
Backtracking & 
Branch-and-Bound



Introduction

Description

Backtracking is used 
for

Problems that are solved by searching a set of solutions or finding an optimal solution 
that satisfying some constraints

Representation of 
solution

n-tuple (x1,x2,…xn) 

Adv. of Backtracking 
over brute-force 

Brute-force approach examine all possibilities of n-tuples , whereas backtrack algorithm 
has the ability to find the answer less than m trails. Where m is less than all possibilities

Idea Build the solution vector one component at a time and to use modified criterion 
functions Pi(x1,x2,…xi)(known as bounding functions) to test whether the vector being 
formed has any chance of success.

Constraints Explicit and Implicit constraints.

Explicit constraints depend on the particular instance I of the problem being solved. All 
tuples that satisfy the explicit constraints define a possible solution space for I.
Implicit constraints are rules that determine which of the tuples in the solution space of 
I satisfy the criterion function.



Example of Explicit 
Constraints

• Backtracking algorithms determine problem solutions by systematically searching the solution 
space for the given problem instance.

• Tree organization is used for representation of searching the solution space.
• Each node in the tree is known as problem state.
• All paths from the root to other nodes define the state space of the problem.
• Solution states are problem states in S for which the path from the root to s define a tuple in the 

solution space.
• The solution states that forms a tuple in solution space that satisfies implicit constraints of the 

problem is known as answer states.



Terminology Definition

Live node A node which has been generated and all of whose children have not yet been 
generated.

E-node It is a live node whose children are currently being generated.

Dead node If the node is not expanded further or all its children have been generated.

Bounding functions These are used to kill the live nodes without generating all its children

Backtracking State generation using depth first with bounding functions

Branch-and-Bound State generation methods in which the E-node remains the E-node until it is 
dead.



Example : State space tree for 4-queens

• Each node in the tree is known as 
problem state.

• All paths from the root to other 
nodes define the state space of 
the problem.

• Solution states are problem 
states in S for which the path 
from the root to s define a tuple 
in the solution space.

• The solution states that forms a 
tuple in solution space that 
satisfies implicit constraints of the 
problem is known as answer 
states.

problem states
Answer state

Solution states



Recursive algorithm Iterative algorithm

General Algorithm of Backtracking



8-Queens Problem
• A classic Combinatorial Problem is to place eight queens on an 8x8 chessboard 

so that no two attack that is, no two of them are on the same row ,column, or 
diagonal.

• All solutions to the 8-queens problem can be represented as 8-tuples (x1,x2,…x8) 
where xi is the column on which queen i is placed.

• The explicit constraints for the problem is Si = {1,2,3,4,5,6,7,8} where 1 ≤ i ≤ 8. 
Therefore, the solution space contains 88 8-tuples. 

• The implicit constraints for the problem are that 
➢ no two xi’s can be same (i.e., all queens must be on different columns) and

➢ no two queens can be on the same diagonal.

• The implicit constraint 1 reduces the solution space size from 88 to 8!.

• The one of the solution tuple is (4,6,8,2,7,1,3,5)

1 2 3 4 5 6 7 8

1 Q

2 Q

3 Q

4 Q

5 Q

6 Q

7 Q

8 Q

N - Queens problem is generalization of 8 – Queens problem for any n ≥ 4.



N-Queens Solution

1 2 3 4 5 6 7 8

1

2

3

4 Q

5

6

7

8

Let Queen location is (i, j) and the squares diagonal  

to it (say (k, l)) have the property

i-j = k-l (upper left to lower right)

or 

i+j = k+l (upper right to lower left)

Determining the two queens in same diagonal or not

Example : Let Q location (i,j) = (4,2)

(i-j) = (k-l) = {(3,1),(5,3),(6,5),(7,5)(8,6)}

(i+j)= (k+l) = {(1,5),(2,4),(3,3),(5,1)}

If Q1 = (i, j) and Q2= (k, j) then they belong to same 
diagonal or not if 

i-j = k-l i+j = k+lor

l-j = k-i j- l = k-i

abs( l – j ) = abs(k - i) 



1

2

3 4 7

5 6

x1=1

x2=2

B

x2=3

8 10

x2=4

x3=2 x3=4

B B

x3=2 x3=3

9

x4=3

B

B

11

12 13 14

x2=1
x2=3

x2=4

x1= 2

B B

15

x3=1

16

x4=3

17

x3=3

B

18

19 23 24

x2=1

x2=2

x2=4

x1= 3

20

x3=2

21

x3=4

B

22

x4=2

B B

x1= 4

25

26 30 31

x2=1

x2=2

x2=3

27

x3=3

B

B B

28

x4=2

29

x3=2

B

State space tree generated for 4-queens 
using backtracking



N – Queens Algorithm using Backtracking 



SumOfSubsets Problem

• Given n distinct positive numbers(usually called weights) , and find the 
all combinations of these numbers whose sum is equal to m. 

• We can formulate the solution using fixed and variable sized tuple

• The explicit constraint is if xi is included means weight wi is included in 
the answer tuple ,so xi=0 or 1 

• The bounding function 

Bk(x1,….xk) = true iff σ𝑖=1
𝑘 𝑤𝑖𝑥𝑖 + σ𝑖=𝑘+1

𝑛 𝑤𝑖 ≥ m and

σ𝑖=1
𝑘 𝑤𝑖𝑥𝑖 + wk+1 ≤ m



0, 1, 73

5, 2, 68 0, 2, 68

x1=1 x1=0

15, 3, 58 5, 3, 58 10, 3, 58 0, 3, 58

27, 4, 46 15, 4, 46

15, 5, 33

17, 4, 46 5, 4, 46 12, 4, 46 0, 4, 4610, 4, 46

5, 5, 33

20, 6, 18

10, 5, 33 12, 5, 33 13, 5, 33 0, 5, 33

12, 6, 18 13, 6, 18

x2=1 x2=0

x3=1 x3=0

x4=0

A

x5=1

x3=1 x3=0

B

x4=1 x4=0

x5=1

x2=1 x2=0

x4=0

x4=0

x3=1 x3=0

x3=1 x3=0

C

x4=0

x5=0

x6=1

x5=0

n=6 m=30
W[1:6]= {5,10,12,13,15,18}

State space tree generated for Sum of 
subsets problem using backtracking







Branch-and-Bound
• FIFO BB : A BFS-like state space search is known as FIFO search (first-

in-first-out) .

• LIFO BB: A D-search-like state space search will be called as LIFO 
search(last-in-last-out) search.

• In both LIFO and FIFO branch-and-bound the selection rule for the 
next E-node is rigid.

• In LC-Search ,the selection of next node E-node is based on cost 
function C(x). 

• Both FIFO and LIFO are special cases of LC search method.

• An LC-search coupled with bounded functions is known as LC branch-
and-bound search



If the list of live nodes is implemented as a queue 

with Least( ) and Add(x) being algorithms to 

delete an element from and add an element to 

the queue , then LC Search will be transformed 

to a FIFO search

If the list of live nodes is implemented as a stack 

with Least( ) and Add(x) being algorithms to 

delete an element from and add an element to 

the queue , then LC Search will be transformed 

to a LIFO search



State space tree for TSP using LC-BB

C 1 2 3 4 5

1 ∞ 20 30 10 11

2 15 ∞ 16 4 2

3 3 5 ∞ 4 2

4 19 6 18 ∞ 3

5 16 4 7 16 ∞

Cost matrix

Optimal tour
1 -> 4 -> 2 -> 5 -> 3 -> 1



C 1 2 3 4 5

1 ∞ 20 30 10 11

2 15 ∞ 16 4 2

3 3 5 ∞ 4 2

4 19 6 18 ∞ 3

5 16 4 7 16 ∞

Process for generation of minimum cost 
1. Row reduction – subtract minimum value of each row from that row
2. Column reduction – subtract minimum value of each column from that column

C 1 2 3 4 5

1 ∞ 10 20 0 1

2 13 ∞ 14 2 0

3 1 3 ∞ 2 0

4 16 3 15 ∞ 0

5 12 0 3 12 ∞

C1 1 2 3 4 5

1 ∞ 10 17 0 1

2 12 ∞ 11 2 0

3 0 3 ∞ 2 0

4 15 3 12 ∞ 0

5 11 0 0 12 ∞
min 1 0 3 0 0 4

After 
row reduction

After 
column reduction

Minimum cost = 25 i.e., minimum cost of tour is 25

min

10

2

2

3

4

21



1

2 3 4 5

25

35 53 25 31

i1=2
i1=3

i1=5
i1=4

i1=2
i1=3 i1=4

i1=5



Complexity classes - P, NP, and NP-Complete
Class of Problem Description

P class A problem that can be solved in polynomial-time algorithm in worst case O(nk) for some 
constant k.
Example : Searching, sorting, graph searching etc.

NP class The problems that are verifiable in polynomial time. Verifiable means if someone provided a 
solution , then we could verify whether the solution is correct in polynomial time.

NP-Complete A Problem p is said to be in NP-Complete if 
• p belongs to NP ( i.e., p ϵ NP)
• p is as hard as any problem in NP (i.e., any problem in NP-Complete is polynomial 

time reducible to p )
Example : 3-satisifiability, TSP, Hamiltonian cycle, vertex cover, clique etc.

NP-hard Any Problem in NP-Complete can be polynomial time reducible to p and the p doesn’t 
belongs to NP, then p is said to be NP-hard.
(A Problem that satisfies only property 2 ,doesn’t satisfy property 1 in the above definition.)
Example : halting problem

Every NP-Complete problem is NP-hard, but there are problem which are NP-hard that is not NP-Complete 

P means – Polynomial-time NP means – Nondeterministic Polynomial time



Relationship among P and NP classes from various researchers' point of view  

Most researchers regard this 

possibility as the most likely.

As researchers believe that P ≠ NP so , this introduces a new class known as NP- Complete



• As researchers believe that P ≠ NP so , this introduces a new class known as NP-

Complete.

• Most theoretical computer scientists view the relationships among P, NP, and NPC. 

Both P and NPC are wholly contained with in NP, and P Ո NPC = Ø


	Slide 1: Backtracking &  Branch-and-Bound
	Slide 2: Introduction
	Slide 3
	Slide 4
	Slide 5: Example : State space tree for 4-queens
	Slide 6
	Slide 7: 8-Queens Problem
	Slide 8: N-Queens Solution
	Slide 9: State space tree generated for 4-queens using backtracking
	Slide 10
	Slide 11: SumOfSubsets Problem
	Slide 12: State space tree generated for Sum of subsets problem using backtracking
	Slide 13
	Slide 14
	Slide 15: Branch-and-Bound
	Slide 16
	Slide 17: State space tree for TSP using LC-BB
	Slide 18
	Slide 19
	Slide 20: Complexity classes - P, NP, and NP-Complete
	Slide 21
	Slide 22

