is valid, Day is invalid and Year is invalid)

I
102

= { M1 and D5 and Y4 } (Month is valid, Day is invalid and Year is invalid)

I
103

= { M2 and D5 and Y3 } (Month is valid, Day is invalid and Year is invalid)

I
104

= { M2 and D5 and Y4 } (Month is valid, Day is invalid and Year is invalid)

(Contd.)

I

105
= { M3 and D5 and Y3 } (Month is valid, Day is invalid and Year is invalid)

I
106

= { M3 and D5 and Y4 } (Month is valid, Day is invalid and Year is invalid)

I
107

= { M1 and D6 and Y3 } (Month is valid, Day is invalid and Year is invalid)

I
108

= { M1 and D6 and Y4 } (Month is valid, Day is invalid and Year is invalid)

I
109

= { M2 and D6 and Y3 } (Month is valid, Day is invalid and Year is invalid)

I
110

= { M2 and D6 and Y4 } (Month is valid, Day is invalid and Year is invalid)

I
111

= { M3 and D6 and Y3 } (Month is valid, Day is invalid and Year is invalid)

I
112

= { M3 and D6 and Y4 } (Month is valid, Day is invalid and Year is invalid)

I
113

= (M4 and D5 and Y3 } (All inputs are invalid)

I
114

= { M4 and D5 and Y4 } (All inputs are invalid)

I
115

= { M4 and D6 and Y3 } (All inputs are invalid)

I
116

= { M4 and D6 and Y4 } (All inputs are invalid)

I
117

= { M5 and D5 and Y3 } (All inputs are invalid)

I
118

= { M5 and D5 and Y4 } (All inputs are invalid)

I
119

= { M5 and D6 and Y3 } (All inputs are invalid)

I
120

= { M5 and D6 and Y4 } (All inputs are invalid)

The test cases generated on the basis of input domain are given in Table 2.29.

Table 2.29. Input domain equivalence class test cases

Test Case month day year Expected Output

I
1

6 15 1979 Friday

I
2

5 15 1979 Tuesday

I
3

2 15 1979 Thursday

I
4

6 29 1979 Friday

I
5

5 29 1979 Tuesday

I
6

2 29 1979 Invalid Date

I
7

6 30 1979 Saturday

I
8

5 30 1979 Wednesday

I
9

2 30 1979 Invalid Date
I
10

6 31 1979 Invalid Date
I
11

5 31 1979 Thursday
I
12

2 31 1979 Invalid Date
I
13

6 15 2000 Thursday
I
14

5 15 2000 Monday
I
15

2 15 2000 Tuesday
I
16

6 29 2000 Thursday
I
17

5 29 2000 Monday
I
18

2 29 2000 Tuesday
I
19

6 30 2000 Friday
I
20

5 30 2000 Tuesday
I
21

2 30 2000 Invalid date
I
22 6 31 2000 Invalid date

(Contd.)

(Contd.)

Test Case month day year Expected Output

I
23

5 31 2000 Wednesday
I
24

2 31 2000 Invalid date
I
25

0 15 1979 Input(s) out of range

I
26

13 15 1979 Input(s) out of range
I
27

0 29 1979 Inputs(s) out of range

I
28

13 29 1979 Input(s) out of range
I
29

0 30 1979 Input(s) out of range

I
30

13 30 1979 Input(s) out of range
I
31

0 31 1979 Input(s) out of range

I
32

13 31 1979 Input(s) out of range
I
33

0 15 2000 Input(s) out of range

I
34

13 15 2000 Input(s) out of range
I
35

0 29 2000 Input(s) out of range

I
36

13 29 2000 Input(s) out of range
I
37

0 30 2000 Input(s) out of range

I
38

13 30 2000 Input(s) out of range
I
39

0 31 2000 Input(s) out of range

I
40

13 31 2000 Input(s) out of range
I
41

6 0 1979 Input(s) out of range
I
42

6 32 1979 Input(s) out of range
I
43

5 0 1979 Input(s) out of range
I
44

5 32 1979 Input(s) out of range
I
45

2 0 1979 Input(s) out of range
I
46

2 32 1979 Input(s) out of range
I
47

6 0 2000 Input(s) out of range
I
48

6 32 2000 Input(s) out of range
I
49

5 0 2000 Input(s) out of range
I
50

5 32 2000 Input(s) out of range
I
51

2 0 2000 Input(s) out of range
I
52

2 32 2000 Input(s) out of range
I
53

6 15 1899 Input(s) out of range
I
54

6 15 2059 Input(s) out of range
I
55

5 15 1899 Input(s) out of range
I
56

5 15 2059 Input(s) out of range
I
57

2 15 1899 Input(s) out of range
I
58

2 15 2059 Input(s) out of range
I
59

6 29 1899 Input(s) out of range
I
60

6 29 2059 Input(s) out of range
I
61

5 29 1899 Input(s) out of range
I
62

5 29 2059 Input(s) out of range
I
63

2 29 1899 Input(s) out of range
I
64

2 29 2059 Input(s) out of range
I
65

6 30 1899 Input(s) out of range
I
66

6 30 2059 Input(s) out of range
I
67

5 30 1899 Input(s) out of range
I
68 5 30 2059 Input(s) out of range

(Contd.)

(Contd.)

Test Case month day year Expected Output
I
69

2 30 1899 Input(s) out of range
I
70

2 30 2059 Input(s) out of range
I
71

6 31 1899 Input(s) out of range
I
72

6 31 2059 Input(s) out of range
I
73

5 31 1899 Input(s) out of range
I
74

5 31 2059 Input(s) out of range
I
75

2 31 1899 Input(s) out of range
I
76

2 31 2059 Input(s) out of range
I
77

0 0 1979 Input(s) out of range
I
78

0 0 2000 Input(s) out of range
I
79

0 32 1979 Input(s) out of range
I
80

0 32 2000 Input(s) out of range

I
81

13 0 1979 Input(s) out of range

I
82

13 0 2000 Input(s) out of range

I
83

13 32 1979 Input(s) out of range

I
84

13 32 2000 Input(s) out of range
I
85

0 15 1899 Input(s) out of range
I
86

0 15 2059 Input(s) out of range
I
87

0 20 1899 Input(s) out of range
I
88

0 29 2059 Input(s) out of range
I
89

0 30 1899 Input(s) out of range
I
90

0 30 2059 Input(s) out of range
I
91

0 31 1899 Input(s) out of range
I
92

0 31 2059 Input(s) out of range

I
93

13 15 1899 Input(s) out of range

I
94

13 15 2059 Input(s) out of range

I
95

13 29 1899 Input(s) out of range

I
96

13 29 2059 Input(s) out of range

I
97

13 30 1899 Input(s) out of range

I
98

13 30 2059 Input(s) out of range

I
99

13 31 1899 Input(s) out of range
I
100

13 31 2059 Input(s) out of range
I
101

5 0 1899 Input(s) out of range
I
102

5 0 2059 Input(s) out of range
I
103

6 0 1899 Input(s) out of range
I
104

6 0 2059 Input(s) out of range
I
105

2 0 1899 Input(s) out of range
I
106

2 0 2059 Input(s) out of range
I
107

5 32 1899 Input(s) out of range
I
108

5 32 2059 Input(s) out of range
I
109

6 32 1899 Input(s) out of range
I
110

6 32 2059 Input(s) out of range
I
111

2 32 1899 Input(s) out of range
I
112

2 32 2059 Input(s) out of range
I
113

0 0 1899 Input(s) out of range
I
114 0 0 2059 Input(s) out of range

(Contd.)

Test Case month day year Expected Output
I
115

0 32 1899 Input(s) out of range
I
116

0 32 2059 Input(s) out of range
I
117

13 0 1899 Input(s) out of range
I
118

13 0 2059 Input(s) out of range
I
119

13 32 1899 Input(s) out of range
I
120 13 32 2059 Input(s) out of range

Hence, the total number of equivalence class test cases are 120 (input domain) + 9 (output

domain) which is equal to 129. However, most of the outputs are ‘Input out of range’ and may

not offer any value addition. This situation occurs when we choose more numbers of invalid

equivalence classes.

It is clear that if the number of valid partitions of input domain increases, then the number

of test cases increases very significantly and is equal to the product of the number of partitions

of each input variable. In this example, there are 5 partitions of input variable ‘month’, 6

partitions of input variable ‘day’ and 4 partitions of input variable ‘year’ and thus leading to

5x6x4 = 120 equivalence classes of input domain.

DECISION TABLE BASED TESTING

Decision tables are used in many engineering disciplines to represent complex logical

relationships. An output may be dependent on many input conditions and decision tables give

a pictorial view of various combinations of input conditions. There are four portions of the

decision table and are shown in Table 2.30. The decision table provides a set of conditions and

their corresponding actions.

Condition

Action

Four Portions

1. Condition Stubs

2. Condition Entries

3. Action Stubs

4. Action Entries

 Parts of the Decision Table

The four parts of the decision table are given as:

Condition Stubs: All the conditions are represented in this upper left section of the decision

table. These conditions are used to determine a particular action or set of actions.

Action Stubs: All possible actions are listed in this lower left portion of the decision table.

Condition Entries: In the condition entries portion of the decision table, we have a number

of columns and each column represents a rule. Values entered in this upper right portion of the

table are known as inputs.

Table 2.30.

Stubs

Entries

c
1

c
2

c
3

a
1

a
2

a
3

a
4

Action Entries: Each entry in the action entries portion has some associated action or set of

actions in this lower right portion of the table. These values are known as outputs and are

dependent upon the functionality of the program.

 Limited Entry and Extended Entry Decision Tables

Decision table testing technique is used to design a complete set of test cases without using the

internal structure of the program. Every column is associated with a rule and generates a test

case. A typical decision table is given in Table 2.31.

Table 2.31.

Stubs R
1

R
2 R

3
 R

4

c
1

c
2

c
3

F T

- F

- -

T

T

F

T

T

T

a
1

a
2

a
3

X

X

X
X

X

In Table 2.31, input values are only True (T) or False (F), which are binary conditions. The

decision tables which use only binary conditions are known as limited entry decision tables.

The decision tables which use multiple conditions where a condition may have many

possibilities instead of only ‘true’ and ‘false’ are known as extended entry decision tables

[COPE04].

 ‘Do Not Care’ Conditions and Rule Count

We consider the program for the classification of the triangle as explained in example 2.3. The

decision table of the program is given in Table 2.32, where inputs are depicted using binary

values.

Table 2.32.
c1: a < b + c?

c2: b < c + a?

c3: c < a + b?

c
4
: a2 = b2 + c2?

c
5
: a2 > b2 + c2?

c
6
: a

2
< b

2
+ c

2?

 F T T T T T T T T T T
 - F T T T T T T T T T
 - - F T T T T T T T T

Condition - - - T T T T F F F F
 - - - T T F F T T F F
 - - - T F T F T F T F

Action

Rule Count 32 16 8 1 1 1 1 1 1 1 1

a1 : Invalid triangle

a2 : Right angled triangle

a3 : Obtuse angled triangle

a4 : Acute angled triangle
a

5 : Impossible

X X X

X

X

X

X

X

X

X

X

The ‘do not care’ conditions are represented by the ‘-‘sign. A ‘do not care’ condition has no

effect on the output. If we refer to column 1 of the decision table, where condition c
1
: a < b +

c is false, then other entries become ‘do not care’ entries. If c
1

is false, the output will be

‘Invalid triangle’ irrespective of any state (true or false) of other conditions like c
2
, c

3
, c

4
, c

5

and c
6
. These conditions become do not care conditions and are represented by ‘-‘sign. If we

do not do so and represent all true and false entries of every condition, the number of columns

in the decision table will unnecessarily increase. This is nothing but a representation facility in

the decision table to reduce the number of columns and avoid redundancy. Ideally, each

column has one rule and that leads to a test case. A column in the entry portion of the table is

known as a rule. In the Table 2.32, a term is used as ‘rule count’ and 32 is mentioned in column

1. The term ‘rule count’ is used with ‘do not care’ entries in the decision table and has a value

1, if ‘do not care’ conditions are not there, but it doubles for every ‘do not care’ entry. Hence

each ‘do not care’ condition counts for two rules. Rule count can be calculated as:

Rule count = 2 number of do not care conditions

However, this is applicable only for limited entry decision tables where only ‘true’ and

‘false’ conditions are considered. Hence, the actual number of columns in any decision table

is the sum of the rule counts of every column shown in the decision table. The triangle

classification decision table has 11 columns as shown in Table 2.32. However the actual

columns are a sum of rule counts and are equal to 64. Hence, this way of representation has

reduced the number of columns from 64 to 11 without compromising any information. If rule

count value of the decision table does not equal to the number of rules computed by the

program, then the decision table is incomplete and needs revision.

 Impossible Conditions

Decision tables are very popular for the generation of test cases. Sometimes, we may have to

make a few attempts to reach the final solution. Some impossible conditions are also generated

due to combinations of various inputs and an ‘impossible’ action is incorporated in the ‘action

stub’ to show such a condition. We may have to redesign the input classes to reduce the

impossible actions. Redundancy and inconsistency may create problems but may be reduced

by proper designing of input classes depending upon the functionality of a program.

 Applicability

Decision tables are popular in circumstances where an output is dependent on many conditions

and a large number of decisions are required to be taken. They may also incorporate complex

business rules and use them to design test cases. Every column of the decision table generates

a test case. As the size of the program increases, handling of decision tables becomes difficult

and cumbersome. In practice, they can be applied easily at unit level only. System testing and

integration testing may not find its effective applications.

Example 2.13: Consider the problem for determining of the largest amongst three numbers as

given in example 2.1. Identify the test cases using the decision table based testing.

Solution: The decision table is given in Table 2.33.

Table 2.33. Decision table

c1: x > = 1? F T T T T T T T T T T T T T

c2: x <= 300? - F T T T T T T T T T T T T

c3: y > = 1? - - F T T T T T T T T T T T

c4: y <= 300? - - - F T T T T T T T T T T

c5: z > = 1? - - - - F T T T T T T T T T

c6: z <= 300? - - - - - F T T T T T T T T

c7: x>y? - - - - - - T T T T F F F F

c8: y>z? - - - - - - T T F F T T F F

c9: z>x? - - - - - - T F T F T F T F

Rule Count 256 128 64 32 16 8 1 1 1 1 1 1 1 1

a1 : Invalid input

a2 : x is largest

X X X X X X
X

X

a3 : y is largest X X

a4 : z is largest X X

a
5 : Impossible X X

Table 2.34.

Test Case

x

y

z

Expected Output

1. 0 50 50 Invalid marks

2. 301 50 50 Invalid marks

3. 50 0 50 Invalid marks

4. 50 301 50 Invalid marks

5. 50 50 0 Invalid marks

6. 50 50 301 Invalid marks

7. ? ? ? Impossible

8. 150 130 110 150

9. 150 130 170 170

10. 150 130 140 150

11. 110 150 140 150

12. 140 150 120 150

13. 120 140 150 150

14. ? ? ? Impossible

Example 2.14: Consider the problem for determining the division of the student in example

2.2. Identify the test cases using the decision table based testing.

Solution: This problem can be solved using either limited entry decision table or extended

entry decision table. The effectiveness of any solution is dependent upon the creation of

various conditions. The limited entry decision table is given in Table 2.35 and its associated

test cases are given in Table 2.36. The impossible inputs are shown by ‘?’ as given in test cases

8, 9, 10, 12, 13, 14, 16, 17, 19 and 22. There are 11 impossible test cases out of 22 test cases

which is a very large number and compel us to look for other solutions.

2

Table 2.35.

Conditions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

c1 : mark1 > = 0 ? F T

c2 : mark1 < = 100 ? - F T

c3 : mark2 > = 0 ? - - F T T T T T T T T T T T T T T T T T T T

c4 : mark2 < = 100 ? - - - F T T T T T T T T T T T T T T T T T T

c5 : mark3 > = 0 ? - - - - F T T T T T T T T T T T T T T T T T

c6 : mark3 < = 100? - - - - - F T T T T T T T T T T T T T T T T

c7 : 0 avg 39 ? - - - - - T T F T T T F F F F F F F F F F F

c8 : 40 avg 49 ?

c9 : 50 avg 59 ?

c10 : 60 avg 74 ?

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

T

-

-

F

T

-

F

F

T

F

F

F

F

F

F

T

T

-

T

T

F

T

F

T

T

F

F

F

T

T

F

T

F

F

T

F

F

F

T

F

F

T

F

F

F

F

F

F

c
11

- - - - - - - - - T F - - F F - T F T F T F

Rule Count 1024 512 256 128 64 32 8 4 2 1 1 4 2 1 1 2 1 1 1 1 1 1

a1 : Invalid marks X X X X X X

a : First division with

distinction
X

a3 : First division X

a4 : Second division X

a5 : Third division X

a6 : Fail X

a7 : Impossible X X X X X X X X X X X

There are 22 test cases corresponding to each column in the decision table. The test cases are

given in Table 2.36.

Table 2.36.

Test Case

mark1

mark2

mark3

Expected Output

1. –1 50 50 Invalid marks

2. 101 50 50 Invalid marks

3. 50 –1 50 Invalid marks

4. 50 101 50 Invalid marks

5. 50 50 –1 Invalid marks

6. 50 50 101 Invalid marks

7. ? ? ? Impossible

8. ? ? ? Impossible

9. ? ? ? Impossible

10. ? ? ? Impossible

11. 25 25 25 Fail

12. ? ? ? Impossible

13. ? ? ? Impossible

14. ? ? ? Impossible

15. 45 45 45 Third division

16. ? ? ? Impossible

17. ? ? ? Impossible

18. 55 55 55 Second division

19. ? ? ? Impossible

20. 65 65 65 First division

21. 80 80 80 First division with distinction

22. ? ? ? Impossible

The input domain may be partitioned into the following equivalence classes:

I
1

= { A1 : 0 mark1 100 }

I
2

= { A2 : mark1 < 0 }

I
3

= { A3 : mark1 > 100 }

I
4

= { B1 : 0 mark2 100 }

Table 2.37.

I

5
= {B2 : mark2 < 0 }

I
6

= { B3 : mark2 > 100 }

I
7

= { C1 : 0 mark3 100 }

I
8

= { C2 : mark3 < 0 }

I
9

= { C3 : mark3 > 100 }

I
10

= { D1 : 0 avg 39 }

I
11

= { D2 : 40 avg 49 }

I
12

= { D3 : 50 avg 59 }

I
13

= { D4 : 60 avg 74}

I
14

= { D5 : avg 75 }

The extended entry decision table is given in Table 2.37.

Conditions 1 2 3 4 5 6 7 8 9 10 11

c1 : mark1 in A1 A1 A1 A1 A1 A1 A1 A1 A1 A2 A3

c2 : mark 2 in B1 B1 B1 B1 B1 B1 B1 B2 B3 - -

c3 : mark3 in C1 C1 C1 C1 C1 C2 C3 - - - -

c4 : avg in D1 D2 D3 D4 D5 - - - - - -

Rule Count 1 1 1 1 1 5 5 15 15 45 45

a1: Invalid Marks X X X X X X

Here 2numbers of do not care conditions formula cannot be applied because this is an extended entry

decision table where multiple conditions are used. We have made equivalence classes for

mark1, mark2, mark3 and average value. In column 6, rule count is 5 because “average value”

is ‘do not care’ otherwise the following combinations should have been shown:

A1, B1, C2, D1

A1, B1, C2, D2

A1, B1, C2, D3

a
2
: First Division with

X

Distinction

a3: First Division

a4: Second Division

a5: Third Division

a6: Fail

X

X

X

X

A1, B1, C2, D4

A1, B1, C2, D5

These five combinations have been replaced by a ‘do not care’ condition for average value

(D) and the result is shown as A1, B1, C2, ––. Hence, rule count for extended decision table is

given as:

Rule count = Cartesian product of number of equivalence classes of entries having ‘do not

care’ conditions.

The test cases are given in Table 2.38. There are 11 test cases as compared to 22 test cases

given in Table 2.36.

Table 2.38.

Test Case

mark1

mark2

mark3

Expected Output

1. 25 25 25 Fail

2. 45 45 45 Third Division

3. 55 55 55 Second Division

4. 65 65 65 First Division

5. 80 80 80 First Division with Distinction

6. 50 50 - Invalid marks

7. 50 50 101 Invalid marks

8. 50 - 50 Invalid marks

9. 50 101 50 Invalid marks

10. - 50 50 Invalid marks

11. 101 50 50 Invalid marks

Example 2.15: Consider the program for classification of a triangle in example 2.3. Design

the test cases using decision table based testing.

Solution: We may also choose conditions which include an invalid range of input domain, but

this will increase the size of the decision table as shown in Table 2.39. We add an action to

show that the inputs are out of range.

The decision table is given in Table 2.39 and has the corresponding test cases that are given

in Table 2.40. The number of test cases is equal to the number of columns in the decision table.

Hence, 17 test cases can be generated.

In the decision table given in Table 2.39, we assumed that ‘a’ is the longest side. This time

we do not make this assumption and take all the possible conditions into consideration i.e. any

of the sides ‘a’, ‘b’ or ‘c’ can be longest. It has 31 rules as compared to the 17 given in Table

2.40. The full decision table is given in Table 2.41. The corresponding 55 test cases are given

in Table 2.42.

Table 2.39.

Conditions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

c1: a<b+c? F T T T T T T T T T T T T T T T T

c2: b<c+a? - F T T T T T T T T T T T T T T T

c3: c<a+b? - - F T T T T T T T T T T T T T T

c4: a > 0? - - - F T T T T T T T T T T T T T

c5: a < = 100? - - - - F T T T T T T T T T T T T

c6: b > 0? - - - - - F T T T T T T T T T T T

c7: b < = 100? - - - - - - F T T T T T T T T T T

c8: c > 0? - - - - - - - F T T T T T T T T T

c9: c < = 100? - - - - - - - - F T T T T T T T T

c
10
: a2 = b2+c2? - - - - - - - - - T T T T F F F F

c
11
: a2 > b2+c2? - - - - - - - - - T T F F T T F F

c
12
: a2 < b2+c2? - - - - - - - - - T F T F T F T F

Rule Count 1048 1024 512 256 128 64 32 16 8 1 1 1 1 1 1 1 1

a1 : Invalid Triangle X X X

a2 : Input(s) out of range X X X X X X

a3 : Right angled triangle X

a4 : Obtuse angled triangle X

a5 : Acute angled triangle

a6 : Impossible

X

X

X

X

 X
X

(Contd.)

Table 2.40. Test cases

Test Case a b c Expected Output

1. 90 40 40 Invalid Triangle

2. 40 90 40 Invalid Triangle

3. 40 40 90 Invalid Triangle

4. 0 50 50 Input(s) out of Range

5. 101 50 50 Input(s) out of Range

6. 50 0 50 Input(s) out of Range

7. 50 101 50 Input(s) out of Range

8. 50 50 0 Input(s) out of Range

9. 50 50 101 Input(s) out of Range

10. ? ? ? Impossible

11. ? ? ? Impossible

12. ? ? ? Impossible

13. 50 40 30 Right Angled Triangle

14. ? ? ? Impossible

15. 57 40 40 Obtuse Angled Triangle

16. 50 49 49 Acute Angled Triangle

17. ? ? ? Impossible

range

triangle

triangle

triangle

Table 2.41.

Conditions 1 2 3 4 5 6 7 8 9 10 11

c1: a < b+c? F T T T T T T T T T T

c2: b < c+a? - F T T T T T T T T T

c3: c < a+b? - - F T T T T T T T T

c4: a > 0? - - - F T T T T T T T

c5: a <= 100? - - - - F T T T T T T

c6: b > 0? - - - - - F T T T T T

c7: b <= 100? - - - - - - F T T T T

c8: c > 0? - - - - - - - F T T T

c9: c <= 100? - - - - - - - - F T T

c
10
: a2 = b2+c2? - - - - - - - - - T T

c
11
: b2 = c2+a2? - - - - - - - - - T F

c
12
: c2 = a2+b2? - - - - - - - - - - T

c
13
: a2 > b2+c2? - - - - - - - - - - -

c
14
: b2 > c2+a2? - - - - - - - - - - -

c
15
: c2 > a2+b2? - - - - - - - - - - -

Rule Count 16384 8192 4096 2048 1024 512 256 128 64 16 8

a1 : Invalid triangle
a2 : Input(s) out of

a3 : Right angled

a4 : Obtuse angled

a5 : Acute angled

X X X
X

X

X

X

X

X

a6 : Impossible X X

(Contd.)

(Contd.)

range

triangle

triangle

triangle

Conditions 25 26 27 28 29 30 31

c1: a < b+c? T T T T T T T

c2: b < c+a? T T T T T T T

c3: c < a+b? T T T T T T T

c4: a > 0? T T T T T T T

c5: a <= 100? T T T T T T T

c6: b > 0? T T T T T T T

c7: b <= 100? T T T T T T T

c8: c > 0? T T T T T T T

c9: c <= 100? T T T T T T T

c
10
: a2 = b2+c2? F F F F F F F

c
11
: b2 = c2+a2? F F F F F F F

c
12
: c2 = a2+b2? F F F F F F F

Conditions 12 13 14 15 16 17 18 19 20 21 22 23 24

c1: a < b+c? T T T T T T T T T T T T T

c2: b < c+a? T T T T T T T T T T T T T

c3: c < a+b? T T T T T T T T T T T T T

c4: a > 0? T T T T T T T T T T T T T

c5: a <= 100? T T T T T T T T T T T T T

c6: b > 0? T T T T T T T T T T T T T

c7: b <= 100? T T T T T T T T T T T T T

c8: c > 0? T T T T T T T T T T T T T

c9: c <= 100? T T T T T T T T T T T T T

c
10
: a2 = b2+c2? T T T T F F F F F F F F F

c
11
: b2 = c2+a2? F F F F T T T T T F F F F

c
12
: c2 = a2+b2? F F F F T F F F F T T T T

c
13
: a2 > b2+c2? T F F F - T F F F T F F F

c
14
: b2 > c2+a2? - T F F - - T F T - T F F

c
15
: c2 > a2+b2? - - T F - - - T F - - T F

Rule Count 4 2 1 1 8 4 2 1 1 4 2 1 1

a1 : Invalid triangle

a2 : Input(s) out of

a3 : Right angled
X

X

X

a4 : Obtuse angled

a5 : Acute angled

a6 : Impossible X X X X X X X X X X

(Contd.)

Conditions 25 26 27 28 29 30 31

c
13
: a2 > b2+c2? T T T F F F F

c
14
: b2 > c2+a2? T F F T T F F

c
15
: c2 > a2+b2? - T F T F T F

Rule Count 2 1 1 1 1 1 1

a1 : Invalid triangle

a2 : Input(s) out of range

a3 : Right angled triangle

a4 : Obtuse angled triangle X X X

a5 : Acute angled triangle X

a6 : Impossible X X X

The table has 31 columns (total = 32768)

Table 2.42. Test cases of the decision table given in table 2.41

Test Case a b c Expected Output

1. 90 40 40 Invalid Triangle

2. 40 90 40 Invalid Triangle

3. 40 40 90 Invalid Triangle

4. 0 50 50 Input(s) out of Range

5. 101 50 50 Input(s) out of Range

6. 50 0 50 Input(s) out of Range

7. 50 101 50 Input(s) out of Range

8. 50 50 0 Input(s) out of Range

9. 50 50 101 Input(s) out of Range

10. ? ? ? Impossible

11. ? ? ? Impossible

12. ? ? ? Impossible

13. ? ? ? Impossible

14. ? ? ? Impossible

15. 50 40 30 Right Angled Triangle

16. ? ? ? Impossible

17. ? ? ? Impossible

18. ? ? ? Impossible

19. ? ? ? Impossible

20. 40 50 30 Right Angled Triangle

(Contd.)

(Contd.)

Test Case a b c Expected Output

21. ? ? ? Impossible

22. ? ? ? Impossible

23. ? ? ? Impossible

24. 40 30 50 Right Angled Triangle

25. ? ? ? Impossible

26. ? ? ? Impossible

27. 57 40 40 Obtuse Angled Triangle

28. ? ? ? Impossible

29. 40 57 40 Obtuse Angled Triangle

30. 40 40 57 Obtuse Angled Triangle

31. 50 49 49 Acute Angled Triangle

Example 2.16: Consider a program for the determination of day of the week specified in

example 2.4. Identify the test cases using decision table based testing.

Solution: The input domain can be divided into the following classes:

I
1
= { M1 : month has 30 days }

I
2
= { M2 : month has 31 days }

I
3
= { M3 : month is February }

I
4
= { M4 : month <1 }

I
5
= { M5 : month > 12 }

I
6

= { D1 : 1 Day 28 }

I
7

= { D2 : Day = 29 }

I
8

= { D3 : Day = 30 }

I
9

= { D4 : Day = 31 }

I
10

= { D5 : Day < 1 }

I
11

= { D6 : Day > 31 }

I
12

= { Y1 : 1900 Year 2058 and is a common year }

I
13

= { Y2 : 1900 Year 2058 and is a leap year }

I
14

: { Y3 : Year < 1900 }

I
15

: { Y4 : year > 2058 }

The decision table is given in Table 2.43 and the corresponding test cases are given in Table 2.44.

week

range

Test Case 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

c1 : Months in M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M3

c2 : Days in D1 D1 D2 D2 D2 D2 D3 D3 D3 D3 D4 D4 D4 D4 D5 D6 D1

c3 : Years in Y3 Y4 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 - - Y1

Rule Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1

a1 : Invalid Date

a2 : Day of the week

X

X

X

X

X

X

X

a3 : Input out of range X X X X X X X X X X

-

Test Case 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

c1 : Months in M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M4 M5

c2 : Days in D1 D1 D1 D2 D2 D2 D2 D3 D3 D3 D3 D4 D4 D4 D4 D5 D6 - -

c3 : Years in Y2 Y3 Y4 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 - - -

Rule Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 24 24

a1: Invalid Date

a2 : Day of the week

a3 : Input out of range

X

X

X

X
X

X

X

X X

X

X

X X

X

X

X

X

X

X

Table 2.43.

Test Case

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

c1 : Months in M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M2 M2

c2 : Days in D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D3 D3 D4 D4 D4 D4 D5 D6 D1 D1

c3 : Years in Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 - - Y1 Y2

Rule Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 1

a1 : Invalid Date

a2 : Day of the

a3 : Input out of

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

Table 2.44. Test cases of the program day of the week

Test Case month day year Expected Output

1. 6 15 1979 Friday

2. 6 15 2000 Thursday

3. 6 15 1899 Input out of range

4. 6 15 2059 Input out of range

5. 6 29 1979 Friday

6. 6 29 2000 Thursday

7. 6 29 1899 Input out of range

8. 6 29 2059 Input out of range

9. 6 30 1979 Saturday

10. 6 30 2000 Friday

11. 6 30 1899 Input out of range

12. 6 30 2059 Input out of range

13. 6 31 1979 Invalid date

14. 6 31 2000 Invalid date

15. 6 31 1899 Input out of range

16. 6 31 2059 Input out of range

17. 6 0 1979 Input out of range

18. 6 32 1979 Input out of range

19. 5 15 1979 Tuesday

20. 5 15 2000 Monday

21. 5 15 1899 Input out of range

22. 5 15 2059 Input out of range

23. 5 29 1979 Tuesday

24. 5 29 2000 Monday

25. 5 29 1899 Input out of range

26. 5 29 2059 Input out of range

27. 5 30 1979 Wednesday

28. 5 30 2000 Tuesday

29. 5 30 1899 Input out of range

30. 5 30 2059 Input out of range

31. 5 31 1979 Thursday

32. 5 31 2000 Wednesday

33. 5 31 1899 Input out of range

34. 5 31 2059 Input out of range

35. 5 0 1979 Input out of range

36. 5 32 1979 Input out of range

37. 2 15 1979 Thursday

38. 2 15 2000 Tuesday

39. 2 15 1899 Input out of range

40. 2 15 2059 Input out of range

41. 2 29 1979 Invalid date

42. 2 29 2000 Tuesday

43. 2 29 1899 Input out of range

44. 2 29 2059 Input out of range

45. 2 30 1979 Invalid date

 (Contd.)

(Contd.)

Test Case month day year Expected Output

46. 2 30 2000 Invalid date

47. 2 30 1899 Input out of range

48. 2 30 2059 Input out of range

49. 2 31 1979 Invalid date

50. 2 31 2000 Invalid date

51. 2 31 1899 Input out of range

52. 2 31 2059 Input out of range

53. 2 0 1979 Input out of range

54. 2 32 1979 Input out of range

55. 0 0 1899 Input out of range

56. 13 32 1899 Input out of range

The product of number of partitions of each input variable (or equivalence classes) is 120.

The decision table has 56 columns and 56 corresponding test cases are shown in Table 2.44.

CAUSE-EFFECT GRAPHING TECHNIQUE

This technique is a popular technique for small programs and considers the combinations of

various inputs which were not available in earlier discussed techniques like boundary value

analysis and equivalence class testing. Such techniques do not allow combinations of inputs

and consider all inputs as independent inputs. Two new terms are used here and these are

causes and effects, which are nothing but inputs and outputs respectively. The steps for the

generation of test cases are given in Figure 2.11.

Figure 2.11. Steps for the generation of test cases

 Identification of Causes and Effects

The SRS document is used for the identification of causes and effects. Causes which are inputs

to the program and effects which are outputs of the program can easily be identified after

reading the SRS document. A list is prepared for all causes and effects.

 Design of Cause-Effect Graph

The relationship amongst causes and effects are established using cause-effect graph. The basic

notations of the graph are shown in Figure 2.12.

Figure 2.12. Basic notations used in cause-effect graph

In Figure 2.12, each node represents either true (present) or false (absent) state and may be

assigned 1 and 0 value respectively. The purpose of four functions is given as:

(i) Identity: This function states that if c
1

is 1, then e
1

is 1; else e
1

is 0.

(ii) NOT: This function states that if c
1

is 1, then e
1

is 0; else e
1

is 1.

(iii) AND: This function states that if both c
1

and c
2

are 1, then e
1

is 1; else e
1

is 0.
(iv) OR: This function states that if either c

1
or c

2
is 1, then e

1
is 1; else e

1
is 0.

The AND and OR functions are allowed to have any number of inputs.

 Use of Constraints in Cause-Effect Graph

There may be a number of causes (inputs) in any program. We may like to explore the

relationships amongst the causes and this process may lead to some impossible combinations

of causes. Such impossible combinations or situations are represented by constraint symbols

which are given in Figure 2.13.

The purpose of all five constraint symbols is given as:

(a)

(b)

(c) (

c

)

Exclusive

The Exclusive (E) constraint states that at most one of c
1

or c
2

can be 1 (c
1

or c
2

cannot

be 1 simultaneously). However, both c
1

and c
2

can be 0 simultaneously.

Inclusive

The Inclusive (I) constraints states that at least one of c
1
or c

2
must always be 1. Hence,

both cannot be 0 simultaneously. However, both can be 1.

One and Only One

The one and only one (O) constraint states that one and only one of c
1
and c

2
must be 1.

98 Software Testing

Figure 2.13. Constraint symbols for any cause-effect graph

(d)

(e) (

e

)

Requires

The requires (R) constraint states that for c
1

to be 1, c
2

must be 1; it is impossible for

c
1
to be 1 if c

2
is 0.

Mask

This constraint is applicable at the effect side of the cause-effect graph. This states that

if effect e
1

is 1, effect e
2

is forced to be 0.

These five constraint symbols can be applied to a cause-effect graph depending upon the

relationships amongst causes (a, b, c and d) and effects (e). They help us to represent real life

situations in the cause-effect graph.

Consider the example of keeping the record of marital status and number of children of a

citizen. The value of marital status must be ‘U’ or ‘M’. The value of the number of children

must be digit or null in case a citizen is unmarried. If the information entered by the user is

correct then an update is made. If the value of marital status of the citizen is incorrect, then the

error message 1 is issued. Similarly, if the value of number of children is incorrect, then the

error message 2 is issued.

The causes are:

c
1
: marital status is ‘U’

c
2
: marital status is ‘M’

c
3
: number of children is a digit

and the effects are:

e
1
: updation made

e
2
: error message 1 is issued

e
3
: error message 2 is issued

The cause-effect graph is shown in Figure 2.14. There are two constraints exclusive

(between c
1
and c

2
) and requires (between c

3
and c

2
), which are placed at appropriate places in

the graph. Causes c
1
and c

2
cannot occur simultaneously and for cause c

3
to be true, cause c

2

has to be true. However, there is no mask constraint in this graph.

Figure 2.14. Example of cause-effect graph with exclusive (constraint) and requires constraint

 Design of Limited Entry Decision Table

The cause-effect graph represents the relationships amongst the causes and effects. This graph

may also help us to understand the various conditions/combinations amongst the causes and

effects. These conditions/combinations are converted into the limited entry decision table.

Each column of the table represents a test case.

 Writing of Test Cases

Each column of the decision table represents a rule and gives us a test case. We may reduce

the number of columns with the proper selection of various conditions and expected actions.

 Applicability

Cause-effect graphing is a systematic method for generating test cases. It considers dependency

of inputs using some constraints.

This technique is effective only for small programs because, as the size of the program

increases, the number of causes and effects also increases and thus complexity of the cause-

effect graph increases. For large-sized programs, a tool may help us to design the cause-effect

graph with the minimum possible complexity.

It has very limited applications in unit testing and hardly any application in integration

testing and system testing.

Example 2.17: A tourist of age greater than 21 years and having a clean driving record is

supplied a rental car. A premium amount is also charged if the tourist is on business, otherwise

it is not charged.

If the tourist is less than 21 year old, or does not have a clean driving record, the system will

display the following message:

“Car cannot be supplied”

Draw the cause-effect graph and generate test cases.

Supply a rental car without

premium charge

Supply a rental car with pre-

mium charge.

Solution: The causes are

c
1
: Age is over 21

c
2
: Driving record is clean

c
3
: Tourist is on business

and effects are

e
1
: Supply a rental car without premium charge.

e
2
: Supply a rental car with premium charge

e
3
: Car cannot be supplied

The cause-effect graph is shown in Figure 2.15 and decision table is shown in Table 2.45. The

test cases for the problem are given in Table 2.46.

Figure 2.15. Cause-effect graph of rental car problem

Table 2.45.

Conditions 1 2 3 4

c1 : Over 21 ? F T T T

c2 : Driving record clean ? - F T T

c3 : On Business ? - - F T

e1 : Supply a rental car without premium charge

e2 : Supply a rental car with premium charge

e3 : Car cannot be supplied

X

X

X
X

Table 2.46.

Test Case

Age

Driving_record_clean

On_business

Expected Output

1. 20 Yes Yes Car cannot be supplied

2. 26 No Yes Car cannot be supplied

3. 62 Yes No

4. 62 Yes Yes

Example 2.18: Consider the triangle classification problem (‘a’ is the largest side) specified

in example 2.3. Draw the cause-effect graph and design decision table from it.

Solution:

The causes are:

c
1
: side ‘a’ is less than the sum of sides ‘b’ and ‘c’.

c
2
: side ‘b’ is less than the sum of sides ‘a’ and ‘c’.

c
3

: side ‘c’ is less than the sum of sides ‘a’ and ‘b’.
c

4
: square of side ‘a’ is equal to the sum of squares of sides ‘b’ and ‘c’.

c
5
: square of side ‘a’ is greater than the sum of squares of sides ‘b’ and ‘c’.

c
6

: square of side ‘a’ is less than the sum of squares of sides ‘b’ and ‘c’.

and effects are

e
1

: Invalid Triangle

e
2

: Right angle triangle
e

3
: Obtuse angled triangle

e
4

: Acute angled triangle

e
5

: Impossible stage

The cause-effect graph is shown in Figure 2.16 and the decision table is shown in Table 2.47.

Table 2.47.

Conditions

c1 : a<b+c
c2 : b<a+c

c3 : c<a+b

c
4
: a2=b2+c2

c
5
: a2>b2+c2

c
6
: a2<b2+c2

0

X
X
X

X
X

1

0

X
X
X
X

1

1

0

X
X
X

1

1

1

1

1
1

1

1

1

1

1
0

1

1

1

1

0
1

1

1

1

1

0
0

1

1

1

0

1
1

1

1

1

0

1
0

1

1

1

0

0
1

1

1

1

0

0
0

e1 : Invalid Triangle
e2 : Right angled Triangle
e3 : Obtuse angled triangle

e4 : Acute angled triangle
e5 : Impossible

1 1 1

1

1

1

1

1

1

1

1

Figure 2.16. Cause-effect graph of triangle classification problem

